
HiPEC: High Performance External Virtual Memory CachingChao-Hsien Leey, Meng Chang Chenz and Ruei-Chuan ChangyzDepartment of Computer and Information ScienceyNational Chiao Tung University, Taiwan, ROCpaul@os.nctu.edu.twInstitute of Information SciencezAcademia Sinica, Taiwan, ROCfmcc,rcg@iis.sinica.edu.twAbstractTraditional operating systems use a �xed LRU-likepage replacement policy and centralized frame poolthat cannot properly serve all types of memory accesspatterns of various applications. As a result, manymemory-intensive applications, such as databases,multimedia applications and scienti�c simulators, in-duce excessive page faults and page replacement whenrunning on top of existing operating systems.This paper presents a High Performance Externalvirtual memory Caching mechanism (HiPEC) to pro-vide applications with their own speci�c page replace-ment management. The user speci�c policy, pro-grammed in the HiPEC command set, is stored in useraddress space. When a page fault occurs, the kernelfetches and interprets the corresponding policy com-mands to perform the user-speci�c page replacementmanagement. Experimental results show that HiPECinduces little overhead and can signi�cantly improveperformance for memory-intensive applications.1 IntroductionThough technological advances have greatly improvedthe speed and enlarged the memory capacity of com-puter systems, because of the increasing size of appli-cations, it is still impossible to load all applicationsand their data sets into physical memory at one time.Existing virtual memory management schemes can beused to compensate for limited memory size by sharingthe physical frame pool among all applications. In cur-rent operating systems, a �xed LRU-like page replace-ment policy is usually used to handle memory sharing.This �xed LRU-like page replacement policy performswell when the applications have limited memory re-quirements or random memory access patterns, but itis unsuitable for many memory-intensive applications,The research described in this paper was partially supportedby NSC under grant NSC83-0408-E-001-008.

such as databases [27], multimedia applications [24],and scienti�c simulators [23].The reasons for this are the following. First, a�xed LRU-like page replacement policy and central-ized frame pool that cannot properly serve all types ofmemory access patterns of various applications. As aresult, memory intensive applications tend to induceexcessive page faults and page replacement. Since pagereplacement usually involves disk I/O operations thatare far slower than processor computation and memoryaccess, the performance of memory-intensive applica-tions degenerates.Second, the operating system kernel cannot pre-dict application access patterns and user applicationsknow nothing about their virtual memory caching sta-tus. Since all the applications share the same cen-tralized frame pool, the lack of information sharingbetween the kernel and user applications leads to un-necessary paging activities. Ideally, if the kernel anduser applications share information in page replace-ment decision-making, and each application managesits private frame pool, the system can achieve highperformance virtual memory caching by reducing un-necessary page replacement. However, the informationsharing induces expensive overhead if the kernel shouldtransfer control to user applications, or user applica-tions should transfer control to kernel.In this paper, we present a new mechanism, HiPEC(High Performance External virtual memoryCaching),to support application-controlled virtual memory pagereplacement management. HiPEC is based on theMach 3.0 kernel but can easily be ported to other oper-ating systems. Recent research has addressed similarvirtual memory caching problems. This research willbe reviewed in Section 2. The motivation for HiPECand system design are described in Section 3. Theoverall architecture of HiPEC and the implementationare presented in Section 4. In Section 5, several mea-surements and experiments are used to evaluate theoverhead of HiPEC and the performance improvement

for speci�c applications that using the HiPEC mech-anism. Section 6 concludes the paper and presentssuggestions for future work.2 Related WorkMany advanced operating systems and research pro-totypes have addressed the virtual memory cachingproblems. Mach [1], V++ [8] [11], Spring [18], andSPIN [6] all put the external memory managementinto their designs. In Mach, an external pager [32]is responsible for paging in and paging out memory-mapped data, which can be shared in a distributedenvironment because each data object is representedas a Mach IPC port. External pager is powerful butit lacks interfaces for applications to handle page re-placement management.McNamee's PREMO extends the external pager in-terfaces so that the page replacement facility is ex-ported to applications [21]. The system-maintainedinformation, such as reference and modify bits for eachpage frame, can be obtained by invoking PREMO-created system calls. This simple and direct modi�ca-tion of Mach reduces the number of page faults by 15%in a synthetic benchmark program. However, PREMOdoes not take into account the interference from otherapplications. PREMO puts all the page frames in onepool, which makes speci�c applications susceptible tounnecessary paging activities because of interferencebetween applications.In addition, although PREMO provides referenceand modify information, it does not supply other in-formation, such as the number of physical frames un-der control, which is essential to the performance ofspeci�c applications. Moreover, the IPC overhead forcommunication between the kernel and external pageris high. Even if the communications are implementedby upcall, as Krueger suggested [17], it is still expen-sive to upcall from the kernel to the user applicationand then call back from the user to the kernel becauseof the runtime stack changes.In Sechrest's work [28], the centralized frame pool ispartitioned into separate private frame lists when newmemory objects are created. Speci�c applications havetheir own PageOut Daemon (POD) to handle theirown memory object management, while non-speci�capplications are handled by a default POD. The weak-ness of this approach is its lack of security: informationis shared between the kernel and applications withoutprotection. The strategy of [28] is to trust on speci�capplication designers.Spring [18] has an external paging mechanism simi-lar to Mach except that it separates the memory objectfrom the pager object. The caching objects are alsocontrolled by the kernel without user participation.

V++ and SPIN are designed for application-controlledexternal page-cache management. V++ uses a seg-ment manager to handle page faults and has inter-faces to request and migrate page frames to and fromdi�erent segment managers. It uses a memory mar-ket approach [10] to handle global memory allocationamong segment managers. However, all the operationsor requests involve transferring control among di�er-ent address spaces. This incurs extra IPC overheadcompared to an in-kernel integrated implementation.SPIN is an extensible operating system for dynamiccreation of system services. The dynamically createdobjects, called spindles, allow applications to have spe-ci�c control of their allocated system resources, suchas processors, memory, and network protocols. Usingoptimized compiling and dynamic linking skills, SPINprovides applications with full control of allocated sys-tem resources. Applications running under SPIN canachieve maximumperformance without overhead fromcrossing the kernel/user boundary.HiPEC is similar to SPIN in that it does not needto cross the kernel/user boundary when executing auser-speci�c page replacement policy. SPIN createsits application-speci�c control by linking the compiledobject code into the kernel. It requires dynamic com-piling and linking when new services are created. Onthe contrary, HiPEC does not create any object codes.Instead, HiPEC interprets the speci�c control codesplaced in the user bu�er area. This design providesmore exibility and requires less modi�cation of theoperating system kernel.Mogul's work [22], the packet �lter, is worth men-tioned, although it is not related to user level memorymanagement. The packet �lter is a kernel-resident,protocol independent packet demultiplexer. Users canprogram their �lters in the �lter language, which issimilar to, but simpler than, HiPEC commands. The�lter is interpreted by the packet �lter when systemreceives a packet. The goals of the packet �lter arethe reduction of the rate of context switches, and easyto port and test communication protocols.3 Motivation and System DesignDue to the variety of memory access patterns of appli-cations, operating systems must be exible enough tosupport di�erent page replacement strategies to meetthe individual needs. When several page replacementstrategies run at a time, it is important to reduce theinterference from each other to maintain the perfor-mance of applications. One solution is to partitionthe centralized frame pool into separate lists that eachlist is allocated to a speci�c application� and managed�A speci�c application is de�ned as an application usesHiPEC mechanism in this paper.

by the application. In addition, the kernel and spe-ci�c applications need to cooperate with each other tomake good allocation and replacement decisions.There are several communication techniques avail-able between kernel and applications. When an appli-cation needs information from kernel, it uses systemcalls or sends messages to communicate with kernel.Upcalls are often used by kernel to activate applica-tions functions. Since requiring context switches, allthe techniques are expensive. Another approach is touse shared memory to map shared data structures be-tween kernel and user applications. Though this ap-proach can speed up data access, the data has to becollected and mapped into �xed locations which is ex-pensive too. Moreover, if the shared area is mappedwith read/write permission, the security of the oper-ating system kernel might be compromised. Conse-quently, kernel crossing is the source of overhead andpotential problems.Instead of �nding an e�cient technique for crossingthe kernel boundary, HiPEC employs an integrated in-kernel implementation. In HiPEC, a speci�c applica-tion only needs to place its speci�c page replacementpolicy, coded as a sequence of commands in HiPECcommand set, in the user space and store the pointerin an object known to the kernel. When page replace-ment is needed, the kernel fetches, decodes and inter-prets the command codes to perform the applicationspeci�c page replacement policy.
Disk

(1)(2)

(3)

Kernel(4)

(5)

Command

Region

Application

Figure 1: The Proposed Mechanism for ApplicationSpeci�c Control.Figure 1 illustrates the proposed mechanism forapplication-speci�c control. The address space of spe-ci�c application is partitioned into regions of continu-ous virtual memory. The region is the basic unit of spe-ci�c control. The command codes implementing theapplication page replacement policy are stored in thecommand bu�er. To activate HiPEC mechanism, the

speci�c application �rst (1) calls the HiPEC-createdsystem call with parameters including the startingaddress and size of the virtual memory region, andpointer to the command bu�er. Normally, the speci�capplication obtains the corresponding private framelist from the kernel, as in (2). When a page fault isgenerated inside the region, the application traps tothe kernel as shown in the step (3). If a page replace-ment decision is needed, the kernel fetches the com-mands from the command bu�er, decodes the com-mands and performs the required operations. Afterallocating physical frames for the faulted region, thekernel reads data from the disk and stores the datato the faulted address, as in step (4). Finally, in thestep (5), the page fault is resolved and the applicationresumes its work.This design has several advantages:� A high degree of e�ciency can be achieved be-cause no need to cross the kernel boundary andthe overhead for fetching and decoding commandsis low.� System security is guaranteed because the kerneldata structure is accessed by the kernel-providedoperations only. Applications cannot access pro-tected information.� The command codes can be treated as a portableinterface for speci�c applications. The detailsof virtual memory management and system-maintained data structures are shielded from ap-plications and designers. As a result, speci�c ap-plication designers do not need to consider tediousoperating system internals in their design.� High performance gain is obtainable if speci�c ap-plication designers know the access patterns oftheir applications and are able to program an e�-cient replacement policy in HiPEC command set.4 HiPEC ImplementationHiPEC has been implemented on OSF/1 MK 5.0.2operating system that extends the external memorymanagement (EMM) interface of Mach kernel to sup-port external virtual memory caching management.With this extension, applications can control the pag-ing activities of memory-mapped data via the externalpager [31] interface and handle the page replacementpolicy of a virtual memory region. Wang's implemen-tation [30] shows that little performance overhead isincurred for running an EMM interface on BSD UNIX.This result implies that HiPEC can be ported to oper-ating systems to support virtual memory caching man-agement no matter whether there is an EMM interfaceembedded in the operating systems.

Though the current HiPEC virtual memory cachingmanagement is based on the Mach EMM interface,the concept and implementation of HiPEC is indepen-dent from the interface. Speci�c applications can useHiPEC to control dynamically created virtual mem-ory regions without the help of an external pager.HiPEC has several constituents, including the secu-rity checker, policy executor, command bu�er, globalframe manager, user-level pseudo code translator, andHiPEC command set.
buffer

policy

Translator

Container

vm object

checker
Allocator

ExecutorFigure 2: HiPEC Architecture.4.1 Architecture OverviewHiPEC is composed of a set of kernel data structures,procedures, kernel threads, and user-level libraries andutilities. The architecture of HiPEC is illustrated inFigure 2. The global frame manager, implementedfrom Mach pageout daemon, is responsible for allo-cating free frames to and deallocating frames from ap-plications. The VM object is used in the Mach kernelto represent a segment of virtual memory region thatcan be a memory-mapped data �le or a segment of ad-dress space with the same protection attributes. Onenew kernel object, container, is added to record usefulinformation for the HiPEC mechanism. Container iscreated from the zone system [29] and mounted underVM object when HiPEC is invoked by speci�c appli-cations. A list of free frames, allocated by the globalframe manager, is mounted under the container. Theimportant information stored in the container includespointer to next container, pointers to related VM ob-jects and threads, pointers to the HiPEC commandbu�ers, pointers to allocated free frame lists, operandarray, and a timeout ag.The commandbu�er is a wired down user-level area,used to store the application-speci�c page replacementpolicy. The bu�er is set as read-only after a speci�c

application invokes HiPEC and the bu�er is passedas a parameter to kernel. If applications attempt tomodify the contents of the policy bu�er, a write faultoccurs. The page fault handling routines check the ad-dress of the fault, and terminate the application witha error message.The policy executor, called by the page fault han-dler, fetches the HiPEC commands for the event, de-codes them, and performs the operations. Since ex-ecutor resides in kernel address space, it can fetch thecommands without kernel crossing or stack changing.The overhead introduced is just the time for fetch anddecode several HiPEC commands.The security checker is implemented as a kernelthread to check illegitimate HiPEC commands and de-tect abnormal policy execution. In the current imple-mentation, the checker checks whether HiPEC com-mands have an invalid format or are inconsistent. Thechecker is periodically awakened to detect timeoutsof policy executions. Since policy execution is per-formed in kernel mode, bad policies from malicioususers or due to program mistakes can compromise sys-tem integrity and degenerate performance. The secu-rity checker ensures the robustness of the system. Thedetailed structure of each component of HiPEC is dis-cussed in the following subsections.4.2 HiPEC Commands
Command Code Operand FlagOperand

0 8 2416Figure 3: The HiPEC Command Format.A HiPEC command is a 32-bit long word that containsan 8-bit operator code and up to three operands, as de-picted in Figure 3. The operand is an 8-bit long integerwhich is used as an index to one entry in the operandarray. The operand array is stored in a container withup to 256 entries. Each entry in the operand array isa pointer to a variable. The types of the variable canbe as simple as an unsigned integer, or as complex asthe virtual memory page structure or page queue list.There are 20 commands in the current implemen-tation: Return, Arith, Comp, Logic, EmptyQ, InQ,Jump, DeQueue, EnQueue, Request, Release, Flush,Set, Ref, Mod, Find, Activate, FIFO, LRU and MRU.The syntax and semantics of each command are listedin Table 1.Each command is implemented in the kernel as amacro or a procedure call. HiPEC commands rangefrom complex commands, such as the page replace-ment policies FIFO, LRU, and MRU, to simple ones,such as Arith and Comp. The more complex a com-

Command Binary Op1 Op2 Flag OperationsReturn 00000000 op | | The end of execution. Return value is stored in op.Arith 00000001 op1 op2 ag Arithmetic operations for integer operands.Comp 00000010 op1 op2 ag Comparison operations for integer operands.Logic 00000011 op1 op2 ag Logical operations for boolean operands.EmptQ 00000100 op | | Test if queue op is empty.InQ 00000101 op1 op2 | Test if page op2 is in queue op1.Jump 00000110 CC Branch to next command. CC is the command counter.DeQueue 00000111 op1 op2 ag Move the page op1 from queue op2.EnQueue 00001000 op1 op2 ag Add page op1 to queue op2.Request 00001001 Size Request Size frames from frame manager.Release 00001010 op | | Release op frame to frame manager.Flush 00001011 op | | Flush page op to disk.Set 00001100 op1 ag1 ag2 Set or reset reference or modify bit of page op1.Ref 00001101 op | | Test if page op is referenced or not.Mod 00001110 op | | Test if page op is modi�ed or not.Find 00001111 op1 op2 ag Given virtual address op2, �nd the associated page frame op1.Activate 00010000 op | | Invoke another policy event. op is the event number.FIFO 00010001 op | | Execute FIFO page replacement policy for the op queue.LRU 00010010 op | | Execute LRU page replacement policy for the op queue.MRU 00010011 op | | Execute MRU page replacement policy for the op queue.Table 1: The HiPEC Command Set.mand is, the less overhead it creates because the pol-icy executor does not need to fetch and interpret manycommands during execution. While the simple com-mands induce more overhead in executing the pagereplacement policy, they are exible for application de-signers to program a speci�c policy. Though only 20commands are de�ned in the current implementation,they are powerful enough for many speci�c applica-tions. Since the HiPEC command code is 8 bits long,there can be up to 256 di�erent commands. It is easyto add new commands to HiPEC if more commandsare needed to handle page replacement. A HiPEC pro-gram can be created by a user-level translator from ahigh-level pseudo code program or by hand coding.When an event occurs, a segment of a HiPEC com-mand program is called to handle the event. Thereis no limitation of the number of events that a spe-ci�c application can de�ne. However, a speci�c appli-cation at least has to handle the two HiPEC-de�nedevents, PageFault and ReclaimFrame. When pagefaults occur, the HiPEC commands for PageFaultevent are interpreted to obtain free frames to han-dle the fault. The ReclaimFrame event happens whenthe system needs to retrieve physical frames from userjobs. The non-HiPEC-de�ned events are activated byother events, which can be viewed as procedure calls.Table 2 is a simple example that implements a FIFOwith a second chance LRU-like page replacement pol-icy.

4.3 ImplementationHiPEC mechanism is initialized by two HiPEC systemcalls, vm map hipec() and vm allocate hipec(), cor-responding to vm map() and vm allocate() in Machrespectively. vm map() maps a �le into the applica-tion's address space and vm allocate() allocates a re-gion of unused virtual memory for dynamic or tempo-rary data. When either of these two system calls areinvoked, the kernel allocates and initializes the con-tainer, allocates free page frames from the global framemanager, and checks the validity of HiPEC commandsstored in the policy bu�ers.4.3.1 Pageout Daemon Serves as GlobalFrame ManagerIn the HiPEC implementation, the pageout daemonacts as the global frame manager. It allocates freepage frames to speci�c applications, and reclaims themwhen applications terminate, or when other speci�capplications request for page frames. Since speci�c ap-plications and non-speci�c applications share the sameglobal frame pool, it is important to balance the allo-cation of free page frames between them. The globalframe manager performs four basic tasks: balance, al-location, deallocation, and I/O handling.� Balance. The global frame manager is also thepageout daemon, which is responsible for pageallocation and page replacement for non-speci�capplications when page faults occur. Since thepage frame allocation should be fair for both spe-

The PageFault EventCC Command Code The executed operations.0 HiPEC Magic No Magic number used for checking.1 02 02 0C 01 if(free count > reserved target)2 06 00 00 05 /* else */ Jump to (CC==5)3 07 0B 01 01 Get page from free queue by DeQueue.4 00 0B | | Return5 10 02 | | Activate Lack free frame event.6 06 00 00 03 JumpThe Lack Free Frame EventCC Command Code The executed operations.0 HiPEC Magic No Magic number used for checking.1 02 02 0A 02 if(free count < free target)2 06 00 00 0E /* else */Jump to (14)3 07 0B 00 01 Get page from inactive queue by DeQueue.4 0D 0B | | Judge if the page is referenced5 06 00 00 09 /* else */Jump to (09)6 08 0B 03 02 Put page to active queue by EnQueue7 0C 0B 02 01 Reset the page reference bit8 06 00 00 0E Jump to (CC==14)9 0E 0B | | Judge if the page is modi�ed10 06 00 00 0C /* else */Jump to (CC==12)11 0B 0B | | Flush page12 08 0B 01 01 Put page to free queue by EnQueue13 06 00 00 01 Jump to (CC==1)14 02 06 09 02 if (inactive count < inactive target)15 06 00 00 14 /* else */ Jump to (CC==20)16 07 0B 03 01 Get page from free queue by DeQueue17 0C 0B 02 01 Reset the page reference bit18 08 0B 05 02 Put page to inactive queue19 06 00 00 0E Jump to (CC==14)20 00 00 | | ReturnTable 2: The FIFO with Second Chance Page Replacement Policy.

ci�c and non-speci�c applications, we de�ne awatermark partition burst to monitor the alloca-tion. When the total pages allocated to all thespeci�c applications exceed this watermark, theglobal frame manager will deallocate pages fromspeci�c applications.Currently, partition burst is de�ned as 50% of theavailable free page frames after the system startsup. This is under the assumption that aboutthe same number of physical page frames are re-quested by speci�c and non-speci�c applicationsand they should have equal opportunity to beserved by the global frame manager. An adapt-able or dynamically adjustable partition burst willbe studied in the future to investigate the impacton system performance. The e�ect of other frameallocation methods is also worth studying. How-ever, it is beyond the scope of this paper.� Allocation. When speci�c applications invoke theHiPEC mechanism, they must identify the size oftheir memory needs. The parameter minFrame ispassed to the kernel to request the minimumnum-ber of page frames from the global frame man-ager. Speci�c applications will keep at least min-Frame pages during their executions. If the min-Frame request cannot be satis�ed when HiPECis initially invoked, an error code is returned.The speci�c application can either run as a non-speci�c application or terminate and retry later.The minFrame of each speci�c application is de-cided and administrated by designated privilegedusers who have the responsibility of system per-formance.If a speci�c application needs more page frames,the executor executes a Request command to re-quest more pages. The global frame managergrants or rejects the request depending on thenumber of the remaining free page frames and thestatus of the requester. When the number of re-quested page frames is more than the availablepage frames, the request is rejected. The execu-tor checks the returned code to know the statusof frame allocation request. Upon request failure,the executor makes the speci�c page replacementpolicy to handle the shortage of page frames. Con-sequently, the HiPEC executor will not be hunginde�nitely for waiting the return from the globalframe manager.� Deallocation. The global frame manager retrievespage frames from speci�c applications when theirVM region is deallocated. The second situationis when global frame manager has fewer avail-able free page frames than the minFrame requestsfrom new speci�c applications. The last situation

of reclamation is when the total pages allocatedto speci�c application exceed the partition burst.The global frame manager reclaims page framesfrom speci�c applications with more pages thantheir minimal request(i.e. minFrame pages) only.The reclamation of frames can be normal reclama-tion and forced reclamation. When HiPEC is in-voked, the newly created container is added to theend of the list that links all containers. A simplepolicy, FAFR (First Allocated, First Reclaimed),is implemented to select the victims of reclama-tion. The procedure of normal reclamation is thatthe global frame manager follows the containerlist and selects the �rst container to release pageframes until the request is satis�ed. The globalframe manager calls the policy executor to exe-cute the ReclaimFrame event of a selected spe-ci�c application to return pages to the system.This ReclaimFrame event allows speci�c applica-tions to decide which pages are less important andcan be released.The global frame manager starts forced reclama-tion when it cannot retrieve enough page framesfrom normal reclamation. Since all the allocatedpage frames of all speci�c applications are linkedin the sequence of the time of allocation, theglobal frame manager can reclaim frame pagesfrom the list. The reclaimed dirty pages are linkedto a VM object and are ushed to disk by theglobal frame manager later.� I/O Handling. The global frame manager alsoperforms page ushing for speci�c applications.When a policy executor wants to ush a page us-ing Flush command, it releases the ushed page toa VM object of the global frame manager and re-ceives a new free page from the global frame man-ager. The real ushing operation is done by theglobal frame manager later. This design preventsthe executor from having to wait for disk I/O op-erations. Otherwise, the executor may timeoutoften and terminated by the checker when wait-ing for the time consuming disk I/O operations.4.3.2 Application-Speci�c Policy ExecutorWhen invoked by the page fault handler or globalframe manager, the policy executor fetches commandsfrom policy bu�ers, decodes them, and executes thecorresponding operations. The policy executed de-pends on the type of event that occurs for the spe-ci�c VM object. At the begin of execution, the policyexecutor �rst writes a timestamp into the containerto record the starting time of execution. This times-tamp is checked by security checker to detect timeoutof policy execution. The container also contains a CC

(Command Counter) variable that is used to recordthe address of the next HiPEC command to be inter-preted. Since the policy executor runs in kernel modeand can directly access both kernel and user addressspaces, it does not need to transfer control from ker-nel to user applications when fetching the commands.The executor will keep running until it reads Returnfrom the policy bu�ers.4.3.3 In-Kernel Security CheckerThe security checker is implemented as a kernel threadthat checks the validity of application-speci�c page re-placement policies. In the current version, the securitychecker only checks for illegal syntax of commands,such as the wrong number or illegal type of operands.Another duty of the checker is to detect timeouts ofpolicy executions. The checker is awakened period-ically by the timer. The length of sleeping time isadjusted according to whether a timeout is detectedby the checker. Every time a timeout is detected, thesleeping time for the checker is halved. If no time-out execution is detected, the time is doubled. Sincenormally there are very few runaway policy executions,the checker sleeps most of the time and does not createenormous overhead to degenerate system performance.The formula of the sleeping time of the checker is de-scribed in the following equation:WakeUp =8><>: WakeUp=2 if timeout detectedWakeUp � 2 if no timeout detected250msec if WakeUp � 250 msec8sec if WakeUp � 8 secWhen the checker is awakened, it checks the storedtimestamp of each container by traversing the con-tainer link list. A policy execution is treated as atimeout if the execution time is longer than the Time-Out period. Currently, the length of TimeOut periodis determined manually by a privileged user. Whenthe checker �nds an executor has run longer than thetimeout period, the corresponding speci�c applicationwill be terminated by the checker.4.3.4 Pseudo Code Translator and LibraryIt is not convenient for a programmer to design apage replacement policy by directly using the low-level HiPEC command set. We implement a pseudocode translator to assist application designers in theirprogramming. The translator translates C languagelike pseudo codes into a stream of HiPEC commandcodes. The translator is implemented as a stand aloneprogram and is also incorporated into the user level li-brary. The HiPEC event is represented as a procedurecall in the pseudo code program with the Event type.Figure 4 shows an example of a pseudo code program

Event PageFault() fif (free count > reserve target)page = de queue head(free queue)else beginLack free frame()page = de queue head(free queue)endifreturn(page)gEvent Lack free frame() f /* FIFO with 2th Chance */while (inactive count < inactive target) fpage = de queue head(active queue)reset(page.reference)en queue tail(inactive queue)gwhile (free count < free target) fpage = de queue head(inactive queue)if (page.reference) beginen queue tail(active queue,page)reset(page.reference)endelse beginif (page.dirty) beginush(page)enden queue head(free queue,page)endggEvent ReclaimFrame() f : : : : : : gFigure 4: Pseudo Code Program for FIFO with SecondChance Caching Policy.that implements a FIFO with a second chance pagereplacement policy.5 Experiments and Performance Eval-uationThe advantage of HiPEC over previous techniques isthat it does not need to transfer control between ker-nel and applications. The cost is the time for fetchingand decoding HiPEC commands, execution of securitychecker and miscellaneous processings. In this section,three experiments are designed to measure the over-head and evaluate the performance of HiPEC mech-anism. The experimental results show that HiPECinduces little overhead and can signi�cantly improveperformance for memory-intensive applications.The �rst experiment presents the measurements ofHiPEC mechanism that are compared with other tech-niques. The second experiment shows negligible over-head of HiPEC for non-speci�c applications. The last

Average TimeEvaluation Overhead40 Mbytes page faultWithout disk I/O operationsRunning on Mach 3.0 Kernel 4016.5 msecRunning on HiPEC mechanism 4088.6 msecHiPEC Overhead 1.8%40 Mbytes page faultwith disk I/O operationsRunning on Mach 3.0 Kernel 82485.5 msecRunning on HiPEC mechanism 82505.6 msecHiPEC Overhead 0.024%Table 3: Comparison | I.experiment show the merit of HiPEC in allowing spe-ci�c applications to have great performance improve-ment by using their speci�c page replacement policy.All the experiments are performed on an Acer Altos10000 machine, which has two Intel 486-50 CPUs and64 Megabytes main memory. One CPU is disabledduring the experiments to prevent unexpected inter-ference.5.1 Measurements of HiPEC Mecha-nismIn this experiment, we want to �nd out the overheadcreated by HiPEC and compare with other techniquesthat are usually used to implement application-speci�cpage replacement management. We measure the pagefault handling time for accessing 40 Megabytes virtualaddress space both under Mach kernel and HiPEC.To make the comparison fair, the HiPEC environmenthas implemented the same FIFO with a second chancepage replacement policy as in Mach kernel [13] andboth request 40 Megabytes for their private manage-ment. In order to distinguish the e�ect of disk I/Oon the overall execution time, we measure the elapsedtime with and without disk I/O operations separately.From Table 3, the overhead incurred by HiPEC is sosmall that can be compensated by as few as one ortwo disk page I/O operations. In the experiment 3,it is shown that a speci�c application with right re-placement policy can reduce unnecessary page replace-ments.The common techniques used to provide applicationspeci�c resource management are upcall and IPC. Up-calls are implemented as procedure invocations fromthe kernel to user applications. The overhead is mainlyin allocating area for new user stack and changingstacks. In Mach, the IPC mechanism is implementedby message passing. The time for null system call isused to describe the upcall overhead. For IPC, wemeasure the execution time of a null IPC.Since HiPEC overhead is mostly determined by the

AverageEvaluation TimeNull System Call 19 � secNull IPC Call 292 � secSimple HiPEC page fault overhead �=150 nsecTable 4: Comparison | II.programmed policy, we again use the FIFO with a sec-ond chance page replacement policy as the referencedpolicy. The overhead created by HiPEC mechanism insimple page fault is negligible, because it is only thetime to fetch and decode Comp, DeQueue,Return com-mands. We use approximation notation to representthe simple page fault overhead for HiPEC mechanism,because the time measured is too small that can beeasily a�ected by other system activities. It is con-cluded from Table 4 that HiPEC is more e�cient thanthe upcall or IPC techniques.5.2 The System Throughputs of Mod-i�ed and Unmodi�ed Mach KernelIn this experiment, we want to �nd out the over-head of HiPEC to non-speci�c applications. We runa synthetic system benchmarm, AIM, on the originalMach kernel and modi�ed HiPEC kernel to comparethe overall system throughput. The AIM suite IIIbenchmark [3] is designed to compare the system per-formance of various platforms and operating systems.Users can tune the workload mix by giving weightsto di�erent kind of simulated jobs to measure systemthroughputs.HiPEC implementation has added checking state-ments to Mach kernel in the page fault handling rou-tines to decide whether the faulted virtual address islocated in the regions controlled by the speci�c appli-cations. Another HiPEC implementation overhead fornon-speci�c applications is from the security checker.The checker is awakened periodically to check if thereis any timeout of policy execution. The overhead ofthe checker depends on the number of speci�c applica-tions running in the system and the frequency of time-out detected. When only non-speci�c applications runin the system, the overhead created by the checker islimited.We use three di�erent workload mixes to evaluatethe system throughput. The �rst is the standard work-load. The second workload emphasizes on the diskusage and the third emphasizes on the memory us-age. The experimental results are illustrated in Fig-ure 5. When the number of simulated concurrent usersis larger than �ve or six, the throughput is degradedbecause the users jobs are competing the system re-sources. From the results in Figure 5, the original

Mach Kernel and modi�ed HiPEC kernel almost pro-vide the same throughput under these three di�erentworkload mixes. The overhead created from HiPECdoes not have obvious inuence on the system perfor-mance.
60

65

70

75

80

85

90

95

100

2 4 6 8 10 12 14 16 18 20

S
y
s
te

m
 T

h
ro

u
g

h
p

u
t

(j
o

b
s
/m

in
)

Simulated Concurrent Users

Mach3.0 [1]
HiPEC [1]

Mach3.0 [2]
HiPEC [2]

Mach3.0 [3]
HiPEC [3]

Figure 5: The Throughput on Mach Kernel andHiPEC Kernel.5.3 Performance Evaluation of JoinOperatorJoin is one of the most important operations of rela-tional database management systems. We implementa MRU page replacement policy in HiPEC for thenested-loops join operator to show the performanceimprovement. The other policy used is a LRU-likepage replacement policy for its popularity in conven-tional operating systems. The inner table of the joinoperator is 4 K bytes and the size of outer table rangesfrom 20 Megabytes to 60 Megabytes. Both tables arecomposed of 64 bytes tuples. The output table isdumped immediately in this experiment since we wantto focus on the page replacement behavior of outertable. In this experiment, the join operator is imple-mented as sequentially accessing the tuples in the 4K inner table and doing join operation with every tu-ple in the outer table. The inner 4 K table is pinnedin memory while the outer table is scanned as manytimes as the number of tuples in the inner table.When the size of allocated memory is larger thanthe outer table, no page replacement will be needed.Otherwise, there are page replacement activities foreach scan of outer table. LRU policy chooses the leastrecently used page frame as the page to be replacedthat causes the cyclic faults for every outer loop scan.The number of page faults for LRU isPFl = OutLSize � LoopPageSize

The OutLSize represents the size of the outer table.The Loop is the scanning times for the outer table. Inour experiment, Loop equals to 64. PageSize is thephysical page frame size, which is 4096 bytes for ourmachine.MRU chooses the most recently used page frameto be replaced. The number of page faults for �rstscanning the outer table is the page number of outertable. But in the successive scanning, the number ofpage faults is just the page number di�erence betweenthe outer loop table and the HiPEC allocated memory.The total number of page faults for MRU isPFm = (OutLSize �MSize) � (Loop� 1) +OutLSizePageSizeThe variableMSize represents the allocated memorysize, which is 40 Mega bytes in this experiment. Ob-viously, MRU is the right solution to the nested-loopjoin operation. The performance gain isGain = (PFl � PFm) � PFHandleT ime= (Loop� 1) �MSizePageSize � PFHandleT imeExperimental results show that a great responsetime gap occurs when data size is larger than avail-able frames, i.e. 40 Megabytes. Figure 6 shows theexperimental results which match the analytic result.
0

50

100

150

200

250

20 25 30 35 40 45 50 55 60

E
l
a
p
s
e

T
i
m
e

(
m
i
n
)

Data File Size (Mega Bytes)

LRU-by-HiPEC
MRU-by-HiPEC

| 30 40 45 50 55 60LRU 23.8 32.1 155.8 173.1 190.5 207.7MRU 23.8 32.1 67.5 84.8 102.3 119.5Figure 6: Elapsed Time (in min.) for The Join Oper-ation.

6 Conclusions and Future WorkIn this paper, we considered the virtual memorycaching problem for speci�c applications. We pre-sented the design and implementation of the HiPECmechanism which provides e�cient external page re-placement management. The HiPEC mechanism doesnot require the kernel transfer control to the user ap-plications when the kernel makes page replacementdecisions to match the speci�c applications accesspatterns. Speci�c applications use HiPEC commandcodes to inform the kernel of their speci�c page re-placement policies. The kernel fetches the commands,decodes them and does the corresponding operations.The shared centralized frame pool is partitionedinto private frame lists for each speci�c application.This separation can avoid interference from other jobs.HiPEC also implements a security checker to check thesyntax of the HiPEC command sequence and detectany policy execution timeout. The security checkerdoes not incur heavy overhead because it will sleep of-ten if there is no frequent policy execution timeoutswithin the system. Several measurements and exper-iments are also presented to show that the HiPECmechanismhas little overhead as compared to the orig-inal integrated kernel services. Speci�c applicationscan achieve the maximum performance if the rightpage replacement policies are designed and managedby using HiPEC.Though the current version of HiPEC shows suc-cesses in solving page replacement problem, there aresome jobs that need more considerations in the future.First, we want to consider the page migration oper-ations between relevant speci�c applications. In ourcurrent implementation, speci�c applications can onlyreturn the page frames to the global frame allocator.However migrating physical frames between the rele-vant jobs might be important and necessary. Relevantjobs can use physical frame migration to share infor-mation.Second, we only de�ne 20 HiPEC commands fordoing application-speci�c control in our current im-plementation. They are su�cient in the current us-age, but not claim they are complete. The new hard-ware architecture, such as ash RAM, can be man-aged e�ciently if each speci�c application can controlthe device to meet its speci�c requirement. To man-age these new hardware architecture, the HiPEC com-mands should be extended to meet the requirement.Fortunately, adding new HiPEC commands is easy inour implementation. Third, the security checker coulddo more than the current version in detecting mali-cious actions or mistakes from the speci�c applications.Fourth, the global frame allocation and deallocationare extremely important to the system performance.Though the current allocation policy works well, the

allocation policy does not address the problems of ef-fective resource usage and pays little attention to fair-ness.Lastly, we plan to design a database managementsystem that uses HiPEC to improve the performanceand observe database requirements for future enhance-ment to HiPEC. This is important because the HiPECmechanism is expected and designed for practical spe-ci�c applications, not just an experimental product.AcknowledgmentsThe authors would like to thank the paper shepherd,Brian Bershad, OSDI program committee as well as re-viewers for their valuable comments in improving thispaper.References[1] Accetta, M. J., Baron, R. V., Bolosky, W., Golub, D.B., Rashid, R. F., Tevanain, Jr. A., and Young, M. W.Mach: A New Kernel Foundation for UNIX Develop-ment. In Proceedings of the Summer 1986 USENIXConference, July 1986.[2] Anderson, Thomas E., Bershad, Brian N., Lazowska,Edward D. and Levy, Henry M. Scheduler Activations:E�ective Kernel Support for the User-Level Manage-ment of Parallelism. In Proceedings of the 13th ACMSymposium on Operating System Principles, October1991.[3] AIM Technology AIM Benchmark Suite III User'sGuide. 1986.[4] Black, D. L. Scheduling and Resource ManagementTechniques for Multiprocessors. Ph.D. dissertation,Carnegie Mellon University, July 1990.[5] Bershad, Brian N., Anderson, Thomas E., Lazowska,Edward D., and Levy, Henry M. User-Level Inter-process Communication for Shared Memory Multipro-cessors. In ACM Transactions on Computer Systems,9(2):175-198, May 1991.[6] Bershad, Brian N., Chambers, C., Eggers, S., Maeda,C., McNamee, D., Pardyak, P., Savage, S., and Sirer,Emin G�un SPIN - An Extensible Microkernel forApplication-speci�c Operating System Services. Tech.Report, University of Washington, Feburary 1994.[7] Bolosky, William J., Fitzgerald, Robert P., Scott,Michael L. Simple But E�ective Techniques forNUMA Memory Management. In Proceedings of the12th ACM Symposium On Operating Systems Princi-ples, December 1989.[8] Cheriton, David R. The V Distributed System. InCommunications of the ACM, 31(3):314-333, March1988.[9] Cheriton, David R., Goosen, Hendrik A. and Boyle,Patrick D. Pradigm : A Highly Scalable Shared Mem-ory Multicomputer Architecture. IEEE Computer,February 1991.

[10] Cheriton, David R. and Harty, Kieran A MarketApproach to Operating System Memory Allocation.Tech. Report, Stanford University, CA, March 1992.[11] Harty, Kieran and Cheriton, David R. Application-Controlled Physical Memory Using External Page-Cache Management. In Proceedings of 5th Interna-tional Conference on Architectural Support for Pro-gramming Languages and Operating Systems,October1992.[12] Date, C. J. An Introduction To Database Systems.In Addison-Wesley Systems Programming Series, Vol-ume 1, Fifth Edition, 1990.[13] Draves, Richard P. Page Replacement and ReferenceBit Emulation in Mach. In Proceedings of the USENIXMach Symposium, Monterey, CA, November 1991.[14] Draves, Richard P., Bershad, Brian N., Rashid,Richard F. and Dean, Randall W. Using Continua-tions to Implement Thread Management and Com-munication in Operating Systems. In Proceedings ofthe 13th ACM Symposium on Operating System Prin-ciples, October 1991.[15] Golub, David B. and Draves, Richard P. Moving theDefault Memory Manager out of the Mach Kernel. InProceedings of the USENIX Mach Symposium, Mon-terey, CA, November 1991.[16] Graefe, Goetz Query Evaluation Techniques for LargeDatabase. In ACM Computing Surveys, June 1993.[17] Krueger, Keith and Loftesness, David and Vahdat,Amin and Anderson, Thomas Tools for the Devel-opment of Application-Speci�c Virtual Memory Man-agement. In Proceedings of the 1993 OOPSLA, 1993.[18] Khalidi, Youself A. and Nelson, Michael N. A FlexibleExternal Paging Interface. In Proceedings of USENIXAssociation Symposium on Microkernels and OtherKernel Architectures, 1993.[19] Lenoski, Dean, et al. The DASH prototype: Imple-mentation and Performance. In Proceedings of 19thSymposium on Computer Architecture,May 1992.[20] McCanne, S., Jacobson, V. The BSD Packet Filter: ANew Architecture for User-Level Packet Capture. InProceedings of the Winter 1993 USENIX Conference,January 1993.[21] McNamee, Dylan and Armstrong, Katherine Extend-ing The Mach External Pager Interface To Accommo-date User-Level Page Replacement Policies. In Pro-ceedings of the USENIX Association Mach Workshop,Burlington, Vermont, October 1990.[22] Mogul, J. C., Rashid, R. F., and Accetta, M. J. ThePacket Filter: An E�cient Mechanism for User-levelNetwork Code. In Proceedings of th 11th ACM Sympo-sium on Operating Systems Principle,November 1987.[23] McDonald, Je�rey D. Particle Simulation in a Multi-processor Environment. In Proceedings of AIAA 26thThermophysics Conference, June 1991.[24] Muller, Keith and Pasquale, Joseph A High Perfor-mance Multi-Structured File System Design. In Pro-ceedings of the 13th ACM Symposium on OperatingSystem Principles, October 1991.

[25] Ritchie, D. Stuart and Neufeld, Gerald W. User LevelIPC and Device management in the Raven Kernel.In Proceedings of USENIX Association Symposium onMicro Kernels and Other Kernel Architectures, 1993.[26] Ruemmler, Chris and Wilkes, John An Introductionto Disk Drive Modeling. In IEEE Computer, March1994.[27] Stonebraker, Michael Operating System Support forDatabase Management. In Communications of theACM, Vol. 24, No. 7, July 1981.[28] Sechrest, Stuart and Park, Yoonho User-Level Phys-ical Memory Management for Mach. In Proceedingsof the USENIX Mach Symposium, Monterey, CA,November 1991.[29] Sciver, James V. and Rashid, Richard F. ZoneGarbage Collection. In Proceedings of the USENIXAssociation Mach Workshop, Burlington, Vermont,October 1990.[30] Wang, Hsiao-Hsi., Lu, Pei-Ku, and Chang, Ruei-Chuan. An Implementation of an External Pager In-terface on BSD UNIX. To appear in The Journal ofSystems and Software.[31] Young, M., Tevanian, A., Rashid, R., Golub, D., Ep-pinger, J., Chew, J., Bolosky, W., Black, D. andBaron, R. The Duality of Memory and Communica-tion in the Implementation of a Multiprocessor Oper-ating System. In Proceedings of the 11th ACM Sympo-sium on Operating System Principles,November 1987.[32] Young, Michael W. Exporting a User Interfaceto Memory Management from a Communication-Oriented Operating System. Ph.D. dissertation,Carnegie Mellon University, November 1989.[33] Yuhara, Masanobu and Bershad, Brian N. E�cientPacket Demultiplexing for Multiple Endpoints andLarge Messages. In Proceedings of the Winter 1994USENIX Conference, January 1994.

