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ABSTRACTThis paper disusses an extension of Haskell by support fornested data-parallel programming in the style of the speial-purpose language Nesl. More preisely, the extension on-sists of a parallel array type, array omprehensions, anda set of primitive parallel array operations. This extensionbrings a hitherto unsupported style of parallel programmingto Haskell. Moreover, nested data parallelism should reeivewider attention when available in a standardised languagelike Haskell. This paper outlines the language extension anddemonstrates its usefulness with two ase studies.Keywords: Data parallelism; attening; irregular paral-lelism; Haskell
1. INTRODUCTIONMost extensions of Haskell that are aimed at parallel pro-gramming fous on ontrol parallelism [1; 32; 31; 8; 10℄,where arbitrary independent subexpressions may be evalu-ated in parallel. These extensions vary in their seletionstrategy of parallel subexpressions and assoiated exeu-tion mehanisms, but generally maximise exibility as om-pletely unrelated expressions an be evaluated in parallel.As a result, most of them require multi-threaded implemen-tations and/or suÆiently ourse-grained parallelism, andthey make it hard for both the programmer and the om-piler to predit ommuniation patterns.There are, however, also a few data parallel extensions ofHaskell [20; 18; 15℄. They restrit parallelism to the si-multaneous appliation of a single funtion to all elementsof olletive strutures, suh as lists or arrays. This re-strition might be regarded as a burden on the program-

mer, but it allows both the programmer as well as the om-piler to better predit the parallel behaviour of a program,whih ultimately allows for a �ner granularity of parallelismand more radial ompiler optimisations. Furthermore, thesingle-threaded programming model is loser to sequentialprogramming, and thus, arguably easier to understand.Ultimately, the hoie between ontrol and data parallelismis a trade o� between exibility and stati knowledge aboutthe parallelism ontained within a program. The program-ming model of nested data parallelism (NDP) [6℄ is an at-tempt at maximising exibility while preserving as muhstati knowledge as possible. It extends at data paral-lelism as present in languages like High Performane For-tran (HPF) [19℄ and Sisal [9℄ suh that it an easily ex-press omputations over highly irregular strutures, suh assparse matries and adaptive grids. NDP has been popu-larised in the language Nesl [5℄, whih severely restrits therange of available data strutures|in fat, Nesl supportsonly tuples in addition to parallel arrays (alled vetors inNesl). In partiular, neither user-de�ned reursive nor sumtypes are supported. This is largely due to a shortomingin the most suessful implementation tehnique for NDP|the attening transformation [7; 29℄, whih maps nested toat parallelism. Reently, we lifted these restritions onattening [23; 12℄ and demonstrated that the ombinationof attening with fusion tehniques leads to good ode fordistributed-memory mahines [22; 24℄.These results allow us to support NDP in Haskell and toapply attening for its implementation. In the resultingsystem|whih we all Nepal (NEsted PArallel Language),for short|a wide range of important parallel algorithms (1)an be formulated elegantly and (2) an be ompiled to ef-�ient ode on a range of parallel arhitetures. This paperwill illustrate the �rst point by desribing the implemen-tation of the Barnes-Hut hierarhial n-body algorithm [2℄and Wang's algorithm for solving tridiagonal equations [33℄.It will provide only a rough sketh of the attening-based im-plementation method, but details an be found elsewhere [12;11℄. A similar ombination of the Nesl parallel programmingmodel with Standard ML [25℄ is investigated in the PSiCoprojet [3℄.Our extension of Haskell is onservative in that it does not



alter the semantis of existing Haskell onstruts. We merelyadd a new data type, namely parallel arrays, parallel arrayomprehensions, and a set of parallel operations on thesearrays. Parallel arrays ombine properties of the standardHaskell list and array data types; furthermore, their partiu-lar semanti properties make them ideally suited for parallelproessing. A partiularly interesting onsequene of expli-itly designating ertain data strutures as parallel and othersas sequential is a type-based spei�ation of data distribu-tions. We will demonstrate this during the presentation ofthe example algorithms in Setions 4 and 5.When ompared to Nesl, NDP in Haskell bene�ts from thestandardised language, wider range of data types, more ex-pressive type system, better support for higher-order fun-tions, referential transpareny, module system and separateompilation, and the lean I/O framework.In this paper, we will not present any new benhmark �g-ures. In previous work [23; 11℄, we have provided exper-imental data that supports the feasibility of our approahfrom a performane point of view; we will summarise someof the results when disussing the n-body ode (Setion 4).In short, this paper makes the following main ontributions:� We show how Nesl's notion of nested data parallelisman be integrated into Haskell by adding parallel ar-rays.� We show how the ombination of parallel and sequen-tial types leads to a delarative spei�ation of datadistributions.� We demonstrate the feasibility of our approah by dis-ussing two well-known parallel algorithms.The remainder of this paper is strutured as follows: Se-tion 2 provides more detail on nested data prallelism andgives a brief overview over our extension of Haskell. Se-tion 3 details our integration of parallel arrays into Haskelland briey outlines the attening-based implementation.Setion 4 disusses the implementation of the Barnes-Huthierarhial n-body ode and Setion 5 studies Wang's par-allel algorithm for solving tridiagonal systems of linear equa-tions. Setion 6 disusses related work. Finally, Setion 7onludes.
2. NESTED DATA PARALLELISMIn this setion, we briey introdue the parallel program-ming model of nested data parallelism (NDP) together withour extension of Haskell by parallel arrays|for more detailson NDP, see [6℄.
2.1 A New Data Structure: Parallel ArraysA parallel array is an ordered, homogeneous sequene of val-ues that omes with a set of parallel olletive operations.We require parallel arrays to be distributed aross proessingnodes if they our in a program exeuted on a distributedmemory mahine. It is the responsibility of the exeutionmehanism to selet a distribution whih realises a goodompromise between optimal load balane and minimal datare-distribution|see [22℄ for the orresponding implementa-tion tehniques. The type of a parallel array ontainingelements of type � is denoted by [:� :℄. This notation is sim-ilar to the list syntax and, in fat, parallel arrays enjoy thesame level of syntati support as lists where the brakets [j

and j℄ denote array expressions. For instane, [:a1; : : : ; an :℄onstruts a parallel array with n elements. Furthermore,most list funtions, suh as map and repliate , have parallelounterparts distinguished by the suÆx P , i.e., the stan-dard prelude ontains de�nitions for funtions suh as thefollowing:mapP :: (�! �)! [:�:℄! [:�:℄| map a funtion over a parallel arrayrepliateP :: Int ! �! [:�:℄| reate an array ontaining n opies of a valueThe in�x operators (!:) and (+:+) are used to denote index-ing and onatenation of parallel arrays.In ontrast to sequential list operations, olletive opera-tions on parallel arrays exeute in parallel. Thus,mapP (+1) [:1; 2; 3; 4; 5; 6:℄inrements all numbers in the array in a single parallel step.The nesting level of parallel elementwise operations does nota�et the degree of parallelism available in a omputationso that if xss = [:[:1; 2:℄; [:3; 4; 5:℄; [::℄; [:6:℄:℄;mapP (mapP (+1)) xssexeutes in one parallel step as well. The same holds forexpressions suh as[:sumP xs j xs  xss :℄(the behaviour of array omprehensions orresponds to thatof list omprehensions)|eah appliation of sumP uses par-allel redution and all of these appliations are exeuted si-multaneously. The standard funtion sumP is desribed insetion 3.1.4.In other words, the key property of nested data parallelismis that all parallelism an be exploited independent of thedepth of nesting of data-parallel onstruts. In fat, as wewill see in the next subsetion, this holds even for reursivelynested divide&onquer algorithms, where the nesting is noteven statially bound. As a result, the implementation ofparallel algorithms is often straightforward, as illustrated bythe following examples.
2.2 Using Nested Data ParallelismBlelloh [6℄ introdued an elegant formulation of the multi-pliation of a sparse matrix with a dense vetor, resulting inanother dense vetor. It is based on a well-known represen-tation of general sparse matries, the so-alled ompressedrow format. Here, only non-zero elements of a matrix roware stored in an array of olumn-index/value pairs; a sparsematrix is represented by an array of suh rows:type SparseRow = [:(Int ; Float):℄ | index, valuetype SparseMatrix = [:SparseRow :℄The multipliation of a sparse matrix with a vetor an thenbe expressed by nesting three levels of parallel operations:smvm :: SparseMatrix ! [:Float :℄! [:Float :℄smvm sm ve =[:sumP [:x � (ve !: ol) j (ol; x) row:℄| {z }produts of one row j row  sm:℄The inner array omprehension omputes all produts ofa single row of the matrix by indexing the input vetorwith the olumn index of the orresponding matrix element;



sumP adds the produts in a parallel redution; and theouter omprehension spei�es that the produts and sumsfor all rows should be omputed in parallel. Sine the al-gorithm makes full use of the parallelism inherent in theproblem, its parallel depth omplexity is proportional tothe logarithm of the length of the longest row (f. [6℄ fordetails). Moreover, a attening-based implementation ex-ploits all three levels of parallelism (the inner omprehen-sion, sumP , and the outer omprehension) ontained in thede�nition of smvm. While it is possible to ahieve the samebehaviour in a at language, the ode is signi�antly moreinvolved.The above program looks strikingly similar to the sequen-tial list-based implementation of this algorithm. This isnot surprising sine our approah seamlessly supports theusual funtional programming style and integrates well intoHaskell. This is mainly due to (1) the use of olletion-based operations whih are ubiquitous in sequential Haskellprograms as well and (2) the absene of state in parallelomputations.Still, are has to be taken, so that omputations that ouldbe exeuted in parallel are not inadvertently sequentialised.The following de�nition of parallel quiksort is again verysimilar to the list-based version:qsort :: Ord �) [:�:℄! [:�:℄qsort [::℄ = [::℄qsort xs = letm = xs !: (lengthP xs `div ` 2)ss = [:s j s  xs ; s < m:℄ms = [:s j s  xs ; s == m:℄gs = [:s j s  xs ; s > m:℄sorted = [:qsort xs 0 j xs 0  [:ss; gs:℄:℄in(sorted !: 0) +:+ms +:+ (sorted !: 1)Note, however, that the reursive alls to qsort are per-formed in an array omprehension ranging over a nested ar-ray struture and are thus exeuted in parallel. This wouldnot be the ase if we wrote qsort ss +:+ms +:+ qsort gs!The parallelism in qsort is obviously highly irregular anddepends on the initial ordering of the array elements. More-over, the nesting depth of parallelism is statially unboundedand depends on the input given to qsort at runtime. Despitethese properties, the attening transformation an rewritethe above de�nition of qsort into a at data parallel pro-gram, while preserving all parallelism ontained in the def-inition. Thus, in priniple, it would be possible to ahievethe same parallel behaviour in Fortran|it is, however, as-tonishingly tedious.
3. PARALLEL ARRAYS IN HASKELLWe like to emphasise one more that we only add parallelarrays and assoiated operations to Haskell, but we leavethe semantis of standard Haskell programs entirely intat.Consequently, we an make full use of existing soure ode,implementation tehniques, and tools. In the following, weshall �rst disuss the details of our extensions, i.e, of par-allel arrays, array omprehensions, and parallel array oper-ations. Afterwards, we will briey outline our implementa-tion method.

3.1 The Details of the ExtensionWe merely introdue a single new polymorphi type, de-noted [:�:℄, whih represents parallel arrays ontaining ele-ments of type �.
3.1.1 Construction and MatchingConstrution of parallel arrays is de�ned analogous to thespeial braket syntax supported in Haskell for lists. In par-tiular, we have[::℄ :: [:�:℄| nullary array, i.e., an array without any elements[:e1; : : : ; en :℄ :: [:� :℄| an array with n elements, where ei :: � for all i[:e1::e2:℄ :: Enum � ) [:�:℄| an array enumerating the values between e1 and e2[:e1; e2::e3:℄ :: Enum � ) [:�:℄| enumerating from e1 to e3 with step e2 � e1Moreover, we introdue [:p1; : : : ; pn :℄ as a new form of pat-terns, whih math arrays that (1) ontain exatly n ele-ments and (2) for whih the ith element an be bound tothe pattern pi .In ontrast to lists, parallel arrays are not de�ned indu-tively, and thus, there is no onstrutor orresponding to(:). From the user's point of view, parallel arrays are anabstrat data type that an only be manipulated by arrayomprehensions and the primitive funtions de�ned in thefollowing. An indutive view upon parallel arrays, whiletehnially possible, would enourage ineÆient sequentialproessing of arrays. Usually, lists are a better hoie forthis task. Note, how we distinguish between sequential types(e.g., lists) and parallel types (in our ase, parallel arrays)here. We will reinfore the parallel avour of values from[:�:℄ by requiring a partiular evaluation strategy.
3.1.2 Evaluation StrategyTo guarantee the full exposure of nested parallelism and inorder for the ompiler to aurately predit the distribu-tion of parallel strutures and the entailed ommuniationrequirements, we impose some requirements on the evalua-tion of expressions resulting in a parallel array. In essene,these requirements guarantee that we an employ the at-tening transformation for the implementation of all nesteddata parallelism ontained in a Nepal program.We require that the onstrution of a parallel is strit inso far as all elements are evaluated to weak head-normalform, i.e., [:e1; : : : ; ei�1; ?; ei+1; : : : ; en :℄ = ?. Moreover,parallel arrays are always �nite, i.e., an attempt to onstrutan in�nite array likelet xs = [:1:℄ +:+ xs in xsdiverges.As a result, the exeution mehanism an evaluate all ele-ments of an array in parallel as soon as the array itself isdemanded. Moreover, elements of primitive type (like Int)an always be stored unboxed in parallel arrays; in otherwords, we an implement a value of type [:Int :℄ as a atolletion of whatever binary representation the target ma-hine supports for �xed-preision integral values. This isertainly muh more eÆient than having to heap-alloateeah individual Int element, and thus, bene�ial for mostnumerial appliations. These properties of parallel arraysare what prevents us from using the Array type provided byHaskell's standard library for expressing NDP.



3.1.3 Array ComprehensionsExperiene with Nesl suggests that array omprehensions(alled apply-to-eah onstruts in Nesl) are a entral lan-guage onstrut for NDP programs. Parallel array ompre-hensions are similar to list omprehensions, but again use [jand j℄ as brakets. However, we extend the omprehensionsyntax with the new separator & that simpli�es the elemen-twise lokstep proessing of multiple arrays. For instane,the expression[:x + y j x  [:1; 2; 3:℄ j y  [:4; 5; 6:℄:℄evaluates to [:5; 7; 9:℄, and thus, is equivalent to[:x + y j (x ; y) zipP [:1; 2; 3:℄ [:4; 5; 6:℄:℄Therefore, the introdution of j is stritly speaking redun-dant. However, in ontrast to the typial list proessingusage of list omprehensions, experiene with NDP odesuggests that lokstep proessing of two and more parallelarrays ours rather frequently|moreover, the appliationof these omprehensions tends to be nested. For the sake oforthogonality, we also allow j to be used in list omprehen-sions.The semantis of array omprehensions is de�ned as follows(in orrespondene to [28, Setion 3.11℄):[:e j :℄ = [:e:℄[:e j b;Q :℄ = if b then [:e j Q :℄ else [::℄[:e j p  l ;Q :℄ = letok p = [:e j Q :℄ok = [::℄inonatMapP ok l[je j p1  l1 jp2  l2 j Q1; Q2j℄ = [je j (p1; p2)  zipP l1 l2 jQ1; Q2j℄[:e j letdels;Q :℄ = let dels in [:e j Q :℄As with list omprehensions, the above merely de�nes thedelarative semantis of array omprehensions. An imple-mentation is free to hoose any optimising implementationthat preserves this semantis.
3.1.4 Standard Operations on Parallel ArraysBesides supporting the entire Haskell prelude, Nepal alsoprovides a omprehensive set of funtions for manipulatingarrays. Most of these, suh as mapP ; �lterP ; zipP ; andonatMapP ; have sequential list-based ounterparts withnearly idential denotational semantis. However, the def-initions of some list funtions, most notably of redutionsand sans, prelude an eÆient or even meaningful parallelimplementation of their semantis. Consequently, no paral-lel versions of funtions suh as foldr are provided. Instead,the Nepal prelude ontains de�nitions of parallel redutionand san funtions, suh asfoldP :: (� ! � ! �) ! � ! [:�:℄ ! �sanP :: (� ! � ! �) ! � ! [:�:℄ ! [:�:℄The order in whih individual array elements are proessedis unspei�ed and the binary operation is required to beassoiative, thus permitting a tree-like evaluation strategywith logarithmi depth (f. [4℄). Other parallel redutionsare de�ned in terms of these basi operations, e.g.,

Haskell & Parallel ArraysFront EndNested Core FlatteningFlat Core Unfolding PrimitivesSimpli�er (Fusion)Flat Core & Distributed TypesCode GenerationC & library operationsFigure 1: GHC with NDP extensionssumP :: Num � ) [:�:℄ ! �sumP = foldP (+) 0For these speialized redutions, the semantial di�erenesbetween the parallel and the orresponding list-based ver-sions, suh as sum, are minimal and reeted in the de�-nition of the more primitive operations (foldP in the abovease).
3.1.5 Open ProblemsCurrently, there are two open, but from a pratial point ofview not very serious, problems in the outlined design:1. The pattern-mathing suggested for arrays might beonsidered ad ho, as it essentially allows to mathonly arrays of �xed sizes.2. Expressions like [:f a j f  [:foo; bar :℄:℄ essentially de-note ontrol parallelism, as the two unrelated funtionsfoo and bar would|by what we have said so far|haveto be evaluated in parallel.The �rst problem is a onsequene of not having an indu-tive de�nition for arrays. Thus, it ould be argued thatwe should omit pattern-mathing on arrays entirely. Whilethis would ertainly be feasible, it is often onvenient to beable to test for parallel arrays ontaining zero, one, or twoelements in a pattern.The seond problem is more serious. An obvious solutionwould be to forbid having funtions as elements of paral-lel arrays. This is not so muh of a restrition, as it mightseem at �rst, as parallel arrays are for the expression ofdata parallelism only and there are not many meaningfuldata-parallel operations that an be de�ned on funtions|all other uses of funtions would, of ourse, not be restritedin any way. The main problem is that the obvious attemptof requiring all elements of parallel arrays to be part of atype lass NonFun would lead to a proliferation of (rathertrivial) ontexts on all type delarations involving parallelomputations. An alternative solution is to allow funtionsin parallel arrays, but to speify that expressions as the onestated above will lead to a sequential evaluation of the fun-tion appliations. This, however, introdues a fair amount ofompliations into the formalisation of the attening trans-formation, as disussed in [12℄.



3.2 Implementation of Nested Data-ParallelismLet us now have a look at the implementation of Nepal,whih we realise by extending an existing Haskell system:the Glasgow Haskell Compiler (GHC), whih is known toprodue fast sequential ode. The ompilation proess rough-ly onsists of four major phases, whih are depited in Fig-ure 1. The present paper only provides a sketh of eah ofthe phases and of the tehniques involved. More details anbe found in [22; 24; 11; 12℄.The �rst phase, the front end, simply onverts Haskell odeinluding parallel arrays into an intermediate language alledNested Core, i.e., the input is type heked and all syntatisugar removed.The seond phase, the attening transformation maps allnested omputations to at parallel omputations, preserv-ing the degree of parallelism spei�ed in the soure program.Furthermore, all nested parallel data strutures are trans-formed into isomorphi at data strutures. This is done bypartially separating information about the struture fromthe data. Arrays with reursive element types are mappedonto reursive strutures ontaining arrays with only simpleelement type. As, at some level, reursive strutures haveto be modelled using pointers, this step orresponds to on-verting an array of pointers into a pointer to an array. As aonsequene of the type transformation, polymorphi opera-tions on parallel arrays have to be replaed by orrespondingoperations on the new data struture.The attening step itself is similar to the tehnique de-sribed, for example, in [7; 29℄. However, as already men-tioned, due to the presene of reursive data types in a par-allel ontext, the type transformation, as well as the instan-tiation of polymorphi funtions on arrays, requires speialonsideration|we present the omplete transformation in aform suitable for the Haskell Kernel in [12℄.In the third step (Unfolding Primitives) all the data par-allel primitives are deomposed into their purely proessorloal and their global omponents|the latter are those re-quiring ommuniation. The intermediate language "FlatCore & Distributed Types", whih is the target language ofthis step, distinguishes between loal and global values bythe type system. In this representation, we apply GHC'ssimpli�er, whih has been extended with rules for array andommuniation fusion to optimise loal omputations andommuniation operations for the target arhiteture. Thisstep transforms �ne-grained vetor loops into deep ompu-tations: This loalises memory aess, redues synhroni-sation, and allows one to trade load balane for data re-distribution.Finally, the ode-generation phase produes C or native odeode that uses our olletive-ommuniation library to main-tain distributed data strutures and to speify ommunia-tion. The library internally maps all olletive ommunia-tion to a small set of one-sided ommuniation operations,whih makes it highly portable [11℄.The ombination of attening with array fusion and theommuniation library that ontains only a small ore ofmahine-dependent funtions allows us to target a wide rangeof high-performane arhitetures. Furthermore, the ompo-nents that are marked by use of an itali font in Figure 1 be-have di�erently in dependene on the targeted arhiteture|we all them target-dependent omponents. However, theattening transformation, while being essential for our ap-proah to portability, operates in the same way for all kinds
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Figure 3: Example of a Barnes-Hut tree.of target arhitetures; it does not speialise the ode for anarhiteture, but generally brings it into a form that makesit easier for subsequent phases to generate good ode. Inontrast, the appliation of alulational fusion, the odegeneration, and our library have to be parametrised withinformation about the target arhiteture to generate goodode.
4. A SOLUTION TO THE N-BODY PROB-

LEMThis setion presents a Nepal implementation of a simpleversion of the Barnes-Hut n-body algorithm[2℄, whih is arepresentative of an important lass of parallel algorithmsovering appliations like simulation and radioity ompu-tations. These algorithms onsist of two main steps: �rst,the data is lustered in a hierarhial tree struture; then,the data is traversed aording to the hierarhial strutureomputed in the �rst step. In general, we have the situationthat the omputations that have to be applied to data onthe same level of the tree an be exeuted in parallel.The remainder of this setion briey desribes the Barnes-Hut algorithm, the data strutures that are required, andthe Nepal ode. It addresses some implementation issuesand disusses benhmarking results.An n-body algorithm determines the interation between aset of partiles by omputing the fores whih at betweeneah pair of partiles. A preise solution therefore requiresthe omputations of n2 fores, whih is not feasible for largenumbers of partiles. The Barnes-Hut algorithm minimizesthe number of fore alulations by grouping partiles hier-arhially into ells aording to their spatial position. Thehierarhy is represented by a tree. This allows approximat-ing the aelerations indued by a group of partiles on dis-tant partiles by using the entroid of that group's ell. Thealgorithm has two phases: (1) The tree is onstruted froma partile set, and (2) the aeleration for eah partile isomputed in a down-sweep over the tree. Eah partile isrepresented by a value of type MassPoint , a pair of positionin the two dimensional spae and mass:



typeVe = (Double; Double)typeArea = (Ve; Ve)typeMass = DoubletypeMassPoint = (Ve; Mass)We represent the tree as a node whih ontains the entroidand a parallel array of subtrees:data Tree = Node MassPoint [:Tree:℄Eah iteration of bhTree takes the urrent partile set andthe area in whih the partiles are loated as parameters. It�rst splits the area into four subareas subAs of equal size.It then subdivides the partiles into four subsets aordingto the subarea they are loated in. Then, bhTree is alledreursively for eah subset and subarea. The resulting fourtrees are the subtrees of the tree representing the partiles ofthe area, and the entroid of their roots is the entroid of theomplete area. One an area ontains only one partile, thereursion terminates. Figure 2 shows suh a deompositionof an area for a given set of partiles, and Figure 3 displaysthe resulting tree struture.bhTree :: [:MassPnt :℄! Area ! TreebhTree [:p:℄area = Node p [::℄bhTree ps area =letsubAs = splitArea areapgs = splitPartiles ps subAssubts = [:bhTree pg aj pg  pgs; a  subAs:℄d = entroid [:mp jNode mp  subts:℄inNode d subtsThe tree omputed by bhTree is then used to ompute thefores that at on eah partile by a funtion aels . It�rst splits the set of partiles into two subsets: fMps, whihontains the partiles far away (aording to a given rite-ria), and Mps , whih ontains those lose to the entroidstored in the root of the tree. For all partiles in fMps, theaeleration is approximated by omputing the interationbetween the partile and the entroid. Then, aels is alledreursively for with Mps and eah of the subtrees. Theomputation terminates one there are no partiles left inthe set.aels :: Tree ! [:MassPoint :℄! [:Ve:℄aels [::℄ = [::℄aels (Node d subts) mps =let(fMps; Mps) = splitMps mpsfAs = [:ael d mp jmp  fMps:℄| fores for partiles far from urrent p.As = [:aels t Mps j t  subts:℄inombine farAs loseAsael :: MassPoint ! MassPoint ! Ve| given two partiles, the funtion ael| omputes the aeleration that one partile| exerts on the otherThe tree is both built and traversed level by level, i.e., allnodes in one level of the tree are proessed in a single par-allel step, one level after the other. This information is im-portant for the ompiler to ahieve good data loality and
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Figure 5: Speedup of the Barnes-Hut NBody algorithm onthe Cray T3Eload balane, beause it implies that eah proessor shouldhave approximately the same number of masspoints of eahlevel. We an see the tree as having a sequential dimen-sion to it, its depth, and a parallel dimension, the breadth,neither of whih an be predited statially. The program-mer onveys this information to the ompiler by the hoiethe data struture: By putting all subtrees into a parallelarray in the type de�nition, the ompiler assumes that allsubtrees are going to be proessed in parallel. The depth ofthe tree is modelled by the reursion in the type, whih isinherently sequential. The type transformation in the om-pilation phase, then, transforms the tree into a list of ar-rays onneted by global pointers, where eah of the arraysis distributed over the proessors involved in the omputa-tion. The loal portions of the arrays (on for eah level ofthe tree) are interonneted on eah proessor in the form ofa linked list. In [23℄, we disussed why the above enodingbased on reursive types is not possible in Nesl and what itsadvantages are ompared to a possible Nesl implementation



of the algorithm.To get a feeling for the behaviour of our implementationtehnique, we tested hand-ompiled ode produed aord-ing to the ompilation rules presented in [22; 23℄. We ranbenhmarks for two di�erent types of partile sets: a ho-mogeneous distributed set, where the partiles are spreadevenly over the area, and a so-alled plummer distribution,where the partiles enter around one point of the area. TheBarnes-Hut algorithm requires less omputation steps for ahomogeneous distribution, as the tree that stores the parti-les has depth of about log n for n partiles. Roughly speak-ing, the algorithm has to ompute twie as muh partile-partile interations for a set with plummer distributionthan for a homogeneously distributed partile set with thesame number of elements. The runtimes for partile sets of16 000, 24 000, and 32 000 elements, whih are displayedin Figure 4, show the higher absolute runtime of the plum-mer distribution. The diagram in Figure 5 reveals anothere�et: Not only is the absolute runtime of the regular asebetter, but we also obtain better speed up. On �rst sight,this might be surprising, as a higher number of omputa-tions often leads to programs with better relative speed up.In this ase, though, we not only have more omputations,but we also have more ommuniation due to the high degreeof irregularity. However, the diagram also shows that for 24proessors the speedup for the plummer set is still linear,while it already slows down slightly for the homogeneoussets.
5. SOLVING TRIDIAGONAL SYSTEMS OF

LINEAR EQUATIONSIn addition to the obvious uses of sum types, the extension ofattening to the full range of Haskell types allows a delar-ative type-based ontrol of data distribution. Consider theoperational impliations for an array of arrays [:[:Int :℄:℄ ver-sus an array of (sequential) lists [:[Int ℄:℄. On a distributedmemory mahine, values of the former will be evenly dis-tributed over the available proessing elements; in partiu-lar, if the subarrays vary substantially in size, they may besplit up aross proessor boundaries to failitate parallel op-erations over all elements of the nested array simultaneously.In ontrast, arrays of lists are optimised for sequential oper-ations over the sublists; although, the sequential proessingof all the sublists is expeted to proeed in parallel. Oneappliation where the distintion of parallel and sequentialdata-strutures is useful is the parallel solution of tridiago-nal systems of linear equations as proposed by Wang [33℄.Tridiagonal systems of linear equations are a speial formof sparse linear systems ouring in numerous sienti� ap-pliations. Suh system an be solved sequentially in lineartime by �rst eliminating the elements of the lower diago-nal by a top-down traversal, and then eliminating the upperdiagonal by traversing the matrix from bottom to top. Un-fortunately, in eah step a pivot row is needed that is om-puted just in the step before, so the algorithm is ompletelysequential.In the parallel solution proposed by Wang, the matrix is sub-divided into bloks of onseutive rows, whih are then pro-essed simultaneously. The algorithm runs in three phases.First, all rows of a blok are traversed top-down and thenbottom-up to eliminate the lower and upper diagonal, re-spetively. However, sine the �rst row in eah but the �rst

blok still ontains the lower diagonal element, a vertialhain of �ll-in elements appears in this olumn. As the ma-trix is symmetri, a hain of �ll-ins also ours on the rightin all but the last blok in the bottom-up traversal. The non-zero elements of the matrix after the �rst phase are shown inFig. 6. To diagonalise the matrix, the left and right hains
Figure 6: Situation with 3 bloks after �rst parallel phasein Wang's algorithmof �ll-ins must be eliminated.The �rst blok's last row ontains non-zeros suitable forelimination of all left �ll-ins in the seond blok. One theleft hain element of the seond blok's last row has beeneliminated, this updated row an be used as a pivot forthe elimination of the left �ll-in hain in the third bloket. Thus, a pipelining phase is neessary over all bloksto propagate suitable pivot rows for the elimination of theleft hains of �ll-ins. Analogously, pivots an be propagatedupwards starting with the last blok to eliminate the righthains of extra non-zeros.In eah blok, one the pivot row from the preeding blok isavailable, the �ll-in elements may be eliminated in any order.There are no sequential inner-blok dependenies. However,as desribed above, there is a sequential dependeny amongthe bloks. Elimination of the left hain an start only afterthe pivot row from the previous blok is available, but this isthe ase only after the left �ll-in of the previous blok's lastrow has been eliminated already. Thus, it is important thatduring pipelining, only the �rst and last rows of eah blokare touhed, beause eliminating all �ll-ins �rst before prop-agating pivots to the next blok would mean a ompletelysequential traversal of the matrix.After the pipelining phase, there are pivot rows for eahblok that an be used to eliminate both the left and theright hains of �ll-ins. Like in the �rst phase, all bloksan be proessed in parallel. Again, one top-down and onebottom-up traversal are neessary to obtain the desired di-agonal struture.
5.1 Encoding Wang’s Algorithm in NepalIn Nepal, we model an equation with a tuple-type TriRowontaining the three diagonal elements, the two potentialhain elements, and the right-hand side.type TriRow = (Float ;Float ;Float ;Float ;Float ;Float)| left, lower, main, upper, right, rhsA row blok is a list of rows, i.e., of type [TriRow ℄. Thewhole matrix is a parallel array of row bloks, abbreviatedby the type Matrix .typeMatrix = [: [TriRow ℄ :℄| a parallel array of lists of rows



The following enodes the top-level funtion of Wang's al-gorithm.solve :: Matrix ! [:[Float℄:℄solve m =letres = [:elimLowerUpper x j x  m:℄ | Phase 1frv = [:f j ( ; f ; )  res:℄lrv = [:l j ( ; ; l)  res:℄rowv = [:r j (r ; ; )  res:℄(fpl ; lpl) = pipeline (pArrayToList frv)(pArrayToList lrv) | Phase 2(fpv ; lpv) = (listTopArray fpl ; listTopArray lpl)dm = [:elimLeftRight r fp lp j r  rowv &fp  fpv & lp  lpv :℄ | Phase 3inmapP (map (� (TriRow maine rhs) ! rhs=maine))The funtions elimLowerUpper and elimLeftRight are ordi-nary, reursive list-traversals, eliminating elements on eahrow both in the desending and asending phase of reur-sion|we omit the details of their de�nition here, as they donot use parallelism. However, these traversals are exeutedin parallel for all bloks. The funtion elimLowerUpper is oftype [TriRow ℄ ! ([TriRow ℄;TriRow ; TriRow). It returnsthe updated row blok plus the two rows needed for thepipelining phase. As the pipelining is sequential, lists areused and so the arrays with the �rst and last pivot rowsare onverted by the primitive pArrayToList . The fun-tion pipeline is again an ordinary list traversal, realizingthe desired pivot generation and propagation. The lists ofnew pivot rows are transformed into parallel arrays usinglistTopArray , so that the third phase an work in parallelon all bloks to eliminate the �ll-in values.
5.2 Controlling the degree of parallelismThe parallelism available in the algorithm depends on thenumber of bloks as these are proessed in parallel in Phases1 and 3. In the pipelining phase, however, pivot rows mustbe propagated sequentially aross all bloks, making thedepth of this phase proportional to the number of bloks.Consequently, parallelising the �rst and the third phasesompletely by setting the blok size to 1 leads to a pipelin-ing phase that needs linear time, whih implies no speedupagainst the sequential version. Obviously, the best solutionis to reate one blok per proessor, thus minimising theosts of pipelining while still fully utilising the target ma-hine.While it is possible to implement this algorithm in Nesl, thetrade-o� between the omputational depth of pipelining andthe parallelism available in the other phases annot be ex-pressed leanly in that language due to its lak of sequentialtypes. Nepal's riher type system, on the other hand, al-lows us to make an expliit distintion between parallel andsequential omputations. In the above example, we repre-sent individual bloks by sequential lists whih, in turn, arestored in a parallel array. Thus, the struture of the algo-rithm is reeted in the struture of the data it operatesupon. This makes the ode more readable and allows theompiler to optimize more aggressively sine more stati in-formation is available.
6. RELATED WORKThe relative merits of NDP when ompared to other parallelprogramming models have already been overed elsewhere|e.g., [6℄. Hene, in the following, we will onentrate on

parallel funtional languages and, in partiular, on paral-lel extensions of Haskell|instead of disussing parallel pro-gramming languages in general. Generally, we an ate-gorise the extensions of Haskell as either data or ontrolparallel as well as either preserving the semantis of exist-ing Haskell programs or altering it. Interestingly, it seems asif all data-parallel extensions maintain Haskell's original se-mantis, whereas ontrol-parallel extensions tend to modifyit|if only in a subtle way.
6.1 Data Parallel ExtensionsNepal does not a�et the semantis of standard Haskell pro-grams, i.e., only the newly introdued types and operationshave a parallel semantis. This guarantees maximal ompat-ibility to existing Haskell ode. An approah that follows thesame goal and is probably the one loset related to Nepal isJonathan Hill's data-parallel extension of Haskell [20℄. Themain di�erene between his and our approah is that hemaintains the laziness of the olletive type that is evaluatedin parallel. The trade o� here is, one more, one betweenexibility of the programming model and stati informationthat an be used for optimisations. We hose to maximisestati information, he emphasised exibility.Two other approahes that do not alter the Haskell seman-tis and do, in fat, not extend the language at all are[18; 15℄. In both approahes, ertain patterns in Haskellprograms are reognised and treated speially|i.e., theyare being given a parallel implementation. In the �rst ap-proah, these patterns have to be spei�ed expliitly bymeans of oding parallel algorithms using speialised di-vide&onquer skeletons. Both approahes hoose to max-imise stati knowledge and are only appliable to regularparallelism, where the spae-time mapping an be deter-mined at ompile time. This allows a maximum of optimi-sation by the ompiler, but prevents the implementation ofirregular parallelism. In fat, it is not entirely lear, whetherthese two approahes should be ategorised as data or on-trol parallel. They do not expliitly restrit the range of par-allelised expressions, but due to their fous on array-basedalgorithms, they ertainly operate in the realm of data par-allelism.
6.2 Control Parallel ExtensionsParallel Haskell (pH) [1℄ is an impliitly parallel approahthat makes a fundamental hange to Haskell's semantis: In-stead of lazy evaluation, it requires lenient (non-strit, buteager) evaluation. Moreover, it introdues additional on-struts that ultimately ompromise referential transpareny,but allow the programmer to maximise the available paral-lelism. The most interesting feature of pH is probably that,despite being a ontrol-parallel language, it allows very �ne-grained parallelism|to a degree that is usually reserved fordata parallel languages.Glasgow Parallel Haskell (GPH) and the assoiated evalua-tion strategies [32; 31℄ extend standard Haskell by a prim-itive par ombinator that allows the programmer to des-ignate pairs of expressions that may be evaluated in par-allel. Based on this primitive, evaluation strategies allowto speify patterns of parallelism in the form of meaning-preserving annotations to normal (sequential) Haskell ode.There is, however, a slight modi�ation of Haskell's originalsemantis hidden in these strategies. They an inrease thestritness of funtions, and thus, lead to non-termination



of programs that do terminate under the purely sequentialexeution model.Two more radial ontrol-parallel extensions of Haskell areEden [8℄ and GoÆn [10℄. Both follow the idea of the seper-ation of omputation and o-ordination, where the latterdesribes the parallel behaviour of a given program. Edenspei�es o-ordination as a set of stream proessors and in-trodues a notion of proess abstrations, whereas GoÆnuses a small set of onstraint-logi ombinators and on-straint abstrations for the same purpose. Eden ultimatelybreaks referential transpareny, and thus, Haskell's origi-nal semantis, whereas GoÆn does not alter the standardHaskell portion of the language at all.
6.3 Other Parallel Functional LanguagesGenerally, there exists a wide range of parallel languagesthat are based on the model of funtional programming|as,for example, witnessed in [17℄. Ranging from languages thatjust support purely regular omputations, suh as Sisal [16℄and SAC [30℄, over languages based on the idea of skele-tons [13℄, suh as [14℄, to ontrol-parallel languages, suh asConurrent Clean [26℄.The one parallel language that is losest to Nepal in termsof the parallel programming model is ertainly Nesl [5℄, whihhas been the starting point of our researh. In essene, ithas been our aim to take the novel funtionality of Nesland develop it to a point where it ould be integrated in astandard funtional language like Haskell. As a result, weould improve on the range of data types and the supportfor higher-order funtions, and moreover, Nepal has inher-ited from Haskell a module system with support for separateompilation and a lean I/O framework. This has only beenpossible due to the progress that we reently made in ex-tending the sope of the attening transformation [12℄.
7. CONCLUSIONWe have presented Nepal, a onservative extension of thestandard funtional language Haskell, whih allows the ex-pression of nested data-parallel programs. Parallel arraysare introdued as the sole parallel datatype together withdata-parallel array omprehensions and parallel array om-binators. In ontrast to some other approahes, the paralleloperational semantis of Nepal does not ompromise ref-erential transpareny. Nepal is intended as a step towardsbridging the gap between high-level parallel programmingmodels and high performane, and it is our feeling thatnested data-parallelism in Haskell together with the at-tening transformation and appropriate optimisations bear apotential to ahieve this goal.Among smaller examples, we have presented two parallelappliations that demonstrate the expressiveness of nesteddata-parallel programming based on Haskell. Other thanNesl, Nepal supports the full range of both sequential andparallel data-types and omputations, enlarging the lass ofalgorithms suitable for a nested data-parallel programmingstyle and allowing a delarative, type-based spei�ation ofdata-distribution. In the ontext of NDP, Nepal is the �rstattening-based language that allows separate ompilationin the presene of polymorphi funtions on parallel arrays.We are urrently implementing a full ompiler, whih usesa transformation-based approah. We will integrate sev-eral optimisation tehniques in the ompiler that have beendeveloped and investigated for nested data-parallelism [22;

27℄. There are several hand-ompiled examples suh as theBarnes-Hut ode or sparse-matrix vetor multipliation de-livering promising performane [23; 11℄. As we do not hangeHaskell as the sequential part of Nepal, existing implemen-tation tehniques and ompiler ode for Haskell an be re-used.
7.1 Future WorkAs an important piee of future work, we will develop alanguage-based ost model based on the ommon measureswork and depth. The ore rules of Nesl's ost model willbe re-used for Nepal as far as possible. However, the adap-tation to Haskell's powerful type system requires signi�antextensions to the ost model. Using Hinze's approah togeneri funtional programming as a starting point, we willdevelop a ost measure for polymorphi primitives [21℄.In addition to the standard prelude, we will de�ne a setof library funtions for parallel arrays. Where useful, wewill adapt the funtions from the list and array libraries.New funtions will probably be introdued for the interplaybetween parallel arrays and sequential olletion types.
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