
Adaptive Page Replacement Based on Memory Reference BehaviorGideon Glass and Pei CaoComputer Sciences DepartmentUniversity of Wisconsin{Madisonfgid,caog@cs.wisc.edu
AbstractAs disk performance continues to lag behind that of mem-ory systems and processors, virtual memory managementbecomes increasingly important for overall system perfor-mance. In this paper we study the page reference behavior ofa collection of memory-intensive applications, and proposea new virtual memory page replacement algorithm, SEQ.SEQ detects long sequences of page faults and applies most-recently-used replacement to those sequences. Simulationsshow that for a large class of applications, SEQ performsclose to the optimal replacement algorithm, and signi�cantlybetter than Least-Recently-Used (LRU). In addition, SEQperforms similarly to LRU for applications that do not ex-hibit sequential faulting.
1 IntroductionAs the performance gap between memory systems and disksincreases, the impact of memory management on systemperformance increases. Although buying more memory wouldalways alleviate the poor performance of current virtualmemory (VM) systems, operating system designers shouldattempt to improve VM design and policies so that users re-ceive the best attainable performance, regardless of systemcon�guration and budget.In this study we collected sixteen memory-intensive ap-plications and studied their page reference behavior. Sevenapplications are from the SPEC95 suite; the rest are \big-memory" applications including integer-intensive programs(e.g. databases) and scienti�c computations. We found thatthe applications have very di�erence page reference patterns:some are truly memory intensive, referencing many pages inshort time intervals, while others have clear reference pat-terns that can be exploited for better replacement decisions.We simulated the Least-Recently Used (LRU) page re-placement algorithm and the optimal o�ine algorithm (Be-lady's OPT algorithm [2]) for these applications under vary-ing main memory sizes. For the applications that has no vis-ible, large-scale access patterns, both LRU and OPT showgradual, continuous reduction in page fault rate as mem-ory size increases. LRU appears to be a good replacement

policy for such programs. For applications that have clearaccess patterns, however, LRU often performs poorly: it fre-quently exhibits plateau behavior, where increasing memorysizes does not reduce fault rate until the whole program �tsinto memory. For these programs OPT obtains at least lin-ear reduction in fault rate as memory size increases.Based on LRU's observed poor behavior, we propose anew replacement algorithm, SEQ. SEQ normally performsLRU replacement; in addition, it monitors page faults asthey occur, detecting long sequences of faults to contiguousvirtual addresses. When such sequences are found, SEQ per-forms a pseudo most-recently-used (MRU) replacement onthe sequences, attempting to imitate what OPT would do.SEQ often corrects the poor performance (plateau behavior)of LRU for applications that have sequential behavior, yetit performs the same as LRU for other types of applications.We also conducted a preliminary study of two global pagereplacement algorithms: global LRU replacement, and SEQextended to be a global replacement algorithm. We foundthat SEQ performs similar to or better than global LRU onmixes of various application types. Our results suggest thatSEQ may be a good algorithm suitable for implementationin a real OS kernel VM system.
2 Applications and TracesThe applications we studied are described in Table 1. Shownfor each program is the number of instructions executed bythe traced program and the amount of total memory used bythe program. (Other columns in the table will be describedfurther below.)
2.1 Trace MethodologyWe collected memory reference traces using Shade [8],an instruction-level trace generator for the SPARC archi-tecture. All programs ran on machines running the So-laris 2.4 operating system. Because of the length of ourtraces, recording all memory references individually wouldresult in unmanageably large trace �les. Instead, we record\IN" and \OUT" records. We divide program instructiontime into �xed-length intervals (usually 1,000,000 instruc-tions). At the end of every interval, for every page that wasreferenced in the current interval but was not referenced inthe previous interval, an IN record is generated and time-stamped with the actual time (in terms of instructions exe-cuted) of the �rst reference to that page. Similarly, for everypage that was accessed in the previous interval but was not



Program Description Length Memory Executable Min. simulatable(millions of used size (KB) memory size (KB)instructions) (KB) LRU OPTapplu Solve 5 coupled parabolic/elliptic PDEs 1068 14524 136 2432 972blizzard Binary rewriting tool for software DSM 2122 15632 1153 5332 4772coral* Deductive database evaluating query 4327 20284 940 7084 6780es* microstructure electrostatics 71003 104488 56 696 316fgm* �nite growth model 35210 121508 112 10052 2136gcc Optimizing C compiler 1371 3936 1599 1900 1052gnuplot PostScript graph generation 4940 62516 602 1552 476ijpeg image conversion into JPEG format 42951 8260 152 1112 748m88ksim* Microprocessor cycle-level simulator 10020 19352 165 1964 328murphi Protocol veri�er 1019 9380 238 2132 1472perl* Interpreted scripting language 18980 39344 569 9636 8428swim Shallow water simulation 438 15016 56 6932 6216trygtsl Tridiagonal matrix calculation 377 69688 26 2444 1400turb3d Turbulence simulation 17989 26052 71 7720 6360vortex Main memory database 2507 9676 600 3024 2028wave5 Plasma simulation 3774 28700 511 3652 1708Table 1: Benchmark programs measured, with execution duration and memory address space size. * Indicates runs whichwere terminated before they completed. Also shown are minimum simulatable memory sizes (discussed in section 2.1) andthe size of the program binary.accessed in the current interval, an OUT record is gener-ated with the timestamp of the instruction making the lastreference to the page. IN and OUT records in a trace arewritten out sorted by their timestamps. We used a uniformpage size of 4KB throughout this study.The IN and OUT records associated with a page markthe beginning and end of a period when the page is ref-erenced. The page is accessed at least once during eachinterval in this period; exactly how many times and exactlywhen each reference occurs is unknown. However, a page isde�nitely not accessed in the time between an OUT recorduntil the next IN record for that page.This trace format not only is compact but also allows ac-curate simulation of several replacement algorithms for suf-�ciently large memory sizes. At any point in a trace, de�nepages that are between an IN record and an OUT recordas being \ACTIVE", and the pages that are between anOUT record and an IN record as \IDLE". Then the OPTalgorithm, which replaces the page that is referenced fur-thest in the future, can be simulated by replacing the IDLEpage whose next IN record is both furthest in the future andat least two intervals ahead of the current interval. Sucha page is indeed the furthest referenced page because anyACTIVE page will be accessed again either in the currentinterval or in the next interval. By similar reasoning, LRUcan be simulated by replacing the IDLE page whose previousOUT record is both the earliest among all IDLE pages, andwhose previous OUT record is either two intervals before thecurrent interval, or is before the IN records of all ACTIVEpages. These constraints ensure that the page is indeed theleast-recently-used page (since any ACTIVE page must havebeen accessed in the current interval or in the last interval).A limitation of our method is that it can only simulatememory sizes above a certain threshold. If the memory size

is too small, the simulation will not be able to �nd an IDLEpage satisfying the above criteria. The minimum simulat-able memory sizes for each application are listed in Table 1.(For SEQ we used the same minimum as LRU since SEQdefaults to LRU replacement.)
2.2 Application Page Reference BehaviorWe can plot space-time graphs of references from the tracesdescribed above. For each execution interval (a point on thex axis) we plot a point for each page referenced in that in-terval. The y-axis values are relative page locations withinthe program's address space (since the application's addressspace is usually sparse and contains many unused regions,we leave out the address space holes and number the usedpages from low addresses to high addresses on the y-axis).Due to space constraints we cannot include all space-timegraphs. Following pages contain four representative samplesof the variety of the memory reference behavior for the six-teen applications. (Every application's memory behavior isdi�erent from the rest. We refer interested readers to [13]for all the space-time plots.)Observing the space-time graphs, we found that the ap-plications fall into three categories. The �rst, which in-cludes coral, murphi, m88ksim and vortex, are truly mem-ory intensive|large numbers of pages are accessed duringeach execution interval. There are no clearly visible patternswithin the vast dark areas. The second category, which in-cludes blizzard, gcc, and perl, are also memory intensive,but have patterns at a small scale (for example, in gcc, thetraversal of pages in the 0.5MB{2.25MB range follows a cer-tain pattern). (These kind of small-scale patterns might beexploited for techniques such as prefetching, but we have notinvestigated prefetching in this paper.) The third applica-







tion category, consisting of the rest of the applications, showclearly-exploitable, large-scale reference patterns. Ranges ofaddress space are traversed in the same pattern repeatedly.The applications seem to be array-based, though some ofthem are written in C (fgm and gnuplot). Some programs(ijpeg, applu, and trygtsl) traverse ranges of memory inone direction and then change direction, but most programssimply go in one direction. The number of sequentially-traversed regions also varies, with swim doing about sixteenand other programs (es, gnuplot) covering only one largeregion.These classes of behavior remind us of the following com-ment by Rob Pike: \The following data structures are acomplete list for almost all practical programs: array, linkedlist, hash table, binary tree." [24] The statement clearly hassome truth to it: most applications exhibiting regular ref-erence patterns are array-based; vortex, m88ksim, murphi,coral, and perl are apparently either making heavy use ofhash tables or are traversing tree structures; gcc and perl(to some extent) seem to use linked lists heavily. From thevirtual memory system's point of view, array-based appli-cation would be the easiest to handle, while hash tables arethe hardest.
2.3 Performance of LRU and OPTFigure 1 and 2 show page faults per one million instructionsexecuted for each application as its memory spans the rangefrom the minimum simulatable size to the total number ofpages the application uses. 1 The three curves in the graphare LRU, OPT, and the new algorithm SEQ that we willdescribe in the next section. We do not include startupfaults in the �gures, because most of these faults are dueto initialization of processes' address space, and are usuallyserviced by zero-�lling a page, not by invoking a disk I/O.(The number of pages that must be demand-paged from diskcan be estimated by dividing the \program size" column inTable 1 by the 4KB page size.)The results show that for the �rst and second categoriesof applications, which are memory intensive and do not havestrong patterns, LRU performs similarly to OPT, thoughLRU su�ers about twice as many page faults on average.For these application classes, the fault rate under LRU dropscontinuously when more memory is available; the rate of im-provement is similar to that under OPT. The improvementappears to be super-linear for memory sizes less than half ofthe total memory needed by the program (i.e. doubling theamount of memory more than halves the number of pagefaults), and the improvement slows down after that point.The situation is completely di�erent for the applicationsin the third category (programs with highly regular sequen-tial access patterns). LRU performs much poorer than OPT,generating up to �ve to ten times more page faults. LRU fre-quently gives no improvement till memory size reaches a cer-tain threshold, and results in \staircase" graphs. This givesthe appearance that the applications have certain working-sets that, once in memory, will reduce the fault rate signi�-1We plot page fault rates rather than fault counts because it allowsus to compare fault rates for di�erent programs more easily. To obtainfault counts, simply time the fault rate (at a given memory size) andthe trace length from table 1.

cantly. In fact, OPT is always able to reduce the fault ratecontinuously, and LRU simply fails to reduce the fault rateuntil it reaches certain memory sizes.The problem is that these applications (gnuplot, for ex-ample) are looping over large address space ranges; LRU re-places pages starting at the beginning of the address range(since those are oldest), replacing pages a constant distancebehind the location where the program is accessing memory.When the program begins another iteration at the bottomof the range, LRU pages out the top. All pages in the rangemust be paged in on every iteration, resulting in the worstpossible performance. This \LRU ooding" phenomenon isthe primary motivation for our SEQ algorithm, described inthe next section.Our observations of program memory behavior arrive atdi�erent conclusions from some early research results, suchas those described in Denning's excellent survey [10]. Thetwo biggest di�erences are that the applications we inves-tigated do not generally have signi�cant \phase-transition"behavior as their reference patterns tend to be the samethroughout execution (i.e. no phases). Also, there are noidenti�able working-sets, and no clear \knees" in the faultcurve, contrary to what is observed in [10]. (See more dis-cussions in [13]).
3 SEQ Replacement AlgorithmThe intuition behind the SEQ replacement algorithm is todetect long sequences of page faults and apply MRU replace-ment to such sequences. The goal is to avoid LRU ooding,which occurs when a program accesses a large address spacerange sequentially. If a program accesses an address rangeonce, LRU would page out useful pages that would be ac-cessed again; if the program accesses the address range mul-tiple times and the range is larger than physical memory,LRU would page out the pages in the order in which theyare accessed and thus perform poorly, as described above.If no sequences are detected, SEQ performs LRU replace-ment.
3.1 DesignThere are four main components in SEQ's design:1. What is a \sequence"? A sequence is a series of pagefaults to consecutive virtual addresses, growing in onedirection (increasing addresses or decreasing addresses)with no other faults to pages in the middle of the se-ries. (We refer to most recently-added page|the pageat the end of the sequence in the direction of growth|as the head of the sequence.)2. When memory is low and a page much be paged out,which sequence is chosen to replace a page from? SEQchooses only sequences of length greater than L (cur-rently 20 pages); it examines the time of the Nth (cur-rently N = 5) most recent fault in each sequence, andchooses the one whose fault is most recent.3. Which page from the chosen sequence is replaced? SEQchooses the �rst in-memory page that is M (currently20) or more pages from the head of the sequence.



0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000 12000 14000

p
a

g
e

 f
a

u
lt
s
 p

e
r 

m
il
li
o

n
 i
n

s
tr

u
c
ti
o

n
s
 e

x
e

c
u

te
d

main memory size (KB)

applu

LRU
OPT
SEQ

0

1

2

3

4

5

6

7

0 2000 4000 6000 8000 10000 12000 14000

p
a

g
e

 f
a

u
lt
s
 p

e
r 

m
il
li
o

n
 i
n

s
tr

u
c
ti
o

n
s
 e

x
e

c
u

te
d

main memory size (KB)

blizzard

LRU
OPT
SEQ

0

5

10

15

20

25

30

35

40

45

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

p
a

g
e

 f
a

u
lt
s
 p

e
r 

m
il
li
o

n
 i
n

s
tr

u
c
ti
o

n
s
 e

x
e

c
u

te
d

main memory size (KB)

coral

LRU
OPT
SEQ

0

1

2

3

4

5

6

0 20000 40000 60000 80000 100000

p
a
g
e
 f

a
u
lt
s
 p

e
r 

m
il
li
o
n
 i
n
s
tr

u
c
ti
o
n
s
 e

x
e
c
u
te

d

main memory size (KB)

es

LRU
OPT
SEQ

0

0.5

1

1.5

2

2.5

0 20000 40000 60000 80000 100000 120000

p
a
g
e
 f

a
u
lt
s
 p

e
r 

m
il
li
o
n
 i
n
s
tr

u
c
ti
o
n
s
 e

x
e
c
u
te

d

main memory size (KB)

fgm

LRU
OPT
SEQ

0

2

4

6

8

10

12

14

16

18

0 500 1000 1500 2000 2500 3000 3500

p
a
g
e
 f

a
u
lt
s
 p

e
r 

m
il
li
o
n
 i
n
s
tr

u
c
ti
o
n
s
 e

x
e
c
u
te

d

main memory size (KB)

gcc

LRU
OPT
SEQ

0

1

2

3

4

5

6

7

0 10000 20000 30000 40000 50000 60000

p
a

g
e

 f
a

u
lt
s
 p

e
r 

m
il
li
o

n
 i
n

s
tr

u
c
ti
o

n
s
 e

x
e
c
u
te

d

main memory size (KB)

gnuplot

LRU
OPT
SEQ

0

1

2

3

4

5

6

7

8

0 1000 2000 3000 4000 5000 6000 7000 8000

p
a

g
e

 f
a

u
lt
s
 p

e
r 

m
il
li
o

n
 i
n

s
tr

u
c
ti
o

n
s
 e

x
e
c
u
te

d

main memory size (KB)

ijpeg

LRU
OPT
SEQ

0

1

2

3

4

5

6

7

8

9

10

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

p
a

g
e

 f
a

u
lt
s
 p

e
r 

m
il
li
o

n
 i
n

s
tr

u
c
ti
o

n
s
 e

x
e
c
u
te

d

main memory size (KB)

m88ksim

LRU
OPT
SEQ

Figure 1: Performance of OPT, SEQ and LRU. For es and gnuplot, the SEQ curve almost overlaps the OPT curve. Forcoral and gcc, the SEQ curve overlaps the LRU curve.



0

10

20

30

40

50

60

70

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

p
a

g
e

 f
a

u
lt
s
 p

e
r 

m
il
li
o

n
 i
n

s
tr

u
c
ti
o

n
s
 e

x
e

c
u

te
d

main memory size (KB)

murphi

LRU
OPT
SEQ

0

2

4

6

8

10

12

14

16

18

0 5000 10000 15000 20000 25000 30000 35000

p
a

g
e

 f
a

u
lt
s
 p

e
r 

m
il
li
o

n
 i
n

s
tr

u
c
ti
o

n
s
 e

x
e

c
u

te
d

main memory size (KB)

perl

LRU
OPT
SEQ

0

20

40

60

80

100

120

140

160

0 2000 4000 6000 8000 10000 12000 14000

p
a

g
e

 f
a

u
lt
s
 p

e
r 

m
il
li
o

n
 i
n

s
tr

u
c
ti
o

n
s
 e

x
e

c
u

te
d

main memory size (KB)

swim

LRU
OPT
SEQ

0

20

40

60

80

100

120

0 10000 20000 30000 40000 50000 60000

p
a
g
e
 f

a
u
lt
s
 p

e
r 

m
il
li
o
n
 i
n
s
tr

u
c
ti
o
n
s
 e

x
e
c
u
te

d

main memory size (KB)

trygtsl

LRU
OPT
SEQ

0

2

4

6

8

10

12

14

16

18

0 5000 10000 15000 20000 25000

p
a
g
e
 f

a
u
lt
s
 p

e
r 

m
il
li
o
n
 i
n
s
tr

u
c
ti
o
n
s
 e

x
e
c
u
te

d

main memory size (KB)

turb3d

LRU
OPT
SEQ

0

2

4

6

8

10

12

14

16

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

p
a
g
e
 f

a
u
lt
s
 p

e
r 

m
il
li
o
n
 i
n
s
tr

u
c
ti
o
n
s
 e

x
e
c
u
te

d

main memory size (KB)

vortex

LRU
OPT
SEQ

0

2

4

6

8

10

12

0 5000 10000 15000 20000 25000

p
a

g
e

 f
a

u
lt
s
 p

e
r 

m
il
li
o

n
 i
n

s
tr

u
c
ti
o

n
s
 e

x
e
c
u
te

d

main memory size (KB)

wave5

LRU
OPT
SEQ

Figure 2: Performance of OPT, SEQ and LRU. For murphi, the SEQ curve overlaps the LRU curve. For vortex, the SEQcurve mostly overlaps the LRU curve.



4. What happens to a sequence if a page fault occurs inthe middle of the address range of the sequence? SEQsplits the sequence into two sequences, one rangingfrom the beginning of the sequence to the page im-mediately preceeding the faulted page, and the otherconsisting of the faulted page alone.Choices of values for L, N andM is discussed in Section 3.2.SEQ detects replaceable sequences by observing page faults(not page references) and associates them based on adjacentvirtual addresses. SEQ maintains a list of sequences, record-ing (for each sequence) the tuple <low end, high end, dir>.The tuple indicates a sequence ranging from virtual addresslow end to virtual address high end, faulting (as time in-creases) in the direction dir (which is either up or down).When a page fault on page pf occurs, SEQ examines se-quences adjacent to pf. If the new page fault extends the se-quence (i.e. pf = high end +1 and dir = up, or pf = low end�1 and dir = down), the sequence's low end or high end ischanged to include the current fault.If pf falls in the middle of the sequence (i.e. low end � pf� high end), then the sequence is split into two, one being<low end, pf �1,dir> if dir = up or <pf +1, high end, dir>if dir = down, and the other consisting of the new faultonly (i.e. <pf, pf, nil>, nil meaning the direction cannotbe determined for now). If pf does not extend any existingsequence nor overlap any sequence, then a new sequence isbuilt, <pf, pf, nil>. If pf can extend two existing sequences,SEQ deletes the older of the sequences (the one whose lastfault is earlier) and extends the newer sequence. In addition,if extending a sequence would lead to overlapping with an-other sequence, then the sequence that would be overlappedis deleted.SEQ limits the number of sequences that it tracks. (Cur-rently the limit is 200). When adding a new sequence wouldexceed the limit, SEQ �rst deletes the oldest sequence (bytime of the most recent fault to that sequence) of lengthless than L. (If all sequences are longer than L, SEQ woulddelete the oldest sequence with length � 2 � L, etc.)When a replacement page must be chosen, SEQ examinesall sequences of length � L, and tries to pick the sequencethat faulted most recently. The heuristic we use is to sortthese sequences based on the faulting time of their Nth mostrecent fault, and choose the one with the more recent faulttime. Currently N = 5. If no sequence with length � Lexists, the default LRU replacement is used.Once a sequence is picked, SEQ is constrained not toreplaces pages closer than M pages away from the sequencehead. Starting from theMth page away from the head, SEQskips any on-disk pages, choosing the �rst in-memory page it�nds. If it cannot �nd an in-memory pages in this sequence,SEQ examines the next sequence as determined above. Fore�ciency, SEQ keeps track of the range of on-disk pages ineach sequence, so that the search for a replacement page canskip many on-disk pages in one step.In our current implementation, SEQ takes roughly 10Kbytes to keep track of 200 sequences (each taking roughly 48bytes). Depending on applications, SEQ also takes slightlymore CPU time than LRU for each replacement. We arestill working on reducing the overhead of SEQ.

3.2 Simulation ResultsSince our traces contain only IN and OUT records, we can-not simulate SEQ accurately under all circumstances. In-stead, we conduct a slightly conservative simulation. Thatis, if a chosen-for-replacement page is IDLE (i.e. it is not ac-cessed until its next IN record), the page is simply replaced;if the page is ACTIVE (i.e. it is between an IN record andan OUT record, which means it is accessed actively duringthis interval), we replace the page and then immediatelysimulate a fault on the page to bring it back into memory.This results in a simulation that slightly under-estimatesthe actual performance of SEQ, because in reality the pagefault would occur sometime later in the current or the nextinterval.Simulation results are shown in Figures 1 and 2. Clearly,SEQ performs signi�cantly better than LRU, and quite closeto optimal, for the applications with clear access patterns(for example, gnuplot and turb3d). For other applications,SEQ's performance is quite similar to LRU.We have varied the three SEQ parameters (L, M , andN) and observed resultant performance changes. Intuitively,the larger the value of L, the more conservative the algo-rithm will be, because it is less likely that a run of faultswill be long enough to be considered a sequence. ReducingL has the opposite e�ect. Similarly, the parameter M is setto guard against the case when pages in a sequence are re-accessed in a short time period. If the pages in the sequenceare accessed only once, then M should be set to 1; however,if there is reuse of pages near the head of the sequence, thenM should be larger to avoid replacing in-use pages.We experimented with three di�erent settings of L andM : (L = 20, M = 20) (the default), (L = 50, M = 20), and(L = 50, M = 50), and found that SEQ's performance isuna�ected for most of the applications. The three applica-tions that show visible di�erences are applu, perl, and swim;Figure 3 shows their fault curves under the three parame-ter settings. For applu, since it has many short sequencesthat are disquali�ed for replacement when L = 50, SEQ atL = 50 essentially performs LRU replacement most of thetime. Swim also has many small to medium length sequences,and SEQ at M = 50 appears to interact poorly with swim'sbehavior at small memory sizes. For the rest of the appli-cations, SEQ's performance is essentially una�ected by theparameter changes.The parameter N a�ects the choice of sequences in situa-tions when sequences grow at varying rates: as N increases,so does the likelihood that SEQ will choose the sequencethat grows fastest. We did not choose N = 1 because wewant to avoid sequences that grow at sporadic rates. Sincethe space consumed by SEQ is directly proportional to N (itmust store the times at which the last N faults occurred),small N is desirable. We varied N from 5 to 20, and foundonly negligible di�erences in SEQ's performance; varying Nfrom 5 to 2 has virtually no e�ect on SEQ's performance.Thus, we set N = 5.In summary, we found that the performance of the SEQalgorithm is fairly insensitive to the parameter values, andour current settings appear appropriate, though we plan fur-ther testing on this issue. More details are available in [13].



4 SEQ as a Global Replacement AlgorithmSo far our discussion has focused on the performance of var-ious replacement policies for single applications. In real sys-tems, multiple processes run at the same time and com-pete for memory. There are two general approaches to pagereplacement in multi-process environments [12]. One ap-proach involves a memory allocation policy that allocatesmemory to di�erent processes, and a page replacement pol-icy that chooses replacements among each process' pageswhen processes exceed their memory allotments. Anotherapproach uses a \global" replacement algorithm, where areplacement page is chosen regardless of which process it be-longs to. For example, global LRU replaces the page whoselast reference was earliest among all memory pages. Cur-rently, most time-sharing operating systems use some ap-proximation of global LRU replacement.SEQ can be extended fairly easily to function as a globalreplacement algorithm. The only modi�cation necessary isthat the sequences must be grouped explicitly on a per-process basis, i.e. only page faults with the same processID are associated for sequence detection.An obvious question is whether global SEQ would per-form well in a time-sharing multi-process environment. Toprovide a preliminary answer to this question, we constructeda very simpli�ed simulator of a multi-process system thatcaptures the dynamic interleaving of process execution. Weuse a simple round-robin time slicing policy (simulating ex-ecution of each program for a certain length of time) anda time delay to model the service time for a page fault todisk. We then compared the performance of global LRU andglobal SEQ under concurrent executions of the applications.Our simulator reads multiple application traces, takinga record each time from the trace corresponding to the pro-gram that is currently executing. We schedule processes ac-cording to round-robin time-sliced scheduling with contextswitch at page faults. That is, each trace (process) is runfor a quantum, and when the quantum expires, the sched-uler puts the trace on the wait queue and picks a di�erenttrace (process). When a page fault happens, the currentprocess is suspended for the duration of the service timeof the page fault, and the scheduler picks another processto run. The two parameters, quantum time and page faultservice time, are determined by a simple estimate of CPUspeed|in our experiments the quantum is 1 million instruc-tions (corresponding to 10ms on a machine capable of exe-cuting our programs at the uniform rate of 100 MIPS). Pagefault service time is a uniform 400,000 instructions (4ms onthe same 100MIPS machine). This is obviously a simplisticmodel, but it su�ces for the purpose of creating a reasonableinterleaving of multiple program traces.We picked four combinations, each of two applications,and one combination of three applications. The combina-tions are chosen to have a variety of mixes of applicationbehavior and relative memory needs. They are: es+fgm,gcc+vortex, swim+trygtsl, vortex+gnuplot, andcoral+wave5+trygtsl. For each combination, we measurethe fault rate for the concurrent execution of the applica-tions, under both global LRU and global SEQ, for a rangeof memory sizes. Again, since most of the initial faults are

zero-�lled pages rather than disk-read pages, we do not in-clude them in the �gures. The results are shown in Figure 4.The results show that in simple multi-process environ-ments, global SEQ tends to outperform global LRU whensequential applications are run, and it performs similarly toglobal LRU when no sequential application is run. For ex-ample, global SEQ's improvements over LRU in the casesof vortex+gnuplot and coral+wave5+trygtsl are similarto those in gnuplot and wave5, and global SEQ performssimilarly to global LRU in gcc+votex. Thus, our prelimi-nary simulation results show that SEQ is also a promisingalgorithm for global replacement.
5 Related WorkOperating systems researchers have investigated the mem-ory management problem for over thirty years, originally todetermine if automatic management of memory (i.e. virtualmemory) could perform as well as programmer-controlledphysical memory allocation. Belady's paper in 1966 [2]introduced the optimal o�ine replacement algorithm (theOPT algorithm). A good survey on early research results onpaging policies can be found in [12]. There have also beenmany studies on program behavior modelling and optimalonline algorithms for each model. The models include inde-pendent reference [1], LRU stack [26], working set [9], accessgraphs [4], and the Markov model [17]. For each of thesemodels, optimal online algorithms are found [12, 15, 17].The SEQ algorithm is similar to the access-graph algo-rithms [4] in that it tries to take advantage of patterns foundin reference streams. However, most theoretical studies onaccess-graph algorithms assume that the graph is knownahead of time, rather than being constructed at run-time.A recent study [11] investigated constructing the graph atrun-time; however the study only looked at references toprogram text, not data. Also, the algorithm proposed in[11] is more complex and more expensive than SEQ.Although most early experimental studies focused on ef-�cient approximation of LRU page replacement [3, 2, 7, 20],one scheme, the Atlas Loop Detector, investigated loop de-tection and MRU replacement on scienti�c programs [18].SEQ di�ers from the loop detector in that it tries hard towork well on applications where LRU is appropriate. TheAtlas scheme apparently performed poorly for non-scienti�cprograms [9].Recent research projects on application-controlled ker-nels show the potential of application-speci�c replacementpolicies [28, 14, 21, 19]. These studies focus on mechanismsby which applications inform the kernel about what pageswould be good candidates for replacements. Our SEQ algo-rithm is basically the antithesis of such schemes. It will beinteresting to see over time which philosophy prevails. Ourstudy shows that run-time automatic sequence detection bythe kernel may be a promising way to increase performance,at essentially no cost to the programmer.Recently there have been a number of studies of appli-cations' memory reference behavior in the context of cachemanagement. One study regarding processor pin bandwidthrequirements [5] con�rmed that there is a signi�cant dif-ference in cache miss ratios under LRU and under OPT



0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000 12000 14000

p
a

g
e

 f
a

u
lt
s
 p

e
r 

m
il
li
o

n
 i
n

s
tr

u
c
ti
o

n
s
 e

x
e

c
u

te
d

main memory size (KB)

applu

LRU
OPT

SEQ:L=20:M=20
SEQ:L=50:M=20
SEQ:L=50:M=50

0

2

4

6

8

10

12

14

16

18

0 5000 10000 15000 20000 25000 30000 35000

p
a

g
e

 f
a

u
lt
s
 p

e
r 

m
il
li
o

n
 i
n

s
tr

u
c
ti
o

n
s
 e

x
e

c
u

te
d

main memory size (KB)

perl

LRU
OPT

SEQ:L=20:M=20
SEQ:L=50:M=20
SEQ:L=50:M=50

0

20

40

60

80

100

120

140

160

0 2000 4000 6000 8000 10000 12000 14000

p
a

g
e

 f
a

u
lt
s
 p

e
r 

m
il
li
o

n
 i
n

s
tr

u
c
ti
o

n
s
 e

x
e

c
u

te
d

main memory size (KB)

swim

LRU
OPT

SEQ:L=20:M=20
SEQ:L=50:M=20
SEQ:L=50:M=50

Figure 3: Performance of SEQ under varying parameters. For applu, the curve for SEQ:L=50:M=50 completely overlapsthe LRU curve, and SEQ:L=50:M=20 overlaps LRU most of the time. For perl, the parameter changes only result in slightperformance di�erences. For swim, SEQ:L=50:M=50 performs noticably worse than LRU for small memory sizes.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 50000 100000 150000 200000

p
a
g
e
 f

a
u
lt
s
 p

e
r 

m
il
li
o
n
 i
n
s
tr

u
c
ti
o
n
s
 e

x
e
c
u
te

d

main memory size (KB)

es-fgm

MP-LRU
MP-SEQ

0

2

4

6

8

10

12

14

0 2000 4000 6000 8000 10000 12000

p
a
g
e
 f

a
u
lt
s
 p

e
r 

m
il
li
o
n
 i
n
s
tr

u
c
ti
o
n
s
 e

x
e
c
u
te

d

main memory size (KB)

gcc-vortex

MP-LRU
MP-SEQ

0

20

40

60

80

100

120

140

160

0 10000 20000 30000 40000 50000 60000 70000 80000

p
a
g
e
 f

a
u
lt
s
 p

e
r 

m
il
li
o
n
 i
n
s
tr

u
c
ti
o
n
s
 e

x
e
c
u
te

d

main memory size (KB)

swim-trygtsl

MP-LRU
MP-SEQ

0

2

4

6

8

10

12

14

0 10000 20000 30000 40000 50000 60000

p
a

g
e

 f
a

u
lt
s
 p

e
r 

m
il
li
o

n
 i
n

s
tr

u
c
ti
o

n
s
 e

x
e

c
u

te
d

main memory size (KB)

vortex-gnuplot

MP-LRU
MP-SEQ

0

2

4

6

8

10

12

14

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

p
a

g
e

 f
a

u
lt
s
 p

e
r 

m
il
li
o

n
 i
n

s
tr

u
c
ti
o

n
s
 e

x
e

c
u

te
d

main memory size (KB)

coral-wave5-trygtsl

MP-LRU
MP-SEQ

Figure 4: Performance of Global LRU and Global SEQ for concurrent execution of applications.



replacement policies. Another study [23] included space-time graphs for some SPEC95 benchmarks. Though theirgraphs are for a much shorter duration of execution execu-tion (on the order of one second), the graphs are similar toour graphs for the SPEC95 benchmarks. Finally, one studyof large-scale multiprocessor architectures investigated the\working-set" and cache size issues for parallel scienti�c ap-plications [25]. The study investigated a number of parallelapplications, measuring their \working-sets" by simulatingthe number of cache misses versus cache sizes under theLRU replacement. The cache misses versus cache size curvesin [25] are quite similar to our LRU page fault curves for sci-enti�c applications. These studies suggest that the referencebehavior at page level might be similar to that at cache linelevel. We plan to investigate this correlation.Sequence detection can be used for prefetching purposesas well. Indeed there are sequence detectors for prefetch-ing in hardware cache management [27, 16, 22]. However,prefetching does not reduce bandwidth consumption; it merelyreduces latency by overlapping I/O with computation. Goodreplacement policies, on the other hand, reduce both band-width consumption and latency. In this paper we focusedon replacement algorithms only; how to balance prefetchingand cache management (page replacement) is a complicatedissue that needs further study [6].
6 Conclusions and Future WorkOur study of application reference behavior and space-timegraphs shows that applications' memory reference behaviorvaries signi�cantly. There are at least three categories: novisible access pattern, minor observable patterns, and reg-ular patterns. We found that LRU performs similarly toOPT, though incurring roughly twice as many page faults,for the memory-intensive and pattern-less applications. How-ever, LRU performs poorly for regular-pattern applications.We proposed a new replacement algorithm, SEQ. SEQdetects linear access patterns (sequential behavior) and per-forms semi-MRU replacement on sequences associated withsuch patterns. SEQ performs similarly to LRU for memory-intensive applications, and corrects the LRU ooding prob-lem for many regular-pattern applications. Indeed SEQ'sperformance approaches that of OPT for a number of regular-pattern applications.We also found that for multi-process systems, SEQ ap-pears to be a good algorithm for global replacement. Com-parison of global LRU and global SEQ show that globalSEQ can e�ectively improve multi-application performancejust as it improves single application performance.There are a number of limitations in our work. Weneed to experiment SEQ on a wider variety of applications.Kernel implementation of SEQ is underway to test its per-formance in real systems. Finally, we plan to incorporateprefetching in SEQ.
AcknowledgementsWe would like to thank our referees for their detailed com-ments and for pointing out a simulation error (which wehave �xed) in the earlier version of the paper. Mark Hill,

Mary Vernon and Doug Burger provided helpful feedbackson the early draft of this paper. The research is partiallysupported by a generous grant from Intel Corporation.
References[1] A.V. Aho, P.J. Denning, and J.D. Ullman. Principlesof optimal page replacement. In Journal of ACM, vol.18, pages 80{93, January 1971.[2] L. A. Belady. A study of replacement algorithms forvirtural storage. IBM Systems Journal, pages 5:78{101,1966.[3] A. Bensoussan, C.T. Clingen, and R.C. Daley. The mul-tics virtual memory: Concepts and design. In Commu-nications of the ACM, 15(5), pages 308{318, May 1972.[4] A. Borodin, S. Irani, P. Raghavan, and B. Schieber.Competitive paging with locality of reference. In Proc.23rd ACM Symposium on Theory of Computing, pages249{259, 1991.[5] D.C. Burger, A. Kagi, and J.R. Goodman. Memorybandwidth limitations of future microprocessors. InThe 23rd Annual International Symposium on Com-puter Architecture, May 1996.[6] Pei Cao, Edward W. Felten, Anna R. Karlin, and KaiLi. A study of integrated prefetching and cachingstrategies. In Proc. 1995 ACM SIGMETRICS, pages188{197, May 1995.[7] R. W. Carr and J. L. Hennessy. WSCLOCK | A sim-ple and e�ective algorithm for virtual memory man-agement. In Proc. 8th SOSP, Operating Sys. Review,page 87, December 1981. Published as Proc. 8th SOSP,Operating Sys. Review, volume 15, number 5.[8] Robert F. Cmelik and David Keppel. Shade: A fastinstruction-set simulator for execution pro�ling. Tech-nical Report SMLI 93-12, UWCSE 93-06-06, Sun Mi-crosystems Labs, 1993.[9] Peter J. Denning. The working set model for programbehavior. Communications of the ACM, 11(5):323{333,May 1968.[10] Peter J. Denning. Working sets past and present. IEEETransactions on Software Engineering, SE-6(1):64{84,January 1980.[11] Amos Fait and Ziv Rosen. Experimental studies ofaccess graph based heuristics: Beating the LRU stan-dard? In 1997 SIAM Symposium on Discrete Algo-rithms, January 1997.[12] Edward G. Co�man, Jr. and Peter J. Denning. Oper-ating Systems Theory. Prentice-Hall, Inc., 1973.[13] Gideon Glass and Pei Cao. Adaptive page replacementbased on memory reference behavior. Technical Re-port 1338, UW{Madison Computer Sciences Depart-ment, January 1997.



[14] K. Harty and D. R. Cheriton. Application-controlledphysical memory using external page-cache manage-ment. In Proc. Fifth International Conf. on Architec-tural Support for Programming Languages and Operat-ing Systems, SIGOPS Operating Systems Review Spe-cial Issue, volume 26, page 187, Boston, MA, October12-15 1992.[15] S. Irani, A. Karlin, and S. Phillips. Strongly competi-tive algorithms for paging with locality of reference. In3rd Annual ACM-SIAM Symposium on Discrete Algo-rithms, pages 228{236, 1992.[16] Norman P. Jouppi. Improving direct-mapped cacheperformance by the addition of a small fully-associativecache and prefetch bu�ers. In The 17th Annual Inter-national Symposium on Computer Architecture, pages364{373, May 1990.[17] Anna R. Karlin, Steven J. Phillips, and PrabhakarRaghavan. Markov paging. In Proc. 33rd IEEE Sympo-sium on Foundations of Computer Science, pages 208{217, June 1992.[18] T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H.Sumner. One-level storage system. In IEEE Trans-action on Electronic Communications, pages 223{235,April 1962.[19] Chao-Hsien Lee, Meng Chang Chen, and Ruei-ChuanChang. HiPEC: High performance external virtualmemory caching. In Proceedings of the First Sympo-sium on Operating System Design and Implementation,pages 153{164, November 1994.[20] H. M. Levy and P. H. Lipman. Virtual memory man-agement in the VAX/VMS operating system. IEEEComputer, 15(3):35{41, March 1982.[21] Dylan McNamee and Katherine Armstrong. Extend-ing the Mach external pager interface to accommodateuser-level page replacement policies. In Proceedings ofUSENIX Mach Symposiumi '91, pages 17{29, 1990.[22] Subbarao Palacharla and R. E. Kessler. Evaluatingstream bu�ers as a secondary cache replacement. InProc. 21st Annual International Symposium on Com-puter Architecture, pages 24{33, May 1994.[23] Sharon E. Perl and Richard L. Sites. Studies of win-dows NT performance using dynamic execution traces.In Proceedings of the 2nd Symposium on Operating Sys-tems Design and Implementation (OSDI'96), Seattle,October 1996.[24] Rob Pike. Notes on programming in C, February1989. Available at http://www.lysator.liu.se/c/pikestyle.html.[25] E. Rothberg, J.P. Singh, and A. Gupta. Workingsets, cache sizes, and node granularity issues for large-scale multiprocessors. In The 20th Annual Interna-tional Symposium on Computer Architecture, pages 14{26, May 1993.

[26] G. S. Shedler and C. Tung. Locality in page referencestring. In SIAM J. Computer, vol. 1, pages 218{241,September 1972.[27] Alan Jay Smith. Sequential program prefetching inmemory hierarchies. IEEE Computer, 11(12):7{21, De-cember 1978.[28] Michael Young, Avadis Tevanian, Richard Rashid,David Golub, Je�rey Eppinger, Jonathan Chew,William Bolosky, David Black, and Robert Baron. TheDuality of Memory and Communication in the imple-mentation of a Multiprocessor Operating System. InThe Proceedings of the 11th Symposium on OperatingSystem Principles, November 1987.


