
Software Transactional MemoryNir Shavit�MIT andTel-Aviv University Dan TouitouTel-Aviv UniversityAbstractAs we learn from the literature, 
exibility in choosing syn-chronization operations greatly simpli�es the task of de-signing highly concurrent programs. Unfortunately, ex-isting hardware is in
exible and is at best on the levelof a Load Linked/Store Conditional operation on a singleword. Building on the hardware based transactional syn-chronization methodology of Herlihy and Moss, we o�ersoftware transactional memory (STM), a novel softwaremethod for supporting 
exible transactional programmingof synchronization operations. STM is non-blocking, andcan be implemented on existing machines using only aLoad Linked/Store Conditional operation. We use STM toprovide a general highly concurrent method for translatingsequential object implementations to lock-free ones basedon implementing a k-word compare&swap STM-transaction.Empirical evidence collected on simulated multiprocessor ar-chitectures shows that the our method always outperformsall the lock-free translation methods in the style of Barnes,and outperforms Herlihy's translation method for su�cientlylarge numbers of processors. The key to the e�ciency of oursoftware-transactional approach is that unlike Barnes stylemethods, it is not based on a costly \recursive helping" pol-icy.1 IntroductionA major obstacle on the way to making multiprocessor ma-chines widely acceptable is the di�culty of programmers indesigning highly concurrent programs and data structures.Given the growing realization that unpredictable delay isan increasingly serious problem in modern multiprocessorarchitectures, we argue that conventional techniques for im-plementing concurrent objects by means of critical sectionsare unsuitable, since they limit parallelism, increase con-tention for memory and interconnect, and make the systemvulnerable to timing anomalies and processor failures. Thekey to highly concurrent programming is to decrease thenumber and size of critical sections a multiprocessor pro-gram uses (possibly eliminating critical sections altogether)1Contact Author: E-mail: shanir@theory.lcs.mit.edu

by constructing classes of implementations that are non-blocking [7, 15, 14]. As we learn >from the literature, 
exibil-ity in choosing the synchronization operations greatly sim-pli�es the task of designing non-blocking concurrent pro-grams. Examples are the non-blocking data-structures ofMassalin and Pu [22] which use a Compare&Swap on twowords, Anderson's [2] parallel path compression on listswhich uses a special Splice operation, the counting net-works of [5] which use combination of Fetch&Complementand Fetch&Inc, Israeli and Rappoport's Heap [18] which canbe implemented using a three-word Compare&Swap , andmany more. Unfortunately, most of the current or soon tobe developed architectures support operations on the level ofa Load Linked/Store Conditional operation for a single word,making most of these highly concurrent algorithms imprac-tical in the near future.Bershad [7] suggested to overcome the problem of provid-ing e�cient programming primitives on existing machinesby employing operating system support. Herlihy and Moss[16] have proposed an ingenious hardware solution: trans-actional memory. By adding a specialized associative cacheand making several minor changes to the cache consistencyprotocols, they are able to support a 
exible transactionallanguage for writing synchronization operations. Any syn-chronization operation can be written as a transaction andexecuted using an optimistic algorithm built into the consis-tency protocol. Unfortunately though, this solution is block-ing.This paper proposes to adopt the transactional approach,but not its hardware based implementation. We introducesoftware transactional memory (STM), a novel design thatsupports 
exible transactional programming of synchroniza-tion operations in software. Though we cannot aim for thesame overall performance, our software transactional mem-ory has clear advantages in terms of applicability to todaysmachines, portability among machines, and resiliency in theface of timing anomalies and processor failures.We focus on implementations of a software transactionalmemory that support static transactions, that is, transac-tions which access a pre-determined sequence of locations.This class includes most of the known and proposed syn-chronization primitives in the literature.1.1 STM in a nutshellIn a non-faulty environment, the way to ensure the atomicityof the operations is usually based on locking or acquiring ex-clusively ownerships on the memory locations accessed by anoperation Op. If a transaction cannot capture an ownerships1



it fails, and releases the ownerships already acquired. Oth-erwise, it succeeds in executing Op and frees the ownershipsacquired. To guarantee liveness, one must �rst eliminatedeadlocks, which for static transactions is done by acquiringthe ownerships needed in some increasing order. In order tocontinue ensuring liveness in a faulty environment, we mustmake certain that every transaction completes even if theprocess which executes it has been delayed, swapped out,or crashed. This is achieved by a \helping" methodology,forcing other transactions which are trying to capture thesame location to help the owner of this location to com-plete its own transaction. The key feature in the transac-tional approach is that in order to free a location one needonly help its single owner transaction. Moreover, one cane�ectively avoid the overhead of coordination among sev-eral transactions attempting to help release a location byemploying a \reactive" helping policy which we call non-redundant-helping.1.2 Sequential to Lock-free TranslationOne can use STM to provide a general highly concurrentmethod for translating sequential object implementationsinto non-blocking ones based on the caching approach of[6, 26]. The approach is straightforward: use transactionalmemory to to implement any collection of changes to ashared object, performing them as an atomic k-word Com-pare&Swap transaction (see Figure 2) on the desired loca-tions. The non-blocking STM implementation guaranteesthat some transaction will always succeed.Herlihy, in [15] (referred to in the sequel as Herlihy'smethod), was the �rst to o�er a general transformation ofsequential objects into non-blocking concurrent ones. Ac-cording to his methodology, updating a data structure isdone by �rst copying it into a new allocated block of mem-ory, making the changes on the new version and tentativelyswitching the pointer to the new data structure, all that withthe help of Load Linked/Store Conditional atomic operations.Unfortunately, Herlihy's method does not provide a suitablesolution for large data structures and like the standard ap-proach of locking the whole object, does not support con-current updating. Alemany and Felten [4] and LaMarca [20]suggested to improve the e�ciency of this general methodat the price of loosing portability, by using operating sys-tem support making a set of strong assumptions on systembehavior.To overcome the limitations of Herlihy's method , Barnes,in [6], introduced his caching method, that avoids copyingthe whole object and allows concurrent disjoint updating.A similar approach was independently proposed by Turek,Shasha, and Prakash [26]. According to Barnes, a process�rst \simulates" the execution of the updating in its pri-vate memory, i.e reading a location for the �rst time is donefrom the shared memory but writing is done into the privatememory. Then, the process uses an non-blocking k-wordRead-Modify-Write atomic operation which checks if the val-ues contained in the memory are equivalent to the the valueread in the cache update. If this is the case, the operationstores the new values in the memory. Otherwise, the processrestarts from the beginning. Barnes suggested to implementthe k-word Read-Modify-write by locking in ascending order

of their key, the locations involved in the update executingthe operation and releasing the locks. The key to achievingthe non-blocking resilient behavior in the caching approachof [6, 26] is the cooperativemethod: whenever a process needsa location already locked by another process it helps the lock-ing process to complete its own operation, and this is donerecursively along the dependency chain. Though Barnes andTurek, Shasha, and Prakash are vague on speci�c implemen-tation details, a recent paper by Israeli and Rappoport [19]gives, using the cooperative method, a clean and streamlinedimplementation of a non-blocking k-word Compare&Swapusing Load Linked/Store Conditional . However, as our em-pirical results suggest, both the general method and its spe-ci�c implementation have two major drawbacks which areovercome by our STM based translation method:� The cooperative method has a recursive structure of\helping" which frequently causes processes to helpother processes which access a disjoint part of the datastructure.� Unlike STM's transactional k-word Compare&Swapoperations which mostly fail on the transaction leveland are thus not \helped," a high percentage of co-operative k-word Compare&Swap operations fail butgenerate contention since they are nevertheless helpedby other processes.Take for example a process P which executes a 2-wordCompare&Swap on locations a and b. Assume that someother process Q already owns b. According to the coopera-tive method, P �rst helps Q complete its operation and onlythen acquires b and continues on its own operation. How-ever, in many cases P 's Compare&Swap will not change thememory since Q changed b after P already read it, and Pwill have to retry. All the processes waiting for location awill have to �rst help P , then Q, and again P , when in anycase P 's operation will likely fail. Moreover, after P has ac-quired b, all the processes requesting b will also redundantlyhelp to P .On the other hand, if P executes the 2-word Com-pare&Swap as an STM transaction, P will fail to acquireb, help Q, release a and restart. The processes waiting fora will have to help only P . The processes waiting for b willnot have to help P . Finally, if Q hasn't changed b, P willmost likely �nd the value of b in its own cache.1.3 Our Empirical ResultsTo make sequential-to-non-blocking translation methods ac-ceptable, one needs to reduce the performance overhead onehas to pay when the system is stable (non-faulty). Wepresent (see Section 5) the �rst experimental comparison ofthe performance under stable conditions of the translationtechniques cited above. We use the well accepted ProteusParallel Hardware Simulator [8, 9].We found that on a simulated Alewife [1] cache-coherentdistributed shared-memory machine, as the potential forconcurrency in accessing the object grows, the STM non-blocking translation method outperforms both Herlihy'smethod and the cooperative method. Unfortunately, our ex-periments show that in general STM and other non-blocking



Dequeue()BeginTransactionDeletedItem = Read transactional(Head)if DeletedItem = NullReturnedValue = Emptyelse Write-transactional(Head,DeletedItem!Next)if DeletedItem!Next = NullWrite-transactional(Tail,Null)ReturnedValue = DeletedItem!ValueEndTransactionend Dequeue Figure 1: A Non Static Transactiontechniques are inferior to standard non-resilient lock-basedmethods such as queue-locks [23]. Results for a shared busarchitecture were similar in 
avor.In summary, STM o�ers a novel software package of 
ex-ible coordination-operation for the design of highly concur-rent shared objects, which ensures resiliency in faulty runsand improved performance in non-faulty ones. The followingsection introduces STM. In Section 3 we describe our imple-mentation and and provide a sketch of the correctness proof.Finally, in Section 5 we present our empirical performanceevaluation.2 Transactional MemoryWe begin by presenting software transactional memory, avariant of the transactional memory of [16]. A transactionis a �nite sequence of local and shared memory machineinstructions:Read transactional { reads the value of a shared locationinto a local register.Write transactional { stores the contents of a local registerinto a shared location.The data set of a transaction is the set of shared locationsaccessed by the Read transactional andWrite transactional in-structions. Any transaction may either fail, or complete suc-cessfully, in which case its changes are visible atomically toother processes. For example, dequeuing a value >from thehead of a doubly linked list as in Figure 1 may be performedas a transaction. If the transaction terminates successfullyit returns the dequeued item or an Empty value.A k-word Compare&Swap transaction as in Figure 2 isa transaction which gets as parameters the data set, its sizeand two vectors Old and New of the data set's size. A suc-cessful k-word Compare&Swap transaction checks whetherthe values stored in the memory are equivalent to old. Inthat case, the transaction stores the New values into thememory and returns a C&S-Success value, otherwise it re-turns C&S-Failure.A software transactional memory (STM), is a shared ob-ject which behaves like a memory that supports multiplechanges to its addresses by means of transactions. A trans-action is a thread of control that applies a �nite sequenceof primitive operations to memory. Any implementation of

k word C&S(Size,DataSet[],Old[],New[])BeginTransactionfor i=1 to Size doif Read transactional (DataSet[i]]) 6= Old[i]ReturnedValue = C&S-FailureExitTransactionfor i=1 to Size doWrite transactional (DataSet[i],New[i])ReturnedValue = C&S-SuccessEndTransactionend k word C&SFigure 2: A Static Transactionsoftware transactional memory should satisfy the followingstandard properties [13]:Atomicity: transactions appear to execute sequen-tially, i.e., without interleaving.Serializability: The sequential order among trans-actions is consistent with their real-time order.A static transaction is a special form of transaction inwhich the data set is known in advance, and can thus bethought of as a procedure which gets as parameters (1) thedata set (2) the inputs of the transaction (3) a deterministicfunction which based on the inputs and the the data set,returns the new values which should be stored data set andthe output of the transaction. This paper we will focus onimplementations of a transactional memory that supportsstatic transactions, a class that includes most of the knownand proposed synchronization operations in the literature.The k-word Compare&Swap transaction in Figure 2 is anexample of a static transaction, while the Dequeue procedurein Figure 1 is not.An STM implementation is wait-free if any process whichrepeatedly executes the transaction terminates successfullyafter a �nite number of attempts. It is non-blocking if therepeated execution of some transaction by a process impliesthat some process (not necessarily the same one and witha possibly di�erent transaction) will terminate successfullyafter a �nite number of attempts in the whole system. AnSTM implementation is swap tolerant, if it is non-blockingunder the assumption that a process cannot be swapped outin�nitely many times. The hardware implemented transac-tions of [16] could in theory repeatedly fail forever, if pro-cesses try to write two locations in di�erent order (as whenupdating a doubly linked list). However, if used only forstatic transactions, their implementation can be made swap-tolerant (but not non-blocking, since a single process whichis repeatedly swapped during the execution of a transactionwill never terminates successfully).3 Our Implementation of Static-STMWe implement a non-blocking static TM of size M usingMemory[M ], a vector which contains the data stored in thetransactional memory, Ownerships[M ], a vector which de-termines for any cell in Memory[M ], which transaction ownsit. Each process keeps in the shared memory a record with



StartTransaction(input,DataSet)Initialize(Tranj ,input,DataSet)Tranj !Stable = TrueTransaction(Tranj,Tranj ! version,True)Tranj ! Stable = FalseTranj ! Version++if Tranj!Status = Success thenreturn (Success,CalcOutput(Tranj ! OldValues,input))elsereturn FailureFigure 3: StartTransactionthe following �elds: Size which contains the size of the dataset. Add[] { a vector which contains the data set addressesin increasing order. Input { the input of the transaction.Oldvalues[] a consensus vector which cells are initialized toNull at the beginning of every transaction. In case of asuccessful transaction this vector contains the former valuesstored in the involved locations. The output of the transac-tion is calculated from this vector and the input. The other�elds are used in order to synchronize between the ownerof the record and the processes which may eventually helpits transactions: Version{ an integer, initially 0, which de-termines the instance number of the transaction. This �eldis incremented every time the process terminates a transac-tion For every process Pj , Tranj determines the address ofits record.A process Pj initiates the execution of a transaction bycalling the Transaction routine of Figure 3. Transaction �rstinitializes the process's record then declares the record asstable, ensuring that any helping processors will read a con-sistent description of the transaction. After executing thetransaction the process checks if the transaction has suc-ceeded, and if so calculates the output from the input andthe OldValues vector.The procedure Transaction (Figure 4), gets as parameterstran, the record's address of the transaction executed, anda boolean value IsInitiator, indicating whether Transactionwas called by the initiating process or by a helping process.The parameter version contains the instance number of therecord executed1 This parameter is not used when the rou-tine is called by the initiating process since the version �eldwill never change during the call. Transaction, �rst triesto acquire ownership on the data set's locations by callingAquireOwnership. If it fails to do so then upon returningfrom AquireOwnership, the status �eld will be set to (Fail-ure,failadd). If the status �eld doesn't have a value yet, theprocess sets it to (Success,0). In case of success the processwrites the old values into the transaction's record, calculatesthe new values to be stored, writes them to the memory andreleases the ownerships. Otherwise, the status �eld containsthe location that caused the failure. The process �rst re-leases the ownerships that it already owns and, in the casethat it is not a helping process, it helps the transaction whichowns the failing location. Helping is performed only if therecord is in a stable state.1The use of this unbounded �eld can be avoided if an additionalValidate operation is available [18, 19].

Transaction(tran,version,IsInitiator)AcquireOwnerships(tran,version)(status,failadd) = LL(tran!status)if status = Null thenif (version 6= tran!version) then returnSC(tran!status,(Success,0))(status,failadd) = LL(tran!status)if status = Success thenAgreeOldValues(tran,version)NewValues = CalcNewValues(tran!OldValues,tran!input)UpdateMemory(tran,version,NewValues)ReleaseOwnerships(tran,version)elseReleaseOwnerships(tran,version)if IsInitiator thenfailtran= Ownerships[failadd]if failtran = Nobody thenreturnelsefailversion = failtran!versionif failtran!stableTransaction(failtran,failversion,False)Figure 4: TransactionAcquireOwnerships(tran,version)transize = tran!sizefor i = 1 to size dowhile true dolocation = tran!add[i]if LL(tran!status) 6= Null then returnowner = LL (Ownerships[tran!Add[i]])if tran!version 6= version returnif owner = tran then exit while loopif owner = Nobody thenif SC(tran!status, (Null , 0) ) thenif SC(Ownerships[location],tran) thenexit while loopelseif SC(tran!status, (Failure,i) ) thenreturnReleaseOwnerships(tran,version)size = tran!sizefor i = 1 to size dolocation= tran!Add[i]if LL(Ownerships[location]) = tran thenif tran!version 6= version then returnSC(Ownerships[location],Nobody)AgreeOldValues(tran,version)size = tran!sizefor i = 1 to size dolocation= tran!Add[i]if LL(tran!OldValues[location]) 6= Null thenif tran!version 6= version then returnSC(tran!OldValues[location],Memory[location])UpdateMemory(tran,version,newvalues)size = tran!sizefor i = 1 to size dolocation= tran!Add[i]oldvalue= LL(Memory[location])if tran!AllWritten then returnif version 6= tran!version then returnif oldvalue6= newvalues[i] thenSC(Memory[location],newvalues[i])if (not LL(tran!AllWritten)) thenif version 6= tran!version then returnSC(tran!AllWritten,True)Figure 5: Ownerships and Memory access



Since AcquireOwnerships of Figure 5 may be called eitherby the initiator or by the helping processes we must ensurethat (1) all processes will try to acquire ownership on thesame locations (this is done by checking the version betweenthe Load Linked and the Store Conditional instructions) (2)from the moment that the status of the transaction becomes�xed, no additional ownerships are allowed for that transac-tion. The second property is essential for proving not onlyatomicity but also the non-blocking property. Any processwhich reads a free location will have before acquiring own-ership on it, to con�rm that the transaction status is stillundecided. This is done by writing (with Store Conditional )(Null,0) in the status �eld. This prevents any process whichread the location in the past as owned by a di�erent trans-action, to set the status to Failure.When writing the new values to the UpdateMemory asin Figure 5, the processes synchronize in order to preventa slow process from updating the memory after the owner-ships have been released. To do so every process sets theAllWritten �eld to be True, after updating the memory andbefore releasing the ownerships.4 Correctness Proof OutlineFormally, following [21], the speci�cation of a static trans-actional memory for n processes that supports k di�erentstatic transactions can be described as an automaton withk types of input actions:TranjRequesti(DataSet) and k types of output actions:TranjReturni(FinalStatus; Output) where j 2 1 : : : k andi 2 1 : : : n.In our implementation, any transaction T is related to atransaction record tran, and an instance number (the contentof the version �eld). Therefore, we de�ne the process whichstarted the execution of T (which owns the record tran) asthe initiator of T . All the processes which execute rou-tine Transaction with parameters (tran,version,False), arede�ned to be the helping processes of T . The initiator andthe helping processes are the executing processes of T .Lemma 4.1 The implementation is atomic and serializ-able.Sketch of proof: The proof of this lemma is based on thefollowing invariants:1. All the executing processes of a transaction T read thesame data set vector which was stored by T 's initiator.Any executing process of T which read a di�erent dataset will not be able to update any of the shared datastructures.2. All the executing processes of a transaction T will neveracquire ownership after the the status of T has been set.All the ownerships owned by T will be released beforethe version �eld of T 's record is incremented by T 'sinitiator.3. All the executing processes of a successful transactionT will update the memory before T 's AllWritten �eld isset to True.

In order to prove the non-blocking property we �rst de�nethat the failing process of a failing transaction T , is the exe-cuting process which wrote Failure to T's status. The failinglocation of T is the location that the failing process failed toacquire ownership on it.Claim 4.2 A failing transaction, T will never owns its fail-ing location or a higher location that its failing location.Proof: (Sketch ) Assume the contrary. Let P be an ex-ecuting process which acquired an ownership on a higherlocation than the failing location. By the �rst invariant inLemma 4.1, P acquired that ownership before the status wasset to Failure. Therefore P has con�rmed that the transac-tion's status is unde�ned before the failing process saw thefailing location owned by another transaction. Now, if P hasacquired ownership on a higher location then the failing pro-cess should have seen that the failing location belongs to T .Therefore P has acquired the failing location itself. But, inthat case, since P saw the location free before the failing pro-cess saw it occupied and since the failing process saw the lo-cation occupied before P has executed the Store Conditionalinstruction on the ownership, therefore the Store Conditionalinstruction should has failed.Lemma 4.3 The implementation is non-blocking.Proof: (Sketch ) Assume by way of contradiction thatthere is an in�nite schedule in which no transaction termi-nates successfully. Assume that the number of transactionfailures is �nite. This happens only if from some point on,in the computation, all the processes are \stuck" in the Ac-quireOwnerships routine. In this case there are several pro-cesses which try to acquire ownership of the same locationfor the same transaction. This may happen only if the lo-cation is aquired and released in�nitely often. Since everylocation is released only when the transaction is completed,it follows that there must be an in�nite number of failingtransactions. This in turn implies that there is at least onelocation on which processes fail in�nitely often, and con-sider A, the highest such location. Since the initiator ofthe transaction tries to help the transaction which has failedhim before retrying, it follows that there are in�nitely manytransaction which have acquired ownership on A but havefailed. By Claim 4.2 those transactions have failed on ad-dresses higher than A { a contradiction to the fact that A isthe highest.To avoid major overheads when no failures occur, any al-gorithm based on the helping paradigm must avoid as muchas possible \redundant helping." In the STM implementa-tion given above, redundant helping occurs when a failingtransaction \helps" another non-faulty process. Such help-ing will only increase contention and consequently, will causethe helped process to release the ownerships later then itwould have released if not helped. In our algorithm, a pro-cess increases or decreases the interval between helps as afunction of the \redundant helps" it discovered.



5 An Empirical Evaluation of Transla-tion Methods5.1 MethodologyWe compared the performance of STM and other softwaremethods on 64 processor bus and network architectures us-ing the Proteus simulator developed by Brewer, Dellarocas,Colbrook and Weihl [8]. Our network architecture was thatof the Alewife cache-coherent distributed-memory machinecurrently under development at MIT [1]. Each processorhad a cache with 2048 lines of 8 bytes and a memory accesswithout contention cost 4 cycles in both architectures. Thecost of switching or wiring in the Alewife architecture was 1cycle/packet.The current version of Proteus does not supportLoad Linked/Store Conditional instructions. Instead weused a slightly modi�ed version that supports a 64-bitCompare&Swap operation where 32 bits serve as a timestamp. 2 On existing machines the 64 bits Com-pare&Swap may be implemented by using the a 64 bitsLoad Linked/Store Conditional as on the Alpha or using Ber-shad's lock-free methodology3 [7].We used four synthetic benchmarks for evaluating vari-ous methods for implementing shared data structures. Themethods vary in the size of the data structure and theamount of parallelism.Counting Each of n processes increments a shared counter10000=n times. In this benchmark updates are short,change the whole object state, and have no built in par-allelism.Resource Allocation A resource allocation scenario [10]:a few processes share a set of resources and from timeto time a process tries to atomically acquire a subset ofsize s of those resources. This is the typical behaviorof a well designed distributed data structure. For lackof space we show only the benchmark which has n pro-cesses atomically increment 5000=n times with s = 2locations chosen uniformly at random from a vector oflength 60. The benchmark captures the behavior ofhighly concurrent queue and counter implementationsas in [24, 25].Priority Queue A shared priority queue on a heap of sizen. We used a variant of a sequential heap implemen-tation [11]. In this benchmark each of the n processesconsequently enqueues a random value in a heap anddequeues the greatest value from it 5000=n times. Theheap is initially empty and its maximal size is n. Thisis probably the most trying benchmark since there is2Naturally this operation is less e�cient than the theoreticalLoad Linked/Store Conditional proposed in [6, 15, 18] (which we couldhave built directly into Proteus), since a failing Compare&Swap willcost a memory access while a failing Store Conditional wont. However,we believe the 64-bit Compare&Swap is closer to the real world thenthe theoretical Load Linked/Store Conditional since existing implemen-tations of Load Linked/Store Conditional as on Alpha [12] or PowerPC[17] do not allow access to the shared memory between the Load Linkedand the Store Conditional operations.3The non-blocking property will be achieved only if the number ofspurious failures is �nite.

no potential for concurrency and the size of the datastructure increases with n.Doubly Linked Queue An implementation of a queue asa doubly linked list in an array. The �rst two cells ofthe array contain the head and the tail of the list. Everyitem in the list is a couple of cells in the array, whichrepresent the index of the previous and next elementrespectively. Each process enqueues a new item by up-dating tail to contain the new item's index and dequeuesan item by updating the head to contain the index of thenext item in the list. Each process executes 5000=n cou-ples of enqueue/dequeue operations on a queue of ini-tial size n. This benchmark supports limited parallelismsince when the queue is not empty, enqueues/dequeuesupdate the tail/head of the queue without interferingeach other. For a high number of processes, the size ofthe updated locations in each enqueue/dequeue is rela-tively small compared to the object size.We implemented the k-word Compare&Swap transaction(given in Figure 2) as specialization of the general STMscheme given above. The simpli�cation is that processes donot have to agree on the value stored in the data set beforethe transaction started, only on a boolean value which saysif the value is equal to old[] or not.We used the above benchmarks to compare STM to thetwo nonblocking software translation methods described ear-lier and a blocking MCS queue-lock [23] based solution (thedata structure is accessed in a mutually exclusive manner).The non-blocking methods include Herlihy's Method and Is-raeli and Rappoport's k-word Compare&Swap based imple-mentation of the cooperative method. All the non-blockingmethods use exponential backo� [3] to reduce contention.5.2 ResultsThe data to be presented leads us to conclude that there arethree factors di�erentiating among the performance of thefour methods:1. Potential parallelism: Both locking and Herlihy'smethod do not exploit potential parallelism and onlyone process at a time is allowed to update the datastructure. The software-transactional and the coopera-tive methods allow concurrent processes to access dis-joint parts of the data structure.2. The price of a failing update: In Herlihy's lock-freemethod, the number of memory accesses of a failingupdate in is at least the size of the object (reading theobject and copying it to the private copy, and readingand writing to the pointer). Fortunately, the nature ofthe cache coherence protocols is such that almost all ac-cesses performed when the process updates its privatecopy are local. In both caching methods, the price of afailure is a least the number locations accessed duringthe cached execution.3. The amount of helping by other processes: Helping ex-ists only in the software-transactional and the coop-erative methods. In the cooperative implementation,



0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

BUS

STM
Cooperative method

Herlihy’s method
QUEUE spin lock

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

Alewife

STM
Cooperative method

Herlihy’s method
QUEUE spin lock

Figure 6: Counting Benchmarkk-word Compare&Swap , including failing ones, arehelped not only by the k-word Compare&Swap oper-ations that access the same locations concurrently, butalso by all the operations that are in turn helping themand so on... In the STM method, an k-word Com-pare&Swap is helped only by operations that need thesame locations. Moreover, and this is a crucial perfor-mance factor, in STM most of the unsuccessful updatesterminate as failing transactions, not as failing k-wordCompare&Swap , and when a transaction fails on the�rst location, it is not helped.The results for the counting benchmark are given in Fig-ure 6. The horizontal axis shows the number of processorsand the vertical axis shows the throughput achieved. Thisbenchmark is cruel to the caching based methods, since theamount of updated memory is equivalent to the size of theobject and there is no potential for parallelism . On the busarchitecture, locking and Herlihy's method give signi�cantlyhigher throughput than the caching methods.In the resource allocation benchmark Figure 7, as thenumber of processors increases, local work can be performedconcurrently, and thus the performance of the STM im-proves. On the bus, beyond a certain number of proces-sors, the potential for parallelism declines, causing a grow-ing number of k-word Compare&Swap con
icts, and thethroughput degrades.A priority queue is a data structure that does not allowconcurrency, and as the number of processors increases, thenumber of locations accessed increases too. Still, the numberof accessed locations is smaller than the size of the object.Therefore, the STM performs better than Herlihy's methodin most concurrency level.Figure 9 contains the doubly linked queue results. There ismore concurrency in accessing the object than in the counterbenchmark, though it is limited: at most two processes mayconcurrently update the queue. Herlihy's method performspoorly because the penalty paid for a failed update growslinearly with queue size: usually twice the number of the pro-cesses. In the STM method, the low granularity of the two-word Compare&Swap transactions implies that the price of

a failure remains constant in all concurrency levels, thoughlocal work is still higher than the Test-and-Test-and-Set.5.3 A comparison of non-blocking methodsonlyEvery theoretical method can be improved in many wayswhen implemented in practice. In order to get a fair com-parison between the non-blocking methods one should usethem in their purest form. Therefore, we compare the perfor-mance of all the non-blocking methods without backo� (in allthe methods) and without the non-redundant-helping policy(in STM). We also compare the cooperative k-word Com-pare&Swap with STM for a speci�c implementation whichexplicitly needs such a software supported operation. Wechose Israeli and Rappoport's algorithm for a concurrentpriority queue [18], since it is based on recursive helping.Therefore, whenever a process during the execution of ak-word Compare&Swap helps another remote disjoint pro-cess, it should give an advantage to Israeli and Rappoportmethod. Our implementation is slightly di�erent since ituses a 3-word Compare&Swap operation instead of a 2-wordStore-Conditional operation 4.We ran the same benchmark as for the regular priorityqueue. The results of the concurrent priority queue bench-mark are given in Figure 10. In spite of the advantage thatthe inherent structure of the algorithm should give to Israeliand Rappoport method, STM provides the highest through-put. As in the counter and the sequential priority queuebenchmarks, the reason for this is the high number of failingk-word Compare&Swap operations in Israeli and Rappoportmethod: up to 2.5 times the number of successful k-wordCompare&Swap .We summarize the highlights of the other pure bench-marks in Table 1, where entries are the throughput ratioof STMOtherMethod . As can be seen, STM outperforms the coop-erative method in all benchmarks and outperforms Herlihy'sin all except for the counter benchmark.4In fact, using 3-word Compare&Swap simpli�es the implementa-tion since it avoids freezing [18] nodes



0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

BUS

STM
Cooperative method

Herlihy’s method
QUEUE spin lock

0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

Alewife

STM
Cooperative method

Herlihy’s method
QUEUE spin lock

Figure 7: Resource Allocation Benchmark
0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

BUS

STM
Cooperative method

Herlihy’s method
QUEUE spin lock

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

Alewife

STM
Cooperatie method

Herlihy’s method
QUEUE spin lock

Figure 8: Priority Queue Benchmark6 AcknowledgmentsWe wish to thank Greg Barnes and Maurice Herlihy for theirmany helpful comments.References[1] A. Agarwal et al. The MIT Alewife Machine: A Large-Scale Distributed-Memory Multiprocessor. In Proceed-ings of Workshop on Scalable Shared Memory Multi-processors. Kluwer Academic Publishers, 1991. An ex-tended version of this paper has been submitted forpublication, and appears as MIT/LCS Memo TM-454,1991.[2] R. J. Anderson. Primitives for Asynchronous List Com-pression. Proceeding of the 4th ACM Symposium onParallel Algorithms and Architectures, pages 199-208,1992.[3] T.E. Anderson. The performance of spin lock al-ternatives for shared memory multiprocessors. In
IEEE Transaction on Parallel and Distributed Systems,1(1):6-16, January 1990.[4] J. Alemany, E.W. Felten Performance Issues in Non-Blocking Synchronization on Shared-Memory Multipro-cessors. In Proceedings of 11th ACM Symposium onPrinciples of Distributed Computation, Pages 125-134August 1992.[5] J. Aspnes, M.P. Herlihy, and N. Shavit. Counting Net-works. Journal of the ACM, Vol. 41, No. 5 (September1994), pp. 1020-1048.[6] G. Barnes A Method for Implementing Lock-FreeShared Data Structures In Proceedings of the 5th ACMSymposium on Parallel Algorithms and Architectures1993.[7] B.N Bershad. Practical consideration for lock-free con-current objects. Technical Report, CMU-CS-91-183,Carnegie Mellon University. September 1991.[8] E.A. Brewer C.N. Dellarocas, A. Colbrook, and W.E. Weihl. Proteus: A High-Performance Parallel-



0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

BUS

STM
Cooperative method

Herlihy’s method
QUEUE spin lock

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

Alewife

STM
Cooperative method

Herlihy’s method
QUEUE spin lock

Figure 9: Doubly Linked Queue Benchmark
50

100

150

200

250

300

350

400

450

500

550

600

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

BUS

STM
Cooperative method

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60

op
er

at
io

ns
 p

er
 1

0*
*6

 c
yc

le
s

Processors

Alewife

STM
Cooperative method

Figure 10: Non-blocking implementations of Israeli & Rappoport's Priority QueueArchitecture Simulator. MIT/LCS/TR-516. September1989.[9] E.A. Brewer C.N. Dellarocas. Proteus. User Documen-tation.[10] K. Chandy and J. Misra. The Drinking PhilosophersProblem. InACM Transaction on Programming Lan-guages and Systems, 6(4):632-646, October 1984.[11] T.H. Cormen, C.E. Leiserson and R.L. Rivest. Intro-duction to algorithms. MIT Press.[12] DEC. Alpha system reference manual.[13] M. Herlihy and J.M. Wing. Linearizability: A correct-ness condition for concurrent objects. In ACM Trans-action on Programming Languages and Systems, 12(3),pages 463-492, July 1990.[14] M. Herlihy. Wait-Free Synchronization. In ACM Trans-action on Programming Languages and Systems, 13(1),pages 124-149, January 1991.
[15] M. Herlihy. A methodology for implementing highlyconcurrent data objects. ACM Transactions on Pro-gramming Languages and Systems, 15(9): 745{770,November 1993.[16] M. Herlihy and J.E B. Moss. Transactional Memory:Architectural Support for Lock-Free Data Structures.In 20th Annual Symposium on Computer Architecture,pages 289-300, May 1993.[17] IBM. Power PC. Reference manual.[18] A. Israeli and L. Rappoport. E�cient Wait Free Imple-mentation of a Concurrent Priority Queue. In WDAG1993. Lecture Notes in Computer Science 725, SpringerVerlag, pages 1-17.[19] A. Israeli and L. Rappoport. Disjoint-Access-ParallelImplementations of Strong Shared Memory Proc. ofthe 13th ACM Symposium on Principles of DistributedComputing pages 151-160.[20] A. LaMarca. A Performance Evaluation of Lock-FreeSynchronization Protocols. Proc. of the 13th ACM Sym-



10 processors 60 processorsThroughput ratio of STM/other Herlihy's Cooperative Herlihy's Cooperativemethod method method methodCounter Bus 0.34 1.98 0.74 8.44Alewife 0.30 1.92 0.45 7.6Doubly linked queue Bus 6.07 1.44 58.9 3.36Alewife 2.44 1.75 12.9 7.28Resource Allocation Bus 22.5 1.09 85.61 1.69Alewife 24.14 1.12 59.8 2.35Priority queue BUS 0.42 1.26 2.8 2.16Alewife 0.41 1.27 1.1 2.24Table 1: Pure implementation throughput ratio: STM / other methodsposium on Principles of Distributed Computing, pages130-140.[21] N. Lynch and M. Tuttle. Hierachical Correctness Proofsfor Distributed Algorithm. In Proceedings of 6th ACMSymposium on Principles of Distributed Computation,Pages 137-151 August 1987.[22] H. Massalin and C. Pu. A lock-free multiprocessor OSkernel. Technical Report CUCS-005-91. Columbia Uni-versity. Mars 1991.[23] J.M. Mellor-Crummey and M.L. Scott Synchronizationwithout Contention. In Proceedings of the 4th Interna-tional Conference on Architecture Support for Program-ming Languages and Operating Systems, April 1991.[24] L. Rudolph, M. Slivkin, and E. Upfal. A Simple LoadBalancing Scheme for Task Allocation in Parallel Ma-chines. In Proceedings of the 3rd ACM Symposium onParallel Algorithms and Architectures, pages 237{245,July 1991.[25] N. Shavit and A. Zemach. Di�racting Trees. In Proceed-ings of the Annual Symposium on Parallel Algorithmsand Architectures (SPAA), June 1994.[26] J. Turek D. Shasha and S. Prakash. Locking withoutblocking: Making Lock Based Concurrent Data Struc-ture Algorithms Non-blocking. In Proceedings of the1992 Principle of Database Systems pages 212-222.[27] D. Touitou. Lock-Free Programming: A Thesis Pro-posal. Tel Aviv University April 1993.


