
A Dynamic Processor Allocation Policy for
IViukiprogrammed Shared-Memory
Multiprocessors

CATHY MCCANN, RAJ VASWANI, and JOHN ZAHORJAN

University of Washington, Seattle

We propose and evaluate empirically the performance of a dynamic processor-scheduhng policy

for rnultiprogrammed shared-memory multiprocessors The policy is dynamic m that It reallo-

cates processors from one parallel job to another based on the currently reahzed parallehsm of

those Jobs. The policy M suitable for implementation in production systems in that:

—It interacts well with very efficient user-level thread packages, leaving to them many low-level

thread operations that do not require kernel intervention.

—It deals with thread blocking due to user 1/0 and page faults

—It ensures fairness in dehvermg resources to jobs.

—Its performance, measured in terms of average job response time, is superior to that of

previously proposed schedulers, including those implemented m existing systems.

—It provides good performance to very short, sequential (e.g., interactive) requests,

We have evaluated our scheduler and compared It to alternatives using a set of prototype

implementations running on a Sequent Symmetry multiprocessor. Using a number of parallel

applications with distinct qualitative behaviors, we have both evaluated the policies according to

the major criterion of overall performance and examined a number of more general pohcy issues,

including the advantage of “space sharing” over “time sharing” the processors of a multiproces-

sor, and the importance of cooperation between the kernel and the apphcatlon m reallocating

processors between jobs. We have also compared the policies according to other criteria impor-

tant in real implementations, m particular, fau-ness and response time to short, sequential

requests. We conclude that a combination of performance and implementation considerations

makes a compelhng case for our dynamic scheduling pohcy.

Categories and Subject Descriptors D.4 1 [Operating Systems]’ Process Management—m ultL-

processing/m uklprogrumming, schedubng

General Terms Measurement, Performance

Additional Key Words and Phrases: Shared memory parallel processors, threads, two-level

scheduling

This material is based on work supported by the National Science Foundation (grants CC!R-

8619663, CDA-9123308, and CCR-9200832), the Washington Technology Center, and Digital

Equipment Corporation (the External Research Program and the Systems Research Center).

Authors’ address: University of Washington, Department of Computer Science and Engineering,

FR-35, Seattle, WA 98195; email: mccann@ raj@, zahorjan@cs.Washington. edu.

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright, notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

specific permission.

@ 1993 ACM 0734–2071/93/0500–0146 $01.50

ACM TransactIons on Computer Systems, Vol 11, No. 2, May 1993, Pages 146-178

Dynamic Processor Allocation Pollcy . 147

1. INTRODUCTION

We consider alternative strategies for scheduling parallel jobs on multipro-

grammed shared-memory parallel computers. Such machines typically have a

modest number of processors (say, between two and 32) connected to main

memory by a shared bus. This architecture is in use for machines ranging in

power from single-user workstations (e.g., the Digital Equipment Corporation

Firefly experimental workstation [23]) to medium-scale general-purpose

machines (e.g., the Sequent Symmetry [16]) to supercomputers (e.g., the Cray

MP’s). While systems of this type have been in operation for a number of

years, the available approaches for scheduling them have been considered in

detail only quite recently. Work by Ousterhout [18], Zahorjan et al. [26, 27],

and Gupta et al. [11] provides convincing evidence that single-leuel sched-

ulers, those in which the kernel schedules all threads of all applications

(usually from a single queue of ready threads), are not appropriate choices.

Such schedulers can provide very poor performance to individual jobs, whose

threads often need to synchronize or execute critical sections, and they do not

provide fair service when one application contains many more threads than

others.

Based on the evidence given in these earlier works, we restrict our atten-

tion to two-level schedulers, those in which (1) the kernel allocates processors

to applications and (2) the applications themselves schedule their threads on

those processors. There have been a number of recent proposals for sched-

ulers of this type. Much of this work is based on modeling (e.g., [14], [17],

[19], [21], and [25]) and of necessity made simplifying assumptions about the

system and its workload. Tucker and Gupta [22] do provide an experimental

evaluation of an aspect of multiprocessor scheduling, and Gupta et al. [11] a

trace-driven simulation, but even here the policy aspects of the study are

simplified by ignoring, for example, the effects of 1/0 and page faults.

The purpose of our study was to evaluate multiprocessor scheduling when

all aspects of the problem are included. We have built schedulers for a

number of policies and run them on a Sequent Symmetry. We have used

existing parallel applications as our workload. Also, we have considered both

the raw performance afforded by the policies, measured in terms of average

response time, and other less easily quantified measures, such as fairness.

We characterize scheduling strategies for multiprogrammed shared-

memory multiprocessors along three dimensions. The first, and perhaps most

basic, is the manner in which concurrency is provided. Under time sharing,
the processors are quickly rotated from one job to another. Thus, each job

sees alternating periods when it holds many (possibly all) processors followed

by few (possibly no) processors. Under space sharing, the proces-

sors of the machine are partitioned among the jobs. Space sharing tends to

provide each job a more constant allocation of a fewer number of processors

than does time sharing.
The second dimension concerns the frequency with which allocation deci-

sions are made. Under a static policy, a single allocation decision is made per

job at the start of execution. Whenever the job has any processors, it has

the number of processors decided on initially. Under a dynamic policy, the

ACM Transactions on Computer Systems, Vol. 11, No. 2, May 1993.

148 . C. McCann et al.

number of processors allocated each job may change at arbitrary times. While

it may be easier to program applications to run under a static policy (since

these applications can count on having a fixed number of processors once they

start execution), the dynamic policies have greater potential to efficiently

execute applications whose parallelism changes during their lifetimes. On the

other hand, dynamic policies incur more system overhead, which may lead to

a degradation of performance.

The final dimension distinguishes uncoordinated reallocations, those in

which the kernel moves the processor without interaction with the applica-

tion, from coordinated processor reallocations, those that are performed in

concert with the application. Previous work using modeling [26, 27] has

shown that uncoordinated preemption can lead to very poor performance. As

a simple example, imagine that the preempted processor has been running a

thread that holds a spin lock. In this case, preemption leads quickly to

spinning by the active threads. This waste of processors continues until the

suspended thread is restarted and can seriously affect both application and

overall system performance. While this effect can be alleviated somewhat

through modified lock acquisition protocols [7] or by the use of “spin then

block” locks [12, 15], these can neither completely prevent the degradation,

nor are they applicable to the more general problem of preemption of threads

critical to the progress of the application (but which may not be holding

locks).

We examine three particular scheduling strategies, each based on a strat-

egy previously proposed in the literature. While these represent only a subset

of the eight possible strategies defined by our three dimensions, examina-

tion of their performance is sufficient to determine the appropriate decision

in each dimension. For example, one of the policies uses time sharing while

the other two use space sharing. The performance of the strategies under a

workload that exercises only this aspect of the disciplines makes clear the

better choice.

Section 2 begins our discussion with a description of the environment in

which the processor allocator must operate. Section 3 fully defines the

abstract policies we have examined. Section 4 describes their implementation

in the testbed system. In Section 5 we present the workloads used in our

experiments and in Section 6 the results of scheduling them under the

policies. Section 7 summarizes our conclusions.

2. THE SOFTWARE ENVIRONMENT: USER-LEVEL THREADS

In the environment we are addressing, communication between executing

threads is relatively cheap because the underlying hardware provides shared

memory at a uniform distance from all processors. Thus, the limiting factor

in achieving good performance typically is the inability to find sufficient

parallelism.

User-level thread packages address this limitation by reducing the costs of

creating, synchronizing (blocking and unblocking), and scheduling parallel

threads of execution by an order of magnitude over kernel-level implementa-

tions [5, 6]. Since parallelism is cheap, the application programmer is free to

ACM Transactions on Computer Systems, Vol. 11, No. 2, May 1993

Dynamic Processor Allocation Policy . 149

exploit much finer-grained computations in an attempt to keep all processors

busy, leading to improved performance.

The efficiency of user-level threads is obtained by performing operations at

the user, rather than kernel, level. This avoids the overhead of entering and”

exiting the kernel, which can be substantial relative to the amount of work

required, for instance, to block a thread. Also, because the operations are

executed within the context of a particular job, much of the “bullet-proofing”

required in kernel code can be avoided in user-level implementations.

While user-level thread packages differ somewhat in the details of their

implementation, the basic concepts are the same in all cases. Upon starting

execution, an application forks a kernel-schedulable thread of execution

per physical processor. These threads, which we call virtual processors,

merely provide the generic environment in which to run the application.

Each virtual processor, when allocated a physical processor, alternates

between running one of two kinds of user-level thread: scheduler threads and

application threads. A scheduler thread, which executes code provided by

the thread package, examines a data structure that holds ready application

threads, and if one is found, removes it from the structure and initiates its

execution on its virtual processor. The application thread, so named because

it executes code provided by the application, performs the actual work

necessary to implement that application. Application threads typically run on

virtual processors until they either block or terminate. At that time, a

scheduler thread regains control and looks for another ready application

thread to run.

It is important to note that blocking can occur at two distinct levels when

using a threads package. A user-level thread can block by executing some

synchronization primitive defined by the threads package. For instance, an

application thread may block when executing a barrier synchronization with

a set of other application threads. This kind of blocking is handled quickly

and efficiently, and the virtual processor is then available to run some other

thread.

On the other hand, if a user-level thread performs (blocking) 1/0, or

experiences a page fault, the event is caught below the threads package, at

the kernel level. The kernel sees this as an event pertaining to the virtual

processor, and so blocks it. This means that not only is the thread that was

running on that virtual processor blocked (as it must be), but also that the

virtual processor itself is unavailable to run any other user-level threads.

A similar situation arises when the processor allocator reallocates a proces-

sor from one job to another, preempting the virtual processor running there.

In this case, while the virtual processor must be blocked in the kernel, the

user-level thread need not be. If it is an application thread, it should

be reentered in the data structure containing ready threads, since it may be

completed by any active virtual processor. One motivation for coordinated

processor preemption (as defined in Section 1) is to avoid blocking the

user-level thread in these cases.

While some applications can run efficiently without user-level threads,

these typically exhibit a very large amount of (data) parallelism, which the

ACM Transactions on Computer Systems, Vol. 11, No. 2, May 1993.

150 . C. McCann et al

user partitions into large-grained pieces that can tolerate the overheads of

kernel-level operations. Such applications are often sensitive to the number

of physical processors they are allocated and can behave badly if their

- allocation is changed during execution [26], either because of scheduling or

because of 1/0 or page faults. This leads to “work heap” based implementa-

tions, in which a number of identical worker threads share a pool of task

descriptions, each cycling between removing a descriptor from the pool and

performing the task it describes. Such implementations mimic the basic

functionality and structure of user-level thread packages, and so present the

same set of considerations for the system processor allocator.
User-level thread packages thus provide a single, coherent, programming

paradigm in which to implement parallel applications (a benefit even to
massively and statically parallel applications). Further, (the functions of)

such packages are required for the efficient implementation of some applica-

tions. We therefore assert that any scheduling discipline proposed for the

shared-memory multiprocessors we are considering must interact in a rea-

sonable way with the characteristics of user-level thread implementations. In

the remainder of this paper, we assume that applications use such a threads

package.

3. PROCESSOR ALLOCATION POLICIES

In this section, we fully define the abstract versions of the three processor

allocation policies that we consider. The approximations to these policies

actually implemented in our prototype are discussed in Section 4.

The three policies are called Round-Robin Job, Equipartition, and

Dynamic. Table I summarizes the decisions each makes along the dimen-

sions of time versus space sharing, static versus dynamic allocation, and

uncoordinated versus coordinated preemption.

As suggested by the table, comparing Round-Robin Job to Equipartition

yields an evaluation of both time sharing versus space sharing and uncoordi-

nated versus coordinated preemption; subsets of our results (Section 6)

isolate the relative influence of each policy characteristic. Similarly, the

comparison between Equipartition and Dynamic allows us to focus on

the impact of static versus dynamic reallocation, since the two policies differ

only along that dimension.

In what follows, we use P to denote the number of processors in the system

and N] to denote the maximum parallelism of job J“. We define maximum
parallelism as the maximum number of processors that a job would simulta-

neously keep busy at any point during its execution if it were allocated an

unlimited number of processors.

3.1 Round-Robin Job (RRJob)

RRJob is a static policy that time-shares processors among the jobs in the

system. Allocation is quantum driven. During job j’s quantum, it is assigned

N] processors. The remaining P – N] unassigned processors are given to the

job whose quantum follows next. The length of a quantum depends on

ACM Transactxms on Computer Systems, Vol 11, No. 2, May 1993.

Dynamic Processor Allocation Policy . 151

Table I. Basic Characteristics of Scheduling Policies

Time vs. Space Static vs. Dynamic Uncoord. vs. Coord.

Sharing Allocation Reallocations

Round-Robin Job Tme static Uncoordinated

Equipartition Space (Quasi-)Static Coordinated

Dynamic Space Dynamic Coordinated

the number of processors allocated to the currently active job, which is N]. In

particular, job j’s quantum is of duration Q/Nj, where Q is a constant

measured in processor seconds. This ensures that all jobs receive the same

total amount of service (Q processor seconds) during their quanta.

To give slight preference to any newly arriving job, which might be of very

short duration, its quantum is inserted in the ordering immediately follow-

ing the quantum in progress when the job arrives. Thus, an arrival experi-

ences the minimum delay possible without prematurely terminating the

quantum of some other job.

RRJob performs uncoordinated processor preemption, taking all of a job’s

processors at the end of its quantum without any explicit notification to the

job.

The basic operation of this policy was originally defined by Leutenegger

and Vernon [14], who examined its performance relative to a number of

alternative disciplines in an abstract setting. We have modified their policy to

provide a per-job, rather than a per-processor, quantum, preempting all

processors of that job at once rather than as each processor completes its

individual quantum. We expect that this change reduces the detrimental

impact of uncoordinated preemptions relative to the original definition of the

policy.

3.2 Equipartition

Equipartition is a space-sharing policy that, to the extent possible, maintains

an equal allocation of processors to all jobs. To do this requires reallocations

only on job arrival and completion. Since reallocations are relatively infre-

quent, and because the reallocation decisions are independent of the instan-

taneous processor requirements of the jobs, we consider Equipartition to be a

quasistatic discipline.

The Equipartition policy is based on the “process control” policy proposed

by Tucker and Gupta [22]. Each time a reallocation must take place, the

number of processors to allocate each job is computed by the following

procedure. The initial allocation number of all jobs is set to zero. Then the

allocation number of each job is incremented by one in turn, and any job

whose allocation number has reached its maximum parallelism drops out.

This process continues until either there are no remaining jobs or until all P

ACM TransactIons on Computer Systems, Vol. 11, No. 2, May 1993

152 . C McCann et al.

processors have been allocated. The set of allocation numbers computed in

this way gives the number of processors that should be allocated to the jobs.

When a new job arrives, a reallocation is required that typically causes

preemption of processors from some current jobs for reassignment to the new

arrival. As proposed by Tucker and Gupta [22], these preemptions occur

immediately: the kernel simply suspends the virtual processors (and thus the

user-level threads) running on the targeted processors, reassigning the pro-

cessors to the new job. The kernel than sets a flag for each job that lost

a processor (via memory shared with that job) indicating the new number of

processors assigned to that job. Because recently suspended virtual proces-

sors typically embody the state of user-level threads that must be completed,

they are scheduled round-robin on their job’s processors (by the kernel). It is

the application’s responsibility eventually to reduce the number of runnable

virtual processors in this case. As a routine matter, when each virtual

processor reaches a “safe point” (typically when the user-level thread it has

been running has just blocked or terminated, so that the virtual processor is

executing the scheduler thread rather than any user-level thread), it checks

this flag and suspends itself if the number of runnable virtual processors for

that job exceeds its current processor allocation. The round-robin scheduling

therefore persists for an indeterminate period, since it depends on the

frequency with which user-level threads block or complete. Thus, while this

preemption scheme has the advantage of allowing immediate preemption of

processors without requiring application cooperation, it has the disadvantage

of introducing potential performance problems for applications that do not

react well to the period of round-robin scheduling (e.g., because one of the

preempted threads holds an important lock).

Since we intend the comparison of Equipartition with Dynamic to isolate

the effect of static versus dynamic allocation, we have used a more closely

coordinated preemption method in our version of Equipartition. (In this way,

Equipartition and Dynamic differ only along the dimension of static versus

dynamic allocation, and not in the manner of preemption.) Under our pre-

emption scheme, the processor allocator “asks” a running job to hand over

processors when it is next convenient, i.e., as virtual processors reach safe

points in their computations. Because there is no interval of round-robin

scheduling under this scheme, it does not suffer from the problems associated

with round-robin scheduling of synchronizing threads. Thus, the average

response time results we obtain with this preemption scheme should be at

least as good as those resulting from the immediate preemption scheme of
Tucker and Gupta [22]. At the same time, our preemption scheme is impracti-

cal for use in real systems because of its inferior performance in two other

dimensions, the average delay to acquire a processor (see Section 6.4) and

resilience to user countermeasures to the scheduler. Thus, while Equip arti-

tion serves our purpose in isolating the effect of static versus dynamic
allocation, it would not be a suitable alternative (for reasons other than

average response time) to the Tucker and Gupta scheme for implementation

in a real system.

ACM TransactIons on Computer Systems, Vol. 11, No. 2, May 1993

Dynamic Processor Allocation Policy . 153

3.3 Dynamic

Dynamic is a dynamic, space-sharing policy. Under Dynamic, processors are

reallocated among jobs in response to changes in the jobs’ parallelisms. Each

job’s scheduler threads continually advertise to the allocator the number of

additional processors the job could use. (This number corresponds to the

number of ready but not executing application threads of that job.) Addition-

ally, when a scheduler thread finds that there are no ready application

threads to be run, it notifies the allocator that its processor is available for

reallocation to another job. Such processors are said to be willing to yield.

Using this information, the allocator can implement the basic mechanism of

the Dynamic policy: moving processors from jobs that currently have too

many to jobs that have too few.

When a job requests additional processors, Dynamic attempts to satisfy it

by using the least valuable processors (i.e., those whose reallocations cause

the least detriment to their current holders) available:

A. 1 First, any unallocated processors are assigned.

A.2 Next, “willing to yield” processors (those allocated to some job but not

currently in use) are assigned.

A.3 Finally, an equipartition allocation is enforced by preempting processors

from the job(s) with the largest current allocation.

As under Equipartition, processor preemption is performed in a coordi-

nated manner. However, Dynamic forcibly preempts a processor when it

needs one to give to another job, as under Tucker and Gupta’s [22] process

control policy. Both schemes stand in contrast to Equipartition’s policy of

requesting that a job give up a processor at the next convenient point in its

computation. Forced preemption runs the previously described risk of stalling

the progress of the preempted job (if the user-level thread that was running is

critical to the progress of the job), and of seriously affecting overall system

performance (e.g., by causing jobs to waste their allocations on useless

spinning). Furthermore, with the policy as stated thus far, it is possible for

deadlock to occur. However, these problems can be avoided by coordinating

preemptions with the application.

While Dynamic performs preemptions in the same manner as the process

control policy, we coordinate preemptions using a different scheme, one based

on that of Anderson et al. [3]. When a job has a processor preempted from it,

but still has at least one processor allocated, it is notified immediately of the

preemption. In response to this notification, the job determines whether

the thread that had been running was critical or noncritical. A critical

thread might be one holding a lock, for instance; a noncritical thread is one

that was computing, but whose failure to progress immediately would not

impede the progress of other threads. If the preempted thread is critical, the

application can cause rescheduling of its threads on its remaining processors
to restart the suspended thread (at the expense of suspending some other,

currently running thread). Thus, Dynamic coordinates preemptions by

ACM Transactions on Computer Systems. Vol. 11, No. 2, May 1993.

154 . C, McCann et al.

allowing the application to decide which of its virtual processors should run

when a preemption occurs, avoiding the performance degradation that could

arise if the virtual processors were to be scheduled by the kernel without

regard to application needs.

3.3.1 Encouraging Applications to Cooperate with the Dynamic Policy.

The Dynamic policy described thus far relies on the application both to flag

processors that it is not using actively and to indicate accurately how many

more processors it could use when its parallelism exceeds its allocation. In a

real system, unscrupulous users might try to maximize their individual

benefit at the expense of overall system performance by misrepresenting this

information. For instance, a job might declare that it can use all the proces-

sors, even at times when it cannot, and might never flag unused processors.

(Note that the kernel cannot reliably distinguish an unused processor from a
busy one, since a scheduler thread spinning waiting for ready application

threads will make the processor appear busy.)

In anticipation of this problem, we augment the basic Dynamic policy with

an adaptive priority mechanism. Each job is assigned a priority level that

depends on its processor usage to that time. Let / be the priority level of the

job to be allocated a processor, and L the lowest priority level of any job in

the system. Allocation rule A.3 above is modified so that processors may be

preempted from the largest job at priority level L if L <1, or, if L = 1, from

the largest job at that priority level if its allocation is two or more greater

than the job under consideration. In no case are processors preempted from

any higher-priority job. (Rules A. 1 and A.2 are applied independently of

priorities.) By setting priorities in a way that ensures a low priority for any

job that is greedy beyond its true needs, the priority-based allocation decisions

discourage unscrupulous behavior.

We set job priorities using a scheme that raises them as a reward for using

few processors and lowers them as a result of using many. In this way, a job

acquires “credit” during periods when it uses few processors. The job may

“spend these credits later—possibly even during a period of high processor

demand—to obtain temporarily more than its fair share of processors.

We define job j’s accumulated credit at time T as:

I;(EQ(f) -A,(t))dt
credit] (T) =

T–sl

where Aj(t) is the job’s allocation at time t, EQ(t) is the system equip artition

(number of processors divided by the number of jobs in the system) at time t,
and s~ is the start time of the job. Thus, job ~“’s credit is equal to the mean

number of processors above or below the equipartition allocation that it has

used during its lifetime. Using the rate of credit, rather than total accumu-

lated credit, eliminates certain undesirable behavior. For example, under the

latter scheme, a job may gain enormous credit during a period of low

contention, which it may spend to monopolize the machine during a period of

high contention; this is impossible when a rate-based scheme is used.

ACM Transactions on Computer Systems, Vol 11, No. 2, May 1993.

Dynamic Processor Allocation Policy . 155

It is important to note that while this mechanism resembles the multilevel

feedback scheduling common in many time-sharing systems, its purpose is

really quite different. Multilevel feedback is used to give preference to short

jobs over long ones. This is done by dropping a job’s priority as it accumulates

processor time, on the (empirically verified [13]) assumption that a job that

has already run a long time will continue to run a long time while a newly

arriving job is likely to be short. The adaptive priority mechanism described

here, cm the other hand, is simply a way to encourage jobs to give up

processors not currently needed and has nothing to do with discriminating

among jobs based on expected job length. (Such discrimination could be

inserted into the policy quite simply through redefinition of the priority

function. However, to our knowledge no clear relationship between accumu-

lated and expected remaining running time has been shown for parallel

workload, nor is it clear how to make use of this information were it

available. This topic is an area of active research [14, 17].) The Dynamic

policy as defined here is a modification of a policy proposed by Zahorjan and

McCann [25].

4. THE PROTOTYPE IMPLEMENTATION: MINOS

We implemented our prototype, Mines, in C + + on a Sequent Symmetry

(a bus-based shared-memory multiprocessor) consisting of 20 Intel 80386

processors and running the DYNIX 3.0.16 operating system. While each

policy requires its own implementation, many functions must be supported

by all of them. To the extent possible, we shared code among the three

implementations, both to reduce implementation effort and to minimize non-

policy distinctions in the implementations that might affect performance. In

the discussion that follows, we use the name Mines to refer to those aspects of

the implementation that are common to all three allocators.

While a production processor allocator would most likely be implemented

as a distributed kernel function, Mines runs at the user level as a single

process on a dedicated processor. Ease of implementation and availability of

debugging tools were our primary motivations for implementing in this way

as opposed to modifying the DYNIX operating system. Since the processor

allocators are implemented at the user level, they cannot perform scheduling

operations directly. To achieve their goals, then, they create situations in

which DYNIX will decide to schedule processes in the way the allocator

wants. This is accomplished primarily through the use of two (modified)

system calls. These calls allow a process to be bound to a particular processor,

either by the process itself or by the processor allocator. Because DYNIX

gives preemptive priority on a processor to any process that has been
bound there, the allocators can arrange processor allocation by binding and

unbinding processes to processors.

Each allocation policy requires some amount of interaction between the

processor allocator and the applications. The application’s side of these

interfaces was implemented in Mines by modifying slightly the PRESTO

user-level threads package [5], which is included as library routines by

applications.

ACM TransactIons on Computer Systems, Vol. 11, No. 2, May 1993.

156 . C. McCann et al.

Communication between an application (via the PRESTO runtime) and a

processor allocator takes place through a shared-memory segment. With one

exception, the allocator only reads the information in the shared segment,

and the application only writes it. (The exception occurs under Equipartition,

as described below.)

4.1 RRJob Implementation

The shared-memory interface between the applications and the RRJob alloca-

tor is used to communicate the value of the maximum parallelism of the job.

The RRJob policy requires a parameter, Q, representing the number of

processor seconds of service in a scheduling quantum. In our experiments Q

was set to slightly more than 4.68 seconds. This length was chosen because,

by the definition of RRJob, it implies that the duration of a quantum could

vary from 4.68 seconds (for a job using one processor) to 293 msec. (for a job

using 16 processors); the ratio of quantum duration to processor reallocation

time under Mines (see Section 4.4) can thus vary from 2128:1 to 133:1. This

range was designed to be consonant with typical quantum lengths for multi-

processors (for example, DYIWX, with a 0.75 msec. reallocation time, uses a

100 msec. quantum (a ratio of 133: 1)) and ensures that reallocation overhead

always contributes less than 170 to the response time obtainable under

RRJob.

While this choice of quantum seems justified, we observe that another

choice may well have been equally justifiable. One of the shortcomings of the

RRJob policy is that it is difficult to determine what the “proper” value of Q

should be. We therefore ran experiments for values of Q ranging from 9.6

seconds and 600 msec. These different values of Q did not produce signifi-

cantly different performance, in accordance with the expectation that the

influence of preemption overhead is slight. For brevity, Section 6 presents

only the results for Q = 4.68 seconds.

4.2 Equipartition Implementation

The implementation of Equipartition follows in a straightforward way

from the definition of that policy (Section 3.2). In addition to the maximum-

parallelism information, the shared-memory interface with the allocator is

used to control processor preemption. When it is necessary to preempt a

processor from a job, Equipartition sets a bit to indicate that the next

available processor should be relinquished by the job. Each scheduler thread
checks this bit just before looking for a ready application thread to execute.

When a scheduler thread finds the bit set, it writes its processor number into

the shared-memory interface and suspends itself, When the Equipartition

allocator sees the processor number, it reallocates the processor.

4.3 Dynamic Allocator Implementation

An application requests additional processors through the shared-memory

interface. In our prototype, we ask for a number of processors equal to the

ACM Transactions on Computer Systems, Vol. 11, No. 2, May 1993

Dynamic Processor Allocation Policy . 157

number of ready (but not running) application threads. The PRESTO sched-

uler threads update the requested number of processors with each change to

the number of ready application threads.

An application indicates that it has more processors than it can currently

use via a per-processor bit in shared memory. When a scheduler thread

executing on processor p finds the application thread queue empty, it sets a

bit notifying the allocator that processor p may be preempted. If not sus-

pended by the Dynamic allocator, the scheduler thread continues to examine

the set of ready application threads and resets the bit if an application thread

is subsequently found. In this way, if no other job requires the processor,

the application thread can begin execution without a processor reallocation

penalty.

Detection of asynchronous blocking events, such as 1/0 or page faults, by

the user-level allocator requires special handling. DYNIX does not notify the

allocator when such events occur, so an explicit (and somewhat indirect)

mechanism must be used. The allocator achieves this by binding an “idle”

process to each processor behind the virtual processor assigned there. The

idle process simply sits in the queue for that processor until the virtual

processor stops executing for any reason, at which point the idle process

becomes active. It notifies the Dynamic allocator (via a bit in shared memory)

that it, has run and then executes a wait. When the Dynamic allocator

notices that the idle bit for a processor is set, it can conclude that the virtual

processor that had been running on that processor has blocked for some

reason and that the processor is available for reallocation to some (possibly

the same) job.

Detecting that a previously blocked virtual processor has become unblocked

(e.g., its 1/0 operation has completed), also requires an indirect mechanism.
At the time the allocator finds the idle bit for a processor set, it unbinds the

virtual processor that was running there and sends it a stop signal. When

the virtual processor is runnable once again (e.g., it returns from 1/0), it

resumes execution (on a processor not controlled by the allocator) and catches

the stop signal. The signal handler runs briefly, setting a bit in the job’s

shared-memory interface to the allocator, and then suspends itself, The set

bit lets the Dynamic allocator know that the virtual processor is once again

ready to be scheduled.

When a user-level thread suspended as a result of processor preemption or

1/0 is once again ready to run (this happens immediately in the case of

preemption), the job’s preemption handler is used to indicate to the Dynamic

allocator the “criticality” of the user-level thread executing at the time of

preemption. In our prototype implementation, we use a very simple concept

of thread criticality:

(1) Critical. The user-level thread executing on the processor was hold-

ing a lock, and so the virtual processor must resume execution immediately.

If no additional processor is available for allocation to the job, the allocator

preempts a processor allocated to the same job for this purpose. If the newly

suspended virtual processor is also running a critical thread, the procedure is

ACM TransactIons on Computer Systems, Vol. 11, No. 2, May 1993.

158 . C. McCann et al.

repeated: first an additional processor is allocated to the job if possible, and

failing that, another processor within the same job is preempted.

(2) Noncritical. No locks were held. If the virtual processor was execut-

ing an application thread, that thread is placed back in that job’s pool of

ready threads. (This may cause the job to request additional processors.)

4.4 Processor Reallocation Overhead

Table II lists the measured cost of reallocating a processor under Mines for

each policy implementation. Processor allocation overhead includes the cost

of finding a processor to assign and the delay associated with activating

one of the job’s virtual processors to run on it. These components vary

depending on whether or not the processor must be preempted from another

job.

For allocation of a currently unallocated processor, each of the policies

performs similarly. The main components of this overhead are the DYNIX

context switch overhead (about 750 ~sec,) and the kernel cost of binding a

process to a processor (about 500 ~sec.). Equipartition incurs a small addi-

tional delay due to complexity of the computation of each job’s allocation.

For allocation of a preempted processor, the virtual processor currently

executing there must be suspended before any other virtual processor can

run. For RRJob, this includes the cost of a preemption signal (about 100 ~sec.)

and the cost of unbinding the preempted process (about 500 ~sec.), For

Equipartition, this includes the unbinding cost and the time for Equipartition

to notice that the process has suspended. Not included in the table for

Equipartition is a nondeterministic delay before the next thread completion

for a job,

Processor reallocation for preempted processors is twice as expensive for

the Dynamic allocator. In addition to the cost of suspending and unbind-

ing the currently running process (500 ~sec.), an average of 600 ~sec. is

spent first looking for an available (unallocated or idle) processor. Most of the

allocation cost, however, is attributable to the cost of handling asynchronous

blocking events such as 1/0 or page faults at the user-level level. The

major components of this include the overhead to schedule the idle pro-

cess (900 psec.), the delay before the Dynamic allocator notices that the idle

bit is set (300 ~sec.), and the kernel call executed by the Dynamic allocator to

retrieve the status of the preempted process (500 psec.). As a result, proces-

sor reallocation under our Dynamic allocation policy implementation is very
expensive relative to the other policies and relative to the cost of context

switching within the kernel (750 psec.).

This high reallocation cost does not significantly affect our results. As

previously described, reallocation overhead adds no more than 1% to the

response time under RRJob and is thus not a factor when comparing RRJob

to either Equipartition or Dynamic. The results for Dynamic versus Equipar-

tition are somewhat conservative, since the former reallocates far more

frequently than the latter.

ACM Transactions on Computer Systems, Vol. 11, No. 2, May 1993

Dynamic Processor Allocation Policy . 159

Table II. Summary of Allocation Overhead Costs

Ailosator Unallocated Processor Preempted Processor

RRJob 1.3 msec. 2,2 msec.

Equipartition 1.5 msec. 2.0+ msec.

Dynamic 1.3 msec. 4.4 msec.

+ not including thread completion delay

5. APPLICATIONS

We describe here the applications used in our evaluation of the allocation

policies. We chose a set of programs previously written for shared-memory

multiprocessors in order to model realistic workloads. These programs repre-

sent a variety of applications with differing parallelism structures.

Figures 1 through 4 illustrate a number of characteristics of the applica-

tions. Included for each application is the thread dependence graph. Here the

nodes of the graph represent application threads, and the edges represent

the precedence relationships among them. Also shown is the percentage of

elapsed time spent by the application at each level of physical parallelism

when the application was run in isolation on 16 processors. Finally, the total

execution time and average allocation of the application when run in isolation

on 16 processors are listed.

The first application, MATRIX, is an implementation of a parallel matrix

multiply algorithm. This application represents the broad class of highly

parallel programs. The program uses a “blocked algorithm designed to
improve performance by exploiting cache locality [8]: the matrices to be

multiplied are divided into fixed-size blocks, and partial results are computed

for the corresponding blocks in the result matrix. After a brief initialization

phase, the main loop for MATRIX achieves parallelism by spawning one

application thread for each block in the result matrix. In our experiments, we

multiply two 360-element-by-360-element matrices, using 144 blocks of 30

elements by 30 elements each. Thus, after the sequential initialization phase,

MATRIX maintains a maximum parallelism of 16 processors until a very

short end effect during termination.

The second application, PVERIFY, is a parallel implementation of a CAD

program that determines whether or not two circuit implementations are

functionally equivalent. Like MATRIX, PVERIFY is a highly parallel pro-

gram. However, PVERIFY exhibits a significant sequential phase during

which the data structures for the circuits are initialized.

The third application, MVA, is a parallel Mean Value Analysis [1, 20]

solution package for product form queuing networks containing two classes of

N customers each. Its precedence structure is representative of many “wave

front” computations. As shown by its precedence graph, its parallelism at

first increases gradually from one to N + 1 and then decreases back to one.

The application repeats this computation 1 times, reflecting the iterative

ACM Transactions on Computer Systems, Vol. 11, No. 2, May 1993.

160 . C. McCann et al

‘OOT--

i

1 2 3 4 s s 7 8 910111Z13141slG

Processors

Execullon Time = 4876 seconds

MATRIX:
Average Allocation = 1443 processors

Fig 1. The MATRIX application.

50-

40-

30

20 -

10 -

0

1 2 3 4 5 6 7 8 910111213141516

Processors
Execwon Ttme = 1593 seconds

PVERIFY:
Average Allocation = 1050 processors

Fig.2. The PVERIFY application.

analysis techniques common in the use of this kind of queuing model. In our

experiments, we chose an input of N = 10 customers and 1 = 30 iterations.
The final application, GRAVITY, is an implementation of the Barnes and

Hut [4] clustering algorithm for simulating the gravitational interaction of a

large number of stars over time. In our experiments, we model a system of

400 stars for 20 timesteps. This application contains five phases of execution

that are repeated for each timestep. Phase 1 is sequential, while phases 2,

3, 4, and 5 exhibit parallelism of 8, 8, 16, and 10 respectively. (These repre-

sent the parallelisms that were determined to minimize the elapsed time

to finish the phases in a uniprogramming environment.) Between each of

the parallel phases is a barrier synchronization at which the parallelism

ACM Transactions on Computer Systems, Vol 11, No. 2, May 1993.

Dynamic Processor Allocation Policy . 161

16-1

12

8

4

0
1 2 3 4 5 6 7 8 910111213141516

Processors
Execution T!me -21 48serxmds

MVA:
Average Allocation = 490 processors

Fig.3. The MVAapplication

..
0

50

40 e

30-

20-

lo-

0
1 2 3 4 5 6 7 8 910111213141516

Processors

Executton Time =4297 seconds

GRAVITY:
Average Allocallon = 90 Processors

Fig.4. The GRAVITY application.

decreases briefly to one. The thread execution times for GRAVITY differ

during each phase of execution, and within some phases, thread times depend

on synchronization delays for critical sections of code.

6. RESULTS

We compare the three allocation policies along a number of dimensions

(average response time, fairness, and response time to short sequential
requests), but stress average response time. Our results are based on experi-

ments with workloads consisting of a mix of the applications described in

Section 5.

ACM Transactions on Computer Systems, Vol. 11, No. 2, May 1993.

162 . C. McCann et al.

6.1 Workload Mixes

Each workload mix used in our experiments is composed of some number

(possibly zero) of jobs of each of the four application types discussed in the

previous section.

We set the number of jobs of each type so that there is moderate competi-

tion for processors, which we define as total average processor demand (found

by summing the average parallelisms of the jobs in the workload mix)

between P and 2P. (In our experiments P was 16). We restrict our attention

to moderately loaded systems because we believe they present the most

interesting challenges for schedulers. Under light loads, all reasonable

scheduling policies behave the same. Under loads for which the number of

jobs is less than the number of processors but the number of runnable tasks

is much greater, our results indicate that the “best” policy is simply to

allocate each job an equal number of processors. Additional scheduling ques-

tions do arise when the number of jobs exceeds the number of processors, but

we believe that this situation will be rare, even for the moderately parallel

processors we consider here. (In this case average realized speedups would be

less than one, rendering the parallel machine unattractive except potentially

for jobs requiring very large amounts of memory or 1/0.) Further exploration

of this very heavy load case remains an open problem.

Given the four job classes previously described, there are 15 possible

choices of which classes may be included in a workload (the workload

containing zero classes is degenerate). Of these 15 possible combinations of

job classes, it is possible to choose job counts meeting the moderate load

criterion for 13 of them. When there is more than one way to satisfy

this criterion for a given workload mix, we chose the combination for

which the sum of the jobs’ average parallelisms was smallest. Table III

summarizes the workload mixes used.

For each workload mix, we maintain a constant multiprogz-amming level:

when a job finishes, another instance of the same application type is started

immediately. We intend this to be a means of focusing our attention on those

periods during normal system operation when jobs are in the system (and so

scheduling is of interest) rather than an assertion that systems typically run

with constant workloads. By maintaining a constant multiprogramming level

we also avoid the end affects that would otherwise arise when running

applications of different durations.

For similar reasons, we do not vary the jobs’ maximum parallelisms: this

additional parameter would have ~reatly increased the effort required to run
our experiments, as well as the complexity of interpreting their results.

Previous experience with programs of different sizes convinced us that the

results for these workloads were representative.

6.2 Overall Performance

Our primary metric of performance is average job response time. (Speedup, a

common metric of parallel software performance, is not particularly intuitive

in our environment since a job’s processor allocation changes throughout its

ACM Transactions on Computer Systems, Vol. 11, No. 2, May 1993,

Dynamic Processor Allocation Policy . 163

Table III. Number of Copies of Each Application in Each Workload Mix

MATRIX

PVEFUFY

MVA

GRAVITY

T.P.D. I
1 2

2 0

0 2

0 0

0 0

28.9 21.0

3

0

0

4

0

19.6

Workload Mix

4 5 6 7 8

0 1 1 1 0

0 1 0 0 1

0 0 1 0 2

2 0 0 1 0

18.0 25.6 20.0 24 1 20.3 a9 10 11

0 0 1

1 0 1

0 2 1

1 1 0

19.5 18.8 29.8 1
12 13

1 0

0 1

1 1

1 1

28.3 24,,4

T.P.D. = Total Processor Demand

lifetime.) While we report only point estimates for response times, we ran

enough replications of each experiment that the 95% confidence interval is

within l% of the point estimate of the mean.

The results for all workload mixes under all three scheduling policies are

shown in Appendix A. (As explained in Section 3.2, the response times

observed under our Equipartition policy should be equal to or slightly better

than those that would be observed using the preemption policy of Tucker and

Gupta [22].) Based on these, we come to the following conclusions.

Space Sharing is Preferable to Time Sharing. This point can be illus-

trated by comparing the performance of RRJob to Equipartition for any

workload that does not include any MVA jobs. Since for the three other types

of jobs the maximum parallelism is equal to the number of processors in the

system, under RRJob the entire machine is swapped from one job to the next

at each quantum expiry. Thus, the uncoordinated nature of RRJob’s preemp-

tions has no influence for these workloads, and performance differences

between it and Equipartition must be due to the difference between space

and time sharing. (As explained earlier, the overhead of actually performing

the preemptions is insignificant.)

As a concrete example of this comparison, we use the workload of two

GRAVITY jobs. The results for this workload are shown in Figure 5. Results

for other workloads suitable for this comparison (i.e., those not including

MVA jobs) are found in the appendix and are qualitatively very similar (see
Figures Al, A.2, A.5, A.7, and A.9).

Space-sharing policies dominate time-sharing policies because they make

more efficient use of processors. Time sharing makes large, short-lived alloca-

tions. Because most parallel applications have speedup functions that are

convex (efficiency decreases with increasing number of processors), this is

usually a bad choice.

There are two distinct factors that lead to convex speedups, and thus the

preference of space over time sharing. First, time-sharing policies maximize

both the likelihood that there will be periods of insufficient parallelism and

ACM Transactions on Computer Systems, Vol. 11, No. 2, May 1993.

164 . C. McCann et al

_ loo~- ❑ RRJob

Fig. 5. Workload mix of 2 GRAVITY Jobs,

GRAVITY

the number of processors wasted during such periods. In our example, the

RRJob allocator assigns all sixteen processors to each job in turn. During a

GRAVITY job’s sequential phase, 15 of the 16 processors remain idle.

Equipartition, on the other hand, divides the processors equally between the

jobs, so that during one job’s sequential phase, only seven processors remain

idle.

Second, even if the job has no periods of insufficient parallelism, there may

be overheads that grow with the number of processors in use. These over-

heads result from increased spinning to enter critical sections [27], inefficient

synchronization implementations [2, 9], and hardware effects such as

increased bus contention and cache invalidation rates [11].

We quantify this second aspect by measuring the rate of useful work

completed per processor as processor allocation increases for the four parallel

phases of a GRAVITY job. We define the effective work rate E,<(n,) for a phase

a given an allocation of n processors as:

Ta(l)
E.(n) =

T~(n)*n

where T.(n) is the elapsed execution time of phase a on n processors. (Note

that despite the apparent relation to efficiency, this is not efficiency in the

standard sense since we condition our measurements on phases of execution

during which the job has parallelism at least n.)

Figure 6 graphs E.(n) for the four parallel phases of GRAVITY for num-

bers of processors (n) from one to 16. As shown, the relative effective work

rate for three of the four parallel phases decreases sharply with increa~ing
allocation.

Coordinated Preemption is Preferable to Uncoordinated Preemption. We

come to this conclusion because providing coordinated preemption is not a

detriment to any job (there is insignificant overhead required to coordinate

preemptions, relative to uncoordinated preemptions) but can be a great

benefit to at least some jobs.

We illustrate the benefit of coordinated preemption by comparing the

performance of RRJob to Equipartition and Dynamic for a workload mix

ACM TransactIons on Computer Systems, Vol 11, No 2, May 1993

Dynamic Processor Allocation Policy . 165

1.0

0.8 _ Phase2

Phase 3

Phase 4
0.6

~ Phase5

0.4

0.2-

0.0 ~
0246810121416

Processors

Fig.6. Effective workrates ofparallel phases of GRAVITy.

d
Pessimistic Approxlmat)on

90

75-

60-

45-

30-

15 -

o~

1
■ RR-Job

❑ Equparutlon

k%! Dynamic

I K Optimlst!c Approxlmat!on

MVA

Fig.7. Workload mixof4MVAjobs.

conskthg of four MVA jobs, as shown in Figure 7. We note that while

Equipartition and Dynamic give very similar performance, RRJob performs

much worse. Most of this difference can be attributed to the manner in which

preemptions are handled.

To help isolate and quantify the effect of uncoordinated preemption, we

perform a simple analysis. We begin by noting that a pessimistic approxima-

tion for response time under RRJob is simply four times the response time of

an MVA job when run alone on the system, since it is allocated the full
machine one fourth of the time. This pessimistic approximation (calculated

from the base execution time given in Figure 3) is indicated in Figure 7; we

see that achieved performance is very nearly this bad.

ACM Transactions on Computer Systems, Vol. 11, No. 2, May 1993.

166 . C. McCann et al.

On the other hand, there is reason to expect response time to be consider-

ably better than this. During an “allocation cycle” of four quanta, each job is

allocated 11 processors during its quantum, five processors during the quan-

tum of the job ahead of it (since that job can use only 11), and no processors

during the other two quanta. The extra allocation of five processors each four

quanta should result in reduced response times.

To help quantify the maximum benefit possible from the extra allocation,

we compute an optimistic approximation of response time under RRJob. Let

T(n) be the elapsed execution time of an MVA job when allocated n proces-

sors. Then Q/T(l 1) + Q/T(5) is the fraction of a job completed during an

allocation cycle, where Q is the length of an individual quantum, and the

approximation is given by:

(QQ-’ –i
7’(11)*T(5)

R optlmlst[c
= 4Q* 2“(11)+ T(5) = 4* 2“(11) + T(5)

We measured T(l 1) and T(5) to be 21.48 and 27.58 seconds respectively,

giving an optimistic approximated response time of 48.30 seconds for the

MVA job.

The failure of RRJob to come close to this approximation indicates that the

MVA job is unable to take advantage of the extra allocation of five processors

each four quanta. The reason for this is that uncoordinated preemption

suspends user-level threads along with virtual processors. When an MVA job

receives a partial allocation, some of these user-level threads remain pre-

empted. The precedence relations of an MVA job, as shown in Figure 3,

prevent the job from making much progress while any user-level threads

remain preempted.

Dynamic Allocation is Preferable to Static Allocation. We illustrate the

benefits of dynamic allocation over static allocation by comparing the perfor-

mance of the Equipartition and Dynamic policies, since these policies differ

primarily in the frequency of processor reallocations among jobs in the

system.

Figure 8 shows the results for a workload mix consisting of a MATRIX, an

MVA, and a GRAVITY job. While Equipartition and Dynamic result in the

same average allocation of processors to the jobs, Dynamic yields response

times that are 6.1%, 10.4%, and 13.5% better than Equipartition for MATRIX,

MVA, and GRAVITY respectively. Thus all jobs benefit from the improved

processor efficiency attained by reallocating processors when they cannot be
used.

We reiterate that our results were obtained using a user-level implementa-

tion in which reallocation overheads are large (see Section 4.4), and we

therefore believe that they are conservative with respect to the performance

possible using a kernelized implementation. The Dynamic policy results in
far more processor reallocations than occur under (the more static) Equiparti-

tion, and more efficient reallocation could only increase the performance of

the former. Thus, our results almost certainly understate the benefits

of dynamic scheduling.

ACM Transactions on Computer Systems, Vol. 11, No 2, May 1993

Dynamic Processor Allocation Policy . 167

,; 75
1-

MATRIX MVA

128 ■ RRJob
112

96

80 +”--’-!
4

64 +--+

48 +--+

32:

1

GRAVITY

Fig. 8. Workload mix of 1 MATRIX, 1 MVA, and 1 GRAVITY job

The Dynamic Allocator, Characterized by Space Sharing, Coordinated

Preemption, and Dynamic Reallocation, Outperforms the Other Allocators.

The benefit of the Dynamic allocation policy over the other policies is evident

in the aggregate of results for all job mixes in Appendix A. As a summation of

these experiments, Figure 9 shows a histogram of the percentage improve-

ment of the Dynamic policy over Equipartition and RRJob for all workloads

in Appendix A. The average percentage improvement over Equipartition and

RRJob is 8.8% and 36.9% respectively. The Dynamic policy outperforms the

Equipartition and RRJob policies for each job in each workload mix with only

two exceptions, where it performs identically to Equipartition for at least one

of two jobs in a mix.

The two instances where Dynamic does not strictly outperform Equiparti-

tion are shown (later) in Figures A. 1 and A.9. For the former, the workload

consists of two MATRIX jobs. Here, Dynamic is unable to capitalize on the

small sequential component of each MATRIX job to improve the performance

of the other because of our very controlled experimental environment: we

constantly run two identical jobs on the same data. In this case, the reward

structure of Dynamic tends to synchronize the progress of the two identical

jobs so that they receive equal service, with the result that both jobs enter

their sequential components at the same time, thus eliminating the benefit of

Dynamic over Equipartition. (This same effect probably artificially reduces

the observed benefit of Dynamic?in other workloads consisting of only a single

job type. It would rarely, if ever, arise in practice because it requires that

multiple copies of the same job be run concurrently and repeatedly on

essentially identical data.)

In the other workload, consisting of one PVERIFY and one GRAVITY job,

the PVERIFY job does noticeably better under Dynamic than under Equipar-

tition, while the GRAVITY job does equivalently under both. Dynamic fails to

outperform Equipartition for the GRAVITY workload by a small margin

attributable to the larger number of processor reallocations that occurred
under Dynamic, coupled with the relatively high cost of reallocation.

6.2.1 Cache Behavior. As processors become faster, an application’s cache

behavior has an increasing effect on its performance. For example, as

ACM Transactions on Computer Systems, Vol. 11, No. 2, May 1993.

168 . C. McCann et al

J 12 I

O- 4- 8- 12- 16 25

% Improvement over Equlpartltlon

10

8-

6

4

2

0

7. 10. 20. 30- 40- 50.61

“1. Improvement over RRJob

Fig. 9. Comparison of dynamic to equipartition of RRJob

discussed in Section 5, our MATRIX job uses a blocked algorithm designed to

improve cache locality, and thus performance. Gupta et al. [11] observe that

the process control policy (which makes the same allocation decisions as our

Equipartition policy) increases the spatial locality of applications because the

application’s virtual processors execute on only a small number of processors.

Equipartition’s infrequent reallocations may also increase this cache locality.

Our Dynamic policy, on the other hand, makes no effort to preserve an

application’s cache locality. For this reason, and because processors are

reallocated frequently (as compared to Equipartition), one might expect the

Dynamic policy to perform poorly with respect to application cache behavior.

We note, however, that cache locality is not a deciding factor for the bulk of

our workloads. The Dynamic policy yields much higher processor utilization

than does Equipartition, and the resulting performance improvement far

outweighs any possible cache effect, as evidenced by the results above (and in

Appendix A). With the two exceptions just noted (where performance is

equivalent under the two policies), the Dynamic policy outperforms Equipar-

tition for all of the workloads studied, cache effects notwithstanding.

A more comprehensive examination of the influence of cache effects on

scheduling, including an estimation of their impact on future machines with

faster processors and larger caches, is found in [24]. That work indicates that

obtaining high processor utilization, as under the Dynamic policy, continues
to outweigh the benefits of improved cache behavior available by more static

scheduling, as under Equip artition, even for machines considerably more

powerful than the Sequent used in our experiments.

6.2.2 Eager Relinquishing of Processors under Dynamic. One goal of the

Dynamic policy is to keep as many processors as possible usefully busy

by reallocating processors from jobs that cannot currently use them to those

that can. Thus, when a scheduler thread finds that there are no application

threads ready to run, it immediately makes its processor available for

reallocation. While the willingness to give up the processor is indicated

ACM TransactIons on Computer Systems, Vol 11, No 2, May 1993.

Dynamic Processor Allocation Pollcy . 169

immediately, reallocation cannot employ the processor usefully in less than a

reallocation overhead time (about 4.4 msec. under Mines for the Dynamic

policy). Thus, if the job currently holding the processor were to produce

additional useful work in less time than this, it would have been better

simply to hold onto the processor by spinning.

Because there is no reliable way to determine how long it will take for

additional work to be produced by the application, the choice between spin-

ning and relinquishing can be a difficult one. Exactly these same considera-

tions arise in implementing locks for mutual exclusion, and in this context

a number of researchers have proposed a “spin-then-block” policy, the

basic idea being to spin for a short time and then, if no work has arrived, to

give up the processor [12, 15]. (In the context of spin locks, “arriving work” is

simply the lock becoming free.)

Based on our knowledge of the GRAVITY application, we hypothesized that

immediate release of processors by it resulted in a very large number of

processor reallocations and was the reason GRAVITY performed no better

under Dynamic than under Equipartition in the workload mix consisting of

one PVIERIFY and one GRAVITY job. (See Figure A.9.) We therefore investi-

gated the benefit of briefly waiting for new work to be generated within an

application before making a processor available for reallocation.

Figure 10 shows the number of preemptions and the response times

relative to using no delay for various spin delay values for the PVERIFY/

GRAVITY workload mix. The results show that while the number of preemp-

tions drops significantly, the effect on response time is extremely modest.

(The response time results appear jagged because of the very small differences

involved.)

We tried this same experiment on a large number of workloads, always

with the same result: while preemption counts were often reduced, response

times were never greatly improved. We also noticed that any reasonable spin

delay greater than zero gave very similar results, i.e., that there is little

danger in using too large a delay. This characteristic, coupled with the steep

decline in preemption count that occurs in going from a zero to a positive

delay (see Figure 10), indicates that a small delay could be applied uniformly

by all workloads without ill effect. (Applying the delay uniformly simplifies

the role of the runtime library that implements user-level threads.)

6.3 Fairness

We now turn our attention to another aspect of scheduling: fairness. Our goal

in this section is to examine the question of fairness quantitatively. Unfortu-

nately, there is no standard measure by which to evaluate fairness. We test

what may be considered a minimal condition to be satisfied by a fair policy:

that identical jobs experience identical response times when submitted

together. Note that this goal is implied by any policy that attempts to give
equal service rates to all jobs.

To evaluate fairness, we examine a workload consisting of two MATRIX

jobs and one MVA job. The maximum parallelism of the MATRIX jobs is 16,

while that of the MVA job is 11. Figure 11 shows the response times of the

ACM Transactions on Computer Systems, Vol. 11, No. 2, May 1993,

170 . C. McCann et al

1500

<250

l\

_ WERIFY

1000 _ GR.4Vl~

750-

500-

250-

0

0> 234567 89107000

110-

108-

106- _ ~,)ER,w

104-
— GRAVITY

102-

700-

098-

01236567 89101000

spin Delay (m,..) Spl” Delay [In.. c.)

Fig. 10. The effect of delay on preemptions and response time

1s0,

❑ MVA

❑ MATRIX 1

•l MATRIX 2

RRJob Equlpartltlon Dynamic

Fig. 11. Examining the fairness of the pohcies.

three jobs, and we now discuss the behavior of the three policies in this

context.
The RRJob policy of allocating unused processors to the next job in line can

result in significant unfairness. When the MVA job is active, it holds only 11

of the 16 processors; the remaining 5 processors are assigned to the next job

in the queue for the duration of MVA’S quantum. Therefore, the MATRIX

job that follows the MVA job receives 16 processors during its own quantum,

and 5 during MVA’S. However, while a MATRIX job is active, it holds all 16

processors, leaving none available for reassignment. The second MATRIX

job—which follows the first in the job queue—therefore receives exactly 16

processors, for exactly the time specified by the policy. As demonstrated by

Figure 11, this inequity results in much shorter response times for one of the

MATRIX jobs.

The Equipartition policy occasionally demonstrates unfair behavior, as this

workload illustrates. With 3 jobs competing for 16 processors, Equipartition

assigns each job 5 processors, leaving 1 “extra” processor. This processor is

then assigned to one of the jobs—in this case one of the MATRIX jobs. As

Figure 11 shows, this results in improved response times for the MATRIX job

ACM TransactIons on Computer Systems, Vol. 11, No. 2. May 1993

Dynamic Processor Allocation Policy . 171

that has this advantage. While this unfairness can be overcome by circulating

the extra processors among all jobs [10], it introduces an additional level of

complexity and overhead to that scheme to handle a condition that is dealt

with naturally by the Dynamic allocator.

The Dynamic policy can, for short periods, exhibit unfair behavior in the

same fashion as Equipartition. However, the Dynamic policy of moving

available processors between jobs ensures that any unfair decision is short

lived. For example, suppose, as in the case of Equipartition, that an extra

processor were assigned to one of the MATRIX jobs. Under Equipartition,

this means that one MATRIX job holds the extra processor until some job

terminates, and a reallocation can be done. On the other hand, the Dynamic

policy exploits the fact that the MVA job periodically releases processors that

it cannot immediately use, something that occurs relatively frequently. The

policy dictates that each released processor is assigned to the MATRIX job

that currently holds the fewest processors, as the Dynamic allocator attempts

to preserve an equitable allocation. It should be noted that this behavior does

not depend on jobs to willingly relinquish processors (as MVA does). The

priority mechanism of the Dynamic policy, while designed to encourage jobs

to give up unneeded processors, also serves to enforce fairness. A job holding

more than its equipartition allocation of processors will eventually drop in

priority below the others, and one (or more) of its processors will be moved to

the other (now higher-priority) jobs. From the response times of the two

MATRIX jobs shown in Figure 11, it is evident that these components of the

Dynamic policy—moving willingly relinquished processors when appropriate,

and using the priority mechanism to enforce equipartition via forcible but

coordinated preemption—are quite successful at preserving fairness.

This example and analysis lead us to the following conclusions. Both

Equipartition and Dynamic have much better fairness behavior than RRJob,

which suffers due to its policy of assigning unused processors to the next job

in the queue without coordinating preemption. Equipartition is reasonably

fair, but if the number of jobs does not evenly divide the number of proces-

sors, Equipartition can exhibit some unfair behavior. Since the Dynamic

policy couples equipartitioning of processors with dynamic movement of
available (or preempted) processors, it is the most fair of the three policies.

6.4 Response Time to Short Sequential Jobs

To examine quantitatively each policy’s behavior with respect to short

sequential jobs, we chose the following procedure. We maintained a constant

workload of 1 MATRIX, 1 MVA, and 1 GRAVITY job. This workload was

chosen because it was one of the more “realistic” workloads available to us: it

contains both long- and short-running jobs, which exhibit parallelism that

varies in both amount and frequency of change.

Into this workload, we periodically (every 30 seconds) injected a fourth job.

This fourth job was sequential, executing a single spin loop of approximately

100 msec. duration and then terminating. This was meant to simulate the

behavior of an interactive workload component. For example, during a long-

running editor session, a user might periodically type some input, waking up

ACM Transactions on Computer Systems, Vol. 11, No. 2, May 1993.

172 . C. McCann et al.

Table IV. Response Time to Short, Sequential Requests

RRJob Equipartition Dynamic

Response Time 262.27 msec. 2391.50 msec. 113.24 msec.
I

Queueing Time 158.75 msec. 2288.69 msec. 5.45 msec.
I

the waiting editor program, which might take some short action before

waiting for more input.

Table IV shows, for each of the policies, the response time and queuing

time experienced by the sequential job, where queuing time is defined as

the time between job arrival and processor assignment.

The queuing time under the RRJob policy is relatively short, because our

implementation inserts newly arriving jobs at the head of the job queue. The

new arrival therefore queues only until the current quantum expires, at

which point it is assigned a processor. Queuing time under RRJob is therefore

very predictable given knowledge of (a) the maximum parallelism of each job

and (b) the processor reallocation time.

As seen in Table IV, queuing time under Equipartition is the highest of

that of the three policies. This is due to the “polite preemption” mechanism

used by our version of Equipartition to obtain processors. The newly arriving

job queues until a currently executing thread completes, at which point it

obtains that thread’s processor. Since the processor allocator has no control

over a job’s threads, this delay can be arbitrarily long.

The Dynamic policy results in the shortest queuing time, only slightly

greater than 1 processor reallocation time. (The preemption scheme advo-

cated by Tucker and Gupta [22] would have preemption times similar to

those shown for Dynamic, although it may suffer from other performance

problems (see Section 3.2).) This is because the Dynamic allocator need not

wait for external events such as quantum expiry or thread completion: it

simply assigns a processor to the new arrival, preempting one if necessary. In

general, Dynamic’s priority mechanism makes prediction of queuing time

difficult. However, this example illustrates that this time may be expected to

be short.

7. CONCLUSIONS

We have implemented three processor allocation policies for shared-memory
multiprocessors. These policies are based on policies proposed and modeled in

the recent literature: Round-Robin Job (RRJob) [14], Equipartition [22], and

Dynamic [25]. We have characterized the jobs according to the properties of

time versus space sharing of processors, uncoordinated versus coordinated

processor preemption, and static versus dynamic allocation decisions.

Based on our comparisons of the performance of these three policies, we

come to the following conclusions:

Space sharing is preferable to time sharing. Time sharing gives many

processors to individual jobs for short periods of time; for all the reasons

ACM TransactIons on Computer Systems, Vol 11, No. 2, MaY 1993

Dynamic Processor Allocation Policy . 173

that speedups are typically sublinear, this is an inefficient way to provide

concurrency.

Preempting processors in a coordinated way is critical. Our implementa-

tion shows that there is insignificant overhead to coordinating preemptions,

relative to uncoordinated preemptions. Our experiments show that in at least

some cases there may be enormous differences in response times between

coordinated and uncoordinated preemption.

Dynamic scheduling is preferable to static. Under dynamic scheduling,

whenever a job could use an additional processor and some other job has a

processor it cannot currently use, the processor is reallocated. Our results

indicate that the increased useful-processor utilization achieved by dynamic

scheduling more than compensates for the increased system overhead result-

ing from frequent processor reallocations.

We noted that it may be possible to improve even this superior performance

by considering applications’ cache behavior when making scheduling deci-

sions; Vaswani and Zahorjan [24] focuses on modifications to the Dynamic

policy to incorporate this notion. We explored a simple “spin-then-block” policy

to reduce needless preemptions under the Dynamic policy that can result

from short-term changes in a job’s parallelism. We found that because

preemption overhead is an insignificant component of response time, imple-

menting a general modification to the policy produced only an extremely

minor performance improvement.

We then examined two lower-level policy issues: fairness and response to

short sequential requests. We found that Equipartition can be unfair because

of inability to achieve equal allocation when the number of jobs does not

divide the number of processors, while RRJob is susceptible to anoma-

lies related to allocation of processors not needed by the owner of a sched-

uling quantum. Since the Dynamic policy couples equipartitioning and

dynamic movement of processors, it is the most fair of the three. We showed

that the Dynamic policy provides the best service to short sequential requests

due to its use of forcible but coordinated preemption. RRJob and Equiparti-

tion are less responsive since they must wait for external events—quantum

expiry and thread completion, respectively.

Our Dynamic policy, then, incorporates the preferable choice in each of the

high-level policy issues: it combines space sharing, coordinated preemption,

and dynamic movement of processors between jobs. This results in bet-

ter performance than that of previously proposed policies. In addition, the

Dynamic policy incorporates a priority scheme that, while it encourages jobs

to be well behaved, does not require this in order to provide its superior

performance. This, as demonstrated by our experiments with fairness,

robustness, etc., makes our policy a realistic one suitable for implementation

in production systems. We therefore conclude that this combination of perfor-

mance and implementation considerations makes a compelling case for our

Dynamic policy.

ACM TransactIons on Computer Systems, Vol. 11, No. 2, May 1993.

174 . C. McCann et al.

APPENDIX A: RESULTS FOR ALL WORKLOAD MIXES

Fig. Al. 2 MATRIX.

Fig. A.2. 2 PVERIFY.

Fig. A.3. 4 MVA.

Fig. A.4. 2 GRAVITY

MATRIX

MVA

GRAVITY

ACM Transactions on Computer Systems, Vol 11, No. 2, May 1993

Dynamic Processor Allocation Policy . 175

MATRIX PVERIFY

Fig. A.5. lMATRIX, lPVERIFY.

40

tlon

30

20

10

0

MATRIX

Fig. A.6.

MVA

1 MATRIX, 1 MVA.

100

rmon
80

(c

60

40

20

0

MATRIX GRAVITY

Fig. A.7. 1 MATRIX, 1 GRAVITY.

50 60

40

rullon
50 ,C

40
30

30

20
20

10
10

0 0

PVERIFY h4VA

Fig. A.8. 1 PVERIFY, 2 MVA.

ACM TransactIons on Computer Systems, Vol. 11, No. 2, May 1993.

C McCann et al.

35,

PVERIFY

Fig. A.9. 1 F

UVA

100
ob
lwnlllon

80 am,c

60

40

20

0

GRAVITY

‘VERIFY> 1 GRAVITY.

... .-
GRAVITY

Fig. A 10. 2 MVA, 1 GRAVITY.

;
‘u 150 50 60
c
0

125 50
ml,on

; 40 IC

100 40

? Js
30

F
30

50
20

.

. 20
c
0
. 25 10 10

:
a o 0 0

MATRIX PVERIFY MVA

Fig. A. 11 1 MATRIX, 1 PVERIFY, 1 MVA

z 150 60 i 2s

:

v 125
112 noon

50 IC
(% 96
- 100 40 80

; ,5
+

30 &l

o 50. 20
48

c
0

32
m 25 10
. 16

$0 0 0
MATRIX MVA GRAVITY

Fig, A. 12. 1 MATRIX, 1 MVA, 1 GRAVITY.

ACM TransactIons on Computer Systems, Vol 11, No, 2, May 1993

Dynamic Processor Allocation Pollcy . 177

Z j~

u 60 140
. !,0.
0
: !0 50

120

~
40

100

a 30
g

60
30

+20 60

: 20
40

g 10
n. 10
m 20

&o o 0
PVERIFY MVA GRAVITY

Fig. A.13. lPVERIFY, lMVA, lGRAVITY.

ACKNOWLEDGMENTS

Derek Eager, Ed. Lazowska, and the anonymous referees provided valuable

comments on the content of this work and the presentation of this paper.

REFERENCES

1. ALMQUIST, K., ATWYERSON, R. J., AND LAZOWSKA, E. D. The measured performance of parallel

dynamic programming implementations. In Proceedings of the 1989 International Conference

on Parallel Procewng (Aug. 1989).

2. AN~~RSON, T. E. The performance of spin lock alternatives for shared-memory multiproces-

sors. IEEE Trans. Parall. Dustrib, Syst. 1, 1 (Jan. 1990), 6–16.

3. ANDERSON, T. E., BERSHAD, B. N., LAZOWSKA, E. D., AND LEVY, H, M. Scheduler activations:

Effective kernel support for the user-level management of parallelism. ACM Trans. Comput.

Syst. 10, 1 (Feb. 1992).

4. BARNES, J., AND HUT, P. A hierarchical O(IVlogIV) force-calculation algorithm. Nature 24

(1986), 446-449.

5. BERSHAII, B. N., LAZOWSKA, E. D., AND LEVY, H. M. PRESTO: A system for object-oriented

parallel programming. Softw. Pratt. Exper. 18, 8 (Aug. 1988), 713-732.

6. BIRRELL, A. D. An introduction to programming with threads. DEC System Research

Center, 1989.

7. EIILIZR, J., LIPKIS, J., ANI) SCHONBERG, E. Process management for highly parallel UNIX

systems. In Proceedings of the USENIX Works?zop on UNIX and Supercomputers (Sept.

1988). USENIX.

8. Fox, G, C., JOHNSON, M. A., LYZENGA, G. A., OTTO, S. W., SALOMON, J, K., AND WALKER, D. W.

So/umg Problems on Concurrent Processors. Vol. 1. Prentice-Hall, Englewood Cliffs, N. J.,

1988.

9. GRAUNKE, G., AND THAKKAR, S. Synchronization algorithms for shared-memory multiproces-

sors. IEEE Cornput. 23, 6 (June 1990), 60–70.

10. GUPTA, A., TUCKER, A., AND STEVENS, L. Making effective use of shared-memory multipro-

cessors: The process control approach. Tech. Rep. CSL-TR-91-475A, 1991.

11. GUPTA, A., TUCKER, A., AND URUSHIBARA, S. The impact of operating system scheduling

policies and synchronization methods on the performance of parallel applications. In Pro-

ceedings of the 1991 ACM SIGMETRICS Conference (May 1991). ACM, New York.

12. KARLIN, A., LI, K., MANASSE, M. S., AND OWICKI, S. Empirical studies of competitive spinning

for a shared-memory multiprocessor. In Proceedings of the 13th ACM Symposium on

Operating Systems Principles (Oct. 1991). ACM, New York.

13. LELAND, W., AND OTT, T. Load-balancing heuristics and process behavior. In Proceechngs of

Performance ’86 and 1986 ACM SIGMETRICS Conference (May 1986). ACM, New York.

14. LEUTENEGGER, S. T., AND VERNON, M. K. The performance of multiprogrammed multipro-

cessor scheduling policies. In proceedings of the 1990 ACM SIGMETRICS Conference (May

1990). ACM, New York.

ACM Transactions on Computer Systems, Vol. 11, No. 2, May 1993.

178 . C. McCann et al

15, Lo, S.-P., AND GLIGOR, V. D. A comparative analysis of multiprocessor scheduling algo-

rithms, In Proceedz ngs of the 7th International Conference on DLstrl bu ted Computz ng Systems

(Sept. 1987).

16. LOVETT, T., AND THAKKAR, S. The symmetry multiprocessor system. In Prowedzngs of the

1988 International Conference on Parallel Processing (Aug. 1988).

17. MAJUMDAR, S., EAGER, D. L., AND BUNT, R. L, Scheduling in multiprogrammed parallel

systems. In Proceedings of the 1988 ACM SIGMETRICS Conference (May 1988). ACM, New

York.

18, OUSTERHOUT, J. K. Scheduling techniques for concurrent systems, In Proceedings of the 3rd

International Conference on Dwtrlbuted Computzng Systems (Oct. 1982).

19. POL~CHRONOPOULOS, C. D. Multiprocessing versus multiprogramming. In Proceedings of the

1989 Interaatlonul Conference on Parallel Processing (Aug. 1989),

20. REISER, M., AND LAVENBER~, S. S, Mean value analysis of closed multlcham queuemg

networks. J, ACM 27, 2 (Apr. 1980), 313–322.

21. SEVCIK, K C. Characterizations of parallelism in applications and their use in scheduling.

In Proceedings of the 1989 ACM SIGMETRICS and Performance ’89 Znternatzonal Confer-

ence (May 1989). ACM, New York,

22. TUCKER, A,, AND GUPTA, A, Process control and scheduling issues for multiprogrammed

shared-memory multiprocessors In Proceedings of the 12th ACM Symposium on Operating

Systems Prtnczples (Dec. 1989). ACM, New York.

23. THACKER, C. P., STEWART, L. C,, AND SATTERTHWAITE, E. H., JR. Firefly: A multiprocessor

workstation, IEEE Trans Comput. 37, 8 (Aug. 1988), 909–920.

24. VASWANI, R., AND ZAHORJAN, J, The Implications of cache affinity on processor scheduling for

multiprogrammed, shared memory multiprocessors, In Proceedings of the 13fh ACM Sympo-

sium on Operating Systems Prmczples (Ott 1991). ACM, New York.

25. ZAHORJAN, J., AND MCCANN, C. Processor scheduling in shared memory multiprocessors. In

Proceedings of the 1990 ACM SIGMETRICS Conference (May 1990). ACM, New York.

26, ZAHORJAN, J., LWOWSW, E. D., AND EAGER, D. L. The effect of scheduling discipline on spin

overhead in shared memory parallel systems. IEEE Trans. Parall. Dzstrib. Syst. 2, 2 (Apr.

1991), 180-198.

27. ZAHORMN, J., LMowsn, E, D., AND EAGER, D. L. Spinning versus blocking in parallel

systems with uncertainty. In Proceedings of the International Symposz urn on Performance of

Distributed and Parallel Systems (Kyoto, Japan, Dec. 1988).

Received March 1991; revised August and December 1992: accepted January 1993

ACM Transactions on Computer Systems, Vol. 11, No. 2, May 1993.

