
Abstract
A relatively small set of static instructions has significant

leverage on program execution performance. These problem
instructions contribute a disproportionate number of cache
misses and branch mispredictions because their behavior
cannot be accurately anticipated using existing prefetching
or branch prediction mechanisms.

The behavior of many problem instructions can be pre-
dicted by executing a small code fragment called a specula-
tive slice. If a speculative slice is executed before the
corresponding problem instructions are fetched, then the
problem instructions can move smoothly through the pipe-
line because the slice has tolerated the latency of the mem-
ory hierarchy (for loads) or the pipeline (for branches). This
technique results in speedups up to 43 percent over an
aggressive baseline machine.

To benefit from branch predictions generated by specula-
tive slices, the predictions must be bound to specific dynamic
branch instances. We present a technique that invalidates
predictions when it can be determined (by monitoring the
program’s execution path) that they will not be used. This
enables the remaining predictions to be correctly correlated.

1 Introduction
Wide-issue microprocessors are capable of remarkable

execution rates, but they generally achieve only a fraction of
their peak instruction throughput on real programs. This dis-
crepancy is due to performance degrading events (PDEs),
largely branch mispredictions and cache misses. This work
attempts to avoid (or reduce the latency of) stalls due to
branch mispredictions and cache misses.

Performance degrading events tend to be concentrated in a
subset of static instructions whose behavior is not predict-
able with existing mechanisms [1, 8]. Current branch predic-
tors attempt to identify patterns in branch outcomes and
exploit them to accurately predict those branches whose
behaviors exhibit these patterns. Similarly, caches service
most requests by exploiting temporal and spatial locality,
and hardware prefetching detects and anticipates simple
memory access patterns. Because the “simple” instructions
are handled accurately by existing mechanisms, most of the
branch mispredictions and cache misses are concentrated in
the remaining static instructions whose behavior is more
“complex.”

In Section 2, we demonstrate that a small set of frequently
executed static instructions, which we refer to as problem
instructions, are responsible for causing a majority of PDEs.
In addition, we show that avoiding the mispredictions and
cache misses caused by problem instructions gives much of
the benefit of a perfect cache and branch predictor.

To avoid cache misses and branch mispredictions associ-
ated with problem instructions, we construct a code frag-
ment that mimics the computation leading up to and
including the problem instruction. We call such a piece of
code a speculative slice [19]. Like a program slice [18], a
speculative slice includes only the operations that are neces-
sary to compute the outcome of the problem instruction. In
contrast, a speculative slice only needs to approximate the
original program (i.e., it need not be 100 percent accurate),
resulting in significant flexibility in slice construction.

Constructing efficient, accurate speculative slices is feasi-
ble for many problem instructions in the benchmarks stud-
ied. In Section 3, we describe the slices that we constructed
by hand and the optimization techniques used. Typically, the
slices cover multiple problem instructions and generate a
prefetch or prediction every 2-4 dynamic instructions exe-
cuted by the slice; branch predictions generated by the slices
are greater than 99% accurate.

Speculative slices execute as helper threads on a multi-
threaded machine. These helper threads accelerate the pro-
gram’s execution microarchitecturally, by prefetching data
into the cache and generating branch predictions, but they do
not affect architected state; a slice has its own registers and
performs no stores. Forking the slice many cycles before the
problem instructions are encountered by the main thread
provides the necessary latency tolerance. After copying
some register values from the main thread, the slice thread
executes autonomously. The necessary extensions to a mul-
tithreaded machine to support these helper threads are
described in Section 4.

An important component of this additional hardware
binds branch predictions generated by helper threads to the
correct branch instances in the main thread. When a predic-
tion is generated by a slice, it is computed using a certain set
of input values and assumptions about the control flow
taken. Due to control flow in the program not included in the
slice, not all of the generated predictions will be consumed.

Execution-based Prediction Using Speculative Slices

Craig Zilles and Gurindar Sohi
Computer Sciences Dept. University of Wisconsin - Madison

1210 West Dayton Street, Madison, WI 53706-1685, USA
[zilles,sohi]@cs.wisc.edu

0-7695-1162-7/01/$10.00 (C) 2001 IEEE
Authorized licensed use limited to: EFPL LAUSANNE. Downloaded on January 8, 2009 at 08:58 from IEEE Xplore. Restrictions apply.

A mechanism is required to determine which predictions
should be ignored. In Section 5, we present our correlation
technique that monitors the path taken by the main thread to
identify when a prediction can no longer be used by its
intended branch.

In Section 6, we present the performance results attained
by executing speculative slices in the context of a simulta-
neous multithreading (SMT) processor. We show that the
slices accurately anticipate the problem instructions they
cover and provide speedups between 1% and 43%.

2 Problem Instructions
In this section, we present a brief characterization of prob-

lem instructions. Because such a characterization depends
on the underlying microarchitecture (e.g., better predictors
and caches reduce the number of problem instructions), we
first present our hardware model and simulation methodol-
ogy. In Section 2.2, we demonstrate that there is a set of
static instructions that accounts for a disproportionate num-
ber of branch mispredictions and cache misses. Then, in
Section 2.3, we show that this concentration of PDEs causes
these instructions to have significant performance impact on
the execution. In Section 2.4, we present a source-level
example of these instructions to provide a conceptual under-
standing of why these instructions are difficult to handle
with conventional caches and branch predictors.

2.1 Methodology
The underlying microarchitecture is an aggressive,

heavily-pipelined, out-of-order superscalar processor. It
includes large branch predictors, large associative caches,
and hardware prefetching for sequential blocks. Table 1 pro-
vides the details of our 4- and 8-wide simulation models,
which are based loosely on the Alpha architecture version of
SimpleScalar [2]. We perform our experiments on the
SPEC2000 benchmarks. In general, these programs exhibit
hard-to-predict branches and some non-trivial memory
access patterns. We have used input parameters that roughly

maintain the working set size of the reference inputs, while
reducing the run lengths to 9 to 40 billion instructions.

2.2 Characterization
For each benchmark, we attribute PDEs (i.e., cache misses

and branch mispredictions) to static instructions. If a static
instruction accounts for a non-trivial number of PDEs and at
least 10% of its executions cause a PDE, it is characterized
as a problem instruction. This classification is somewhat
arbitrary and serves merely as a demonstration that an
uneven distribution of PDEs exists. Table 2 characterizes the
problem instructions occurring in full runs of the bench-
marks, showing that these instructions are responsible for a
disproportionate fraction of performance degrading events.

Table 1. Simulated machine parameters

Front
End

A 64KB instruction cache, a 64Kb YAGS [6] branch predictor, a 32Kb cascading indirect branch predictor [5], and a
64-entry return address stack. The front end can fetch past taken branches. A perfect BTB is assumed for providing target
addresses, which are available at decode, for direct branches. All nops are removed without consuming fetch bandwidth.

Execution
Core

The 4-wide machine has a 128-entry instruction window, a full complement of simple integer units, 2 load/store ports, and
a single complex integer unit, all fully pipelined. The pipeline depth (and hence the branch misprediction penalty) is 14
stages. For simulation simplicity, scheduling is performed in the same cycle in which an instruction is executed. This is
equivalent to having a perfect cache hit/miss predictor for loads, allowing the scheduler to avoid scheduling operations
dependent on loads that miss in the cache. Store misses are retired into a write buffer. The 8-wide machine is similar,
except it has a 256-entry window and 4 load/store units.

Caches The first-level data cache is a 2-way set-associative 64KB cache with 64 byte lines and a 3-cycle access latency, including
address generation. The L2 cache is a 4-way set-associative 2MB unified cache with 128-byte lines and a 6-cycle access.
All caches are write-back and write-allocate. All data request bandwidth is modeled, although writeback bandwidth is not.
Minimum memory latency is 100 cycles.

Prefetch In parallel with cache accesses, a 64-entry unified prefetch/victim buffer is checked on all accesses. A hardware stream
prefetcher detects cache misses with unit stride (positive and negative) and launches prefetches. In addition, when band-
width is available, sequential blocks are prefetched (before a stride is detected) to exploit spatial locality beyond 64 bytes.

Table 2. Coverage of performance degrading events by prob-
lem instructions. The first group of columns shows how many
static loads and stores (#SI) were marked as problem instruc-
tions, what fraction of all memory operations these instructions
comprise (mem), and the fraction of L1 cache misses covered
(mis). The second three columns give similar information for
branches (br = % of dynamic branches, mis = % of mispredic-
tions).

Program

Memory Insts Control Insts

#SI mem mis #SI br mis
bzip2 75 5% 97% 86 30% 83%
crafty 103 2% 70% 108 10% 40%
eon insufficient misses 45 23% 88%
gap 140 4% 98% 193 12% 69%
gcc 429 1% 59% 530 4% 43%
gzip 30 21% 96% 79 16% 62%
mcf 127 32% 97% 34 23% 71%
parser 157 5% 82% 164 14% 51%
perl 140 2% 67% 82 9% 68%
twolf 211 10% 93% 167 51% 91%
vortex 148 1% 49% 142 1% 58%
vpr 186 14% 92% 95 16% 75%

0-7695-1162-7/01/$10.00 (C) 2001 IEEE
Authorized licensed use limited to: EFPL LAUSANNE. Downloaded on January 8, 2009 at 08:58 from IEEE Xplore. Restrictions apply.

2.3 Performance Impact
To observe how the PDEs caused by problem instructions

affect performance, we augmented our simulator to give the
appearance of a perfect branch predictor and perfect cache
on a per static instruction basis. Figure 1 shows that remov-
ing the PDEs from problem instructions provides a substan-
tial increase in performance. In fact, these instructions
account for much of the performance discrepancy between
the baseline model and the all perfect model. Because the
impact of the PDEs is larger in the 8-wide machine, the
potential speedups from perfecting problem instructions are
larger. Notice that even with perfect data caches and perfect
branch prediction, most benchmarks fail to achieve the peak
throughput of the machine due to the limited instruction
window, real memory disambiguation, and operation
latency.

2.4 Source-Level Example
We present a concrete example of problem instructions

from the SPEC2000 benchmark vpr. This example per-
forms a heap insertion. A heap is a data structure that sup-
ports removal of the minimum element and random
insertions [4]. The structure is organized as a binary tree and
maintains the invariant that a node’s value is always less
than that of either of its children. The heap is stored as an
array of pointers, such that if a node’s index is N, its children
are found at indices 2N and 2N+1.

Insertions are performed (in the function add_to_heap,
shown in Figure 2) by adding the new element to the end of
this array (at heap_tail, line 1), creating a new leaf node
of the tree. At this point, we need to ensure that the heap
invariant is maintained, so we need to check to see if the new
node (ifrom) is less than its parent (ito) and, if so, swap
the two pointers (lines 7-9). This test is performed recur-
sively until the heap invariant is satisfied (line 6) or the root
of the tree is reached (line 5).

In vpr, the heap size is thousands of elements, so the
whole structure does not fit in the L1 cache. This means that
accessing the cost field of the ito element (in line 6) typi-
cally incurs a cache miss. Due to variation in the key values

associated with the inserted elements, different insertions
“trickle” different distances up the tree. An average loop
count of 2-3 iterations causes the comparison branch (also in
line 6) to be unbiased and frequently mispredicted.

This example demonstrates a number of common
attributes of problem instructions. Problem loads typically
involve dereferencing at least one pointer; dereferencing
pointer chains is common. This can make them difficult to
prefetch using existing methods. Problem branches are typi-
cally unbiased and involve a test on a recently loaded data
element. Problem instructions are frequently dependent
upon one another, as the problem branch in the example is
data-dependent on the problem load, and the load is con-
trol-dependent on the problem branch from the previous
iteration. Lastly, problem instructions often occur in tight
loops. In the next section, we discuss how to tolerate prob-
lem instructions.

3 Speculative Slices
Given that problem instructions are not easily predicted

with state-of-the-art predictors, a different approach is

Figure 1. Performance impact of problem instructions. The bottom bar shows the IPC of the baseline configuration, the second bar
shows the performance improvement of avoiding the data cache misses and branch mispredictions associated with the problem
instructions presented in Table 2, and the top bar shows the performance achievable if all data cache misses and branch
mispredictions are avoided. Data shown for both 4- and 8-wide configurations for the SPEC2000 benchmarks.

4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8
0

1

2

3

4

5

6

7

8

IP
C

all perfect

prob. inst. perfect

baseline

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr

struct s_heap **heap; // from [1..heap_size]
int heap_size; // # of slots in the heap
int heap_tail; // first unused slot in heap

void add_to_heap (struct s_heap *hptr) {
...

1. heap[heap_tail] = hptr;
2. int ifrom = heap_tail;
3. int ito = ifrom/2;
4. heap_tail++;
5. while ((ito >= 1) &&
6. (heap[ifrom]->cost < heap[ito]->cost)) {
7. struct s_heap *temp_ptr = heap[ito];
8. heap[ito] = heap[ifrom];
9. heap[ifrom] = temp_ptr;
10. ifrom = ito;
11. ito = ifrom/2;

}
}

branch

cache miss

misprediction

Figure 2. Example problem instructions from heap insertion
routine in vpr.

0-7695-1162-7/01/$10.00 (C) 2001 IEEE
Authorized licensed use limited to: EFPL LAUSANNE. Downloaded on January 8, 2009 at 08:58 from IEEE Xplore. Restrictions apply.

required to predict them correctly. The key insight is that the
program is capable of computing all addresses and branch
outcomes in the execution; it just does so too late to tolerate
the latency of the memory hierarchy (for loads) or the pipe-
line (for branches). To predict the behavior of problem
instructions, we execute a piece of code that approximates
the program. We extract the subset of the program necessary
to compute the address or branch outcome associated with
the problem instruction. We refer to this subset as the slice
of the problem instruction.

Our previous research [19] observed that it is not profit-
able to build conservative slices (i.e., those that compute the
address or branch outcome 100% accurately) because such
slices must include a significant portion of the whole pro-
gram. Instead, by using the slices to affect only microarchi-
tectural state (through prefetching and branch prediction
hints), we remove the correctness constraint on the slices.
This speculative nature provides significant flexibility in
slice construction, enabling smaller slices that can provide
more latency tolerance with lower overhead.

We have found it feasible to construct efficient and accu-
rate slices for many problem instructions. In this section we
characterize the speculative slices we constructed, discuss-
ing the ways in which slices enable early execution before
describing the slice construction process using our running
example. The slices for this paper were constructed manu-
ally. They are meant to serve as a proof of concept and to
suggest the set of techniques that should be used when con-
structing slices automatically. Automatic slice construction
is discussed briefly in Section 3.3.

3.1 How Speculative Slices Enable Early Execution
The benefit of executing a speculative slice is derived

from pre-executing (i.e., computing the outcome of) a prob-
lem instruction significantly in advance of when it is exe-
cuted in the main program. Before discussing our
speculative slices, we review how a slice enables early exe-
cution of an instruction relative to the whole program:
• Only instructions necessary to execute the problem

instruction are included in the slice. Thus, the slice pro-
vides a faster way to fetch the computation leading to a
problem instruction than does the whole program.

• The slice avoids misprediction stalls that impede the
whole program. Control flow that is required by the slice
is if-converted, either arithmetically or through predica-
tion (e.g., conditional move instructions). Unnecessary
control flow is not included.

• The code from the original program can be transformed
to reduce overhead and shorten the critical path to com-
puting a problem instruction. Transformations can be
performed on the slice that were not applied by the com-
piler for one of two reasons: (1) not provably safe for all
paths — speculative slices neither have to be correct nor
consider all paths — or (2) not feasible in the whole pro-
gram due to limited resources (e.g., registers).

3.2 Speculative Slice Construction
Slice construction is most easily understood in the context

of a concrete example. Using the code example from vpr,
we demonstrate many of the characteristics of slices and the
techniques we use to construct them.

Slice Structure. Because the two problem instructions in
this example are inter-dependent, we construct a single slice
that pre-executes both. In general, slice overhead can be
minimized by aggregating all problem instructions that
share common dataflow predecessors into a single slice.

The problem instructions are in a loop. This is a common
occurrence because one of our criteria for selection problem
instructions is execution frequency. Because the loop body
is small — only 15 instructions — the necessary latency tol-
erance cannot be achieved by executing a separate slice for
each loop iteration. Instead the loop is encapsulated in the
slice, and we attempt to fork the slice long before the loop is
encountered in the main program.

Selecting a Fork Point. Fork points should be “hoisted”
past unrelated code. The add_to_heap function is only
called by the node_to_heap function (shown in Figure 3),
so it is inlined by the compiler. Before calling
add_to_heap, the node_to_heap function allocates a
heap element and sets its fields. Because the slice only
requires the cost field (passed in as a parameter to
node_to_heap) and the heap itself (which is seldomly
modified before the problem instructions are executed), the
slice can be forked at the beginning of the node_to_heap

function. This fork point is sufficiently before (60 dynamic
instructions) the first instance of the problem branch to
derive benefit from the slice in our simulated machine.

Selecting a fork point often requires carefully balancing
two conflicting desires. Maximizing the likelihood that the
problem instruction’s latency is fully tolerated requires that
the fork point be as early as possible, but increasing the dis-
tance between the fork point and the problem instructions
can both increase the size of the slice and reduce the likeli-
hood that the problem instructions will be executed. Often
there is a set of “sweet spots” where the latency tolerance is
maximized for a given slice size and accuracy.

Optimizations. Beyond removing the code that is unneces-
sary to execute the problem instructions, the size of our slice
has been reduced by applying two optimizations. Although
these particular transformations would be correct to apply to

void node_to_heap (..., float cost, ...) {
struct s_heap *hptr;
...
hptr = alloc_heap_data();
hptr->cost = cost;
...
add_to_heap (hptr);

}

fork point

Figure 3. The node_to_heap function, which serves as
the fork point for the slice that covers add_to_heap.

0-7695-1162-7/01/$10.00 (C) 2001 IEEE
Authorized licensed use limited to: EFPL LAUSANNE. Downloaded on January 8, 2009 at 08:58 from IEEE Xplore. Restrictions apply.

the original code, it would be difficult for the compiler,
which must preserve correctness across all possible inputs,
to prove that this is so. Since the slice cannot affect correct-
ness, it merely must discern that these transformations are
correct most of the time, so that performance is not detri-
mentally affected.
• Register Allocation: The series of values loaded by
heap[ifrom]->cost is always the value cost, which is
passed in as an argument to node_to_heap. This fact
could be detected by memory dependence profiling. Our
slice takes the value cost as a live in value and removes
all loads from heap[ifrom] and their corresponding
stores to heap[ito]. This optimization removes 8 static
instructions from the slice.

• Strength Reduction: The ito = ifrom/2 statements
in the original code are implemented by the compiler with
a right shift operation to avoid a long latency division. To
ensure the correct semantics of the division operator, a 3
instruction sequence is used that adds 1 to the value
before the shift, if the value is negative. Value profiling
could determine that the value added is always 0 (because
ifrom is never negative). By using strength reduction to
remove the addition of the constant zero, the division
operation is reduced down to just the right shift, removing
4 static instructions from the slice.
Other profitable optimizations included removing register

moves, eliminating unnecessary operand masking, exploit-
ing invariant values, if-conversion, and reverse if-conver-
sion. We have found removing communication through
memory (like the register allocation example above) to be
the most important.

Slice Termination. When a slice contains a loop, as our
example does, we must determine how many iterations of
the loop should be executed. The obvious means — replicat-
ing the loop exit code from the program — is often not the
most efficient. Many loops have multiple exit conditions and
inclusion of this computation in the slice can significantly
impact slice overhead.

To avoid the possibility of a “runaway” slice when exit
conditions are excluded, each slice is assigned a maximum
iteration count. This number is derived from a profile-based
estimate of the upper-bound of the number of iterations exe-
cuted by the loop. When this maximum is close to the aver-
age iteration count for a loop, as is the case for our example,
overhead can often be minimized by removing all loop exit
computation from the slice and completely relying on the
maximum iteration count to terminate the slice. Even when
accurate back-edge branches are included in the slice, the
latency of evaluating branch conditions often causes extra
iterations of the loop to be fetched. Once the instructions
have been fetched, the cost of executing them is typically
small. Exceptions will also terminate slices; hence, linked
list traversals will automatically terminate when they deref-
erence a null pointer.

Slice Description. Figure 4 shows the original assembly
code that corresponds to the source in Figure 2, and our slice
that covers this region is shown in Figure 5. The un-opti-
mized slice is shaded in Figure 4 and the problem instruc-
tions are in bold in both the original and slice code.

The optimized slice consists of only 8 static instructions.
Typically a slice has fewer instructions than 4 times the
number of problem instructions it covers. This small static

note: the divide by 2 operation is implemented by a 3 instruc-
tion sequence described in the strength reduction optimization.

Figure 4. Alpha assembly for the add_to_heap function.
The instructions are annotated with the number of the line in
Figure 2 to which they correspond. The problem instructions
are in bold and the shaded instructions comprise the
un-optimized slice.

node_to_heap:
... /* skips ~40 instructions */

2 lda s1, 252(gp) # &heap_tail
2 ldl t2, 0(s1) # ifrom = heap_tail
1 ldq t5, -76(s1) # &heap[0]
3 cmplt t2, 0, t4 # see note
4 addl t2, 0x1, t6 # heap_tail ++
1 s8addq t2, t5, t3 # &heap[heap_tail]
4 stl t6, 0(s1) # store heap_tail
1 stq s0, 0(t3) # heap[heap_tail]
3 addl t2, t4, t4 # see note
3 sra t4, 0x1, t4 # ito = ifrom/2
5 ble t4, return # (ito < 1)
loop:
6 s8addq t2, t5, a0 # &heap[ifrom]
6 s8addq t4, t5, t7 # &heap[ito]
11 cmplt t4, 0, t9 # see note
10 move t4, t2 # ifrom = ito
6 ldq a2, 0(a0) # heap[ifrom]
6 ldq a4, 0(t7) # heap[ito]
11 addl t4, t9, t9 # see note
11 sra t9, 0x1, t4 # ito = ifrom/2
6 lds $f0, 4(a2) # heap[ifrom]->cost
6 lds $f1, 4(a4) # heap[ito]->cost
6 cmptlt $f0,$f1,$f0 # (heap[ifrom]->cost
6 fbeq $f0, return # < heap[ito]->cost)
8 stq a2, 0(t7) # heap[ito]
9 stq a4, 0(a0) # heap[ifrom]
5 bgt t4, loop # (ito >= 1)
return:

... /* register restore code & return */

slice:
1 ldq $6, 328(gp) # &heap
2 ldl $3, 252(gp) # ito = heap_tail
slice_loop:
3,11 sra $3, 0x1, $3 # ito /= 2
6 s8addq $3, $6, $16 # &heap[ito]
6 ldq $18, 0($16) # heap[ito]
6 lds $f1, 4($18) # heap[ito]->cost
6 cmptle $f1,$f17,$f31 # (heap[ito]->cost

< cost) PRED
br slice_loop

Annotations
fork: on first instruction of node_to_heap
live-in: $f17<cost>, gp
max loop iterations: 4

Figure 5. Slice constructed for example problem instructions.
Much smaller than the original code, the slice contains a loop
that mimics the loop in the original code.

0-7695-1162-7/01/$10.00 (C) 2001 IEEE
Authorized licensed use limited to: EFPL LAUSANNE. Downloaded on January 8, 2009 at 08:58 from IEEE Xplore. Restrictions apply.

size translates to a small dynamic size relative to the pro-
gram. This slice performs a prefetch or generates a predic-
tion about every 3 instructions executed, and this is
representative of the slices we have built. The slice only has
2 live-in registers, cost and the global pointer (used to
access heap). In general, the natural slice fork points tend
to require a small number of live in values; rarely are more
than 4 values required. Table 3 characterizes a representative
sample of the slices we have constructed.

3.3 Automatic Slice Construction
For speculative slice pre-execution to be viable, an auto-

mated means for constructing slices will be necessary.
Although a few of our slices benefit from high-level pro-
gram structure information that may be difficult to extract
automatically, most of the slices and optimizations only use
profile information that is easy to collect. The most difficult
issues are those that involve estimating a slice’s potential
benefit, which is needed to maximize that benefit as well as
to decide whether a slice will be profitable. Roth and Sohi
[13] automatically selected un-optimized slices from an exe-
cution trace using the approximate benefit metric fetch-con-
strained dataflow-height. Automated slice optimization is
important future work.

4 Slice Execution Hardware
To derive all benefits from the slices the hardware must

provide the following:
• a set of resources with which to execute the slice.
• a means to determine when to fork the slice.
• a means for communicating initial state.
• a means for marking prediction generating instructions.
• a means for correlating predictions to branches in the

main thread.
In this section, we describe how our example hardware

implementation handles the first four of these issues. Due to
its relative complexity, the prediction correlation hardware
is described in its own section (Section 5).

4.1 Execution Resources
Rather than inserting the slices into the program inline,

we execute them as separate, “helper” threads [3, 13, 14] on
a simultaneous multithreading (SMT) [16] processor. In this
way we avoid introducing stalls and squashes into the main
thread due to the cache missing loads (i.e., not just
prefetches) and control flow in the slices.

Using idle threads in an SMT processor avoids adding
execution hardware specifically for slices. The helper
threads compete with the main thread for execution
resources (e.g., fetch/decode bandwidth, ALUs, cache
ports). Because the helper threads enable the main thread to
use resources more efficiently (by avoiding mispredictions
and stalls), the application with the slices can be executed
with fewer resources than the application alone can. Fetch
resources are allocated to threads using an ICOUNT-like
policy [16] that is biased toward the main thread.

The helper threads and the main thread share the
first-level data cache, so when data is prefetched by the slice
it is available to the main thread. With a sufficiently large
cache, the timing of the prefetches is not critical.

4.2 Slice Forking
Slices are forked when a given point — the fork point — is

reached by the main thread. There are two ways of marking
a fork point: inserting explicit fork instructions or designat-
ing an existing instruction as a fork point and detecting
when that instruction is fetched. In order to maintain binary
compatibility, we study the second approach in this work,
but the hardware can be simplified by the former approach.

Our simulated hardware includes a small hardware struc-
ture called the slice table (shown in Figure 6(a)), which is
maintained in the front end of the machine1. The first field,
the fork PC, is a content-addressable memory (CAM) that is
compared to the range of program counters (PC) fetched
each cycle. If a match occurs, an idle thread is allocated to
execute the slice. If no threads are idle, the fork request is
ignored. The slice table provides the starting PC for the
thread (slice PC). The instructions that comprise the slice
are stored as normal instructions in the instruction cache.

4.3 Register Communication
In addition to the slice code, the helper thread needs a few

“root” data values (as discussed in Section 3.2). To perform
this inter-thread communication efficiently, we exploit
SMT’s centralized physical register file, by copying register
map table entries and synchronizing the communication
using the existing out-of-order mechanism [13, 17]. The
small number of copies, logically performed when the fork

1. Slice table entries cannot be demand loaded; without a loaded entry the
processor will not know that a fork point has been reached. One possi-
ble implementation would be to load the entries associated with a page
of code when an instruction TLB miss occurs.

Table 3. Characterization of Slices. For a representative set of
slices constructed we provide the size in static instructions
(static size), the number of live-in register values, the number of
problem loads prefetched (pref), problem branches predicted
(pred), and the number of kills used for branch correlation (see
Section 5). If the slice contains a loop, the number of each cate-
gory within the loop is shown in parentheses, and the iteration
limit is shown in the final column.

Prog.
static
size

live
ins pref pred kills

max
iter

bzip2 8 (7) 4 1 (1) 2 (2) 1 (1) 2000

crafty 7 2 0 1 1 —

eon 8 1 0 6 3 —

gap 8 (5) 2 0 3 (3) 1 (1) 85

gcc 4 (3) 1 0 2 (2) 1 (1) 31

mcf 12 (12) 1 4 (4) 1 (1) 2 (1) 98

twolf 8 (5) 2 0 2 (2) 1 (1) 7

vpr 31 (15) 3 5 (3) 5 (2) 3 (1) 18

vortex 4 1 1 0 0 —

0-7695-1162-7/01/$10.00 (C) 2001 IEEE
Authorized licensed use limited to: EFPL LAUSANNE. Downloaded on January 8, 2009 at 08:58 from IEEE Xplore. Restrictions apply.

point is renamed, are completed in the background by steal-
ing rename ports from instructions that do not rename a full
complement of registers. Because the main thread may over-
write a copied register before the slice is done with it, we
slightly modify the register reclamation process to ensure
that physical registers are not prematurely freed. The pro-
cessor keeps a reference count for those registers.

No inter-thread synchronization is performed for memory,
as it would require significant alteration of the load-store
queue. Instead, slices are selected such that values loaded by
the slice have not been recently stored by the main thread.

4.4 Prediction Generating Instructions
To improve branch prediction accuracy, a speculative slice

computes branch outcomes to be used as predictions for
problem branches in the main thread. The instruction in the
slice that computes such an outcome is referred to as a pre-
diction generating instruction (PGI). PGIs are identified by
entries in the PGI table (Figure 6(b)), which are loaded
along with slice table entries. In addition, each entry identi-
fies the problem branch in the main thread to which it corre-
sponds. When a PGI is fetched, it is marked with an
identifier that indicates that the value it computes should be
routed back to the front end of the machine and provided to
the prediction correlator (described in the next section).

5 Branch Prediction Correlation
To derive any benefit from a branch prediction computed

by a speculative slice, the prediction must be assigned to the
intended dynamic instance of the problem branch. Since
problem branches are unbiased, failure to accurately corre-
late predictions with branches will severely impact predic-
tion accuracy. To maximize the benefit of the prediction,
correlation is performed at the fetch stage. Conceptually, the
branch correlator (Figure 7) consists of multiple queues of
predictions, each tagged with the PC of a branch. When a
branch is fetched and it matches with a non-empty queue,
the processor uses the prediction at the head of the queue in
place of the one generated by the traditional branch predic-
tor.

Although conceptually simple, there are three issues that
complicate the implementation of a prediction correlator:
• Conditionally-executed branches: If predictions are

generated for all potential dynamic instances of a branch,

and not all of them are executed due to control flow, a
mechanism is required to kill the predictions that will not
be used.

• Mis-speculation recovery: Because the correlator is
manipulated when instructions are fetched by the main
thread, it must be able to undo any action performed
while the main thread was on an incorrect path.

• Late Predictions: A prediction can be generated after
the branch for which it is intended was fetched. If this is
not detected, the late prediction can potentially be incor-
rectly correlated with future dynamic instances of the
branch.

The following sub-sections describe each of these issues
in turn, providing more details on the problems and how our
mechanism solves them.

5.1 Conditionally-executed Branches
Achieving sufficient latency tolerance often necessitates

“hoisting” the fork of a slice above branches that determine
if a problem branch will be executed. When the fork point
and the problem branch are no longer control-equivalent
(i.e., a problem branch is not executed exactly once for each
fork point executed), we may generate more predictions than
there are problem branches to consume them. If any unused
predictions are left in the queue, the predictions will become
mis-aligned, severely impacting prediction accuracy.

Figure 8 shows an example of a conditionally executed
problem branch. This problem branch (in block D) exists
inside of a loop and is only executed on the iterations in
which the if statement in block C evaluates to true.
Assuming that this loop is rarely executed more than three

Figure 6. The slice and prediction generating instruction
(PGI) tables, which reside at the front-end of the pipeline.
One entry in the slice table (a) is stored for each slice. The PGI
table (b) has one entry for each prediction generating
instruction in a slice. The fields are described in the text. These
structures together require less than 512B of storage.

fork PC slice PC

Slice Table 16 entries

CAM

registers max loops

slice inst# branch PC
PGI Table 64 entries

slice #

a)

b)

Figure 7. A conceptual view of a control-based prediction
correlation mechanism. When a branch is fetched by the main
thread, its PC is compared to the correlator’s PC tags. If a
match occurs, the prediction at the head of the queue
overrides the traditional branch predictor.

PC Tag TNT
PC Tag T NT NT

PC Tag TNT NT T

Figure 8. Example of a conditionally executed problem
branch within a loop. Code example (a) and control flow
graph (b).

bool P[3];
... /* A */
int a = 0;
while (a <= ..){ /* B */
if (...) { /* C */
if (P[a]) { /* D */
... /* E */

}
}
a ++; /* F */

}
... /* G */

A

G

B

C

F

E

D

problem branch

a) b) fork slice

0-7695-1162-7/01/$10.00 (C) 2001 IEEE
Authorized licensed use limited to: EFPL LAUSANNE. Downloaded on January 8, 2009 at 08:58 from IEEE Xplore. Restrictions apply.

times before exiting, we create a slice that generates a pre-
diction for each of the first three iterations. Assuming, with-
out loss of generality, that the slice is executed in a timely
fashion, the queue begins with one prediction for each of the
first three loop iterations. If the problem branch in the first
iteration is not executed, the problem branch in the second
iteration will be matched with the prediction generated for
the first iteration. Furthermore, if the loop exits without con-
suming all of the generated predictions, these predictions
could potentially cause future mis-correlations to occur.

This problem could be avoided by including the control
flow that determines whether the problem branch will be
executed (e.g., the conditions computed by blocks B and C
in the example in Figure 8) in the slice. We have found that
including this additional code, the existence sub-slice [19],
in the slice substantially increases the overhead of the helper
thread and potentially impacts the latency of generating the
predictions. Given that these control conditions are already
going to be evaluated by the main thread, replication of this
code is unnecessary. Instead, our mechanism observes the
control flow as it is resolved by the main thread.

Instead of “consuming” predictions when they are used by
a problem branch, we use the main thread’s execution path
to deallocate predictions when it can be determined that the
prediction is no longer valid. For each prediction, we iden-
tify the valid region — the region in which the intended
branch instance can still be reached — in the control flow
graph (CFG), and when the execution leaves this region the
prediction is killed. Figure 9(a) shows an unrolled CFG for
the loop in our example and the valid regions for the first
two predictions. Note that there are two types of exits from a
region: 1) the arcs CF, DE, and DF kill the prediction for a
single iteration, and 2) the arc BG (the loop exit) kills all
predictions for the loop. We refer to the first kind as a loop
iteration kill and the second type as a slice kill.

Although there are potentially a large number of exits
from a valid region, we have found it unnecessary to moni-
tor all such edges. In practice, a prediction does not need to
be killed exactly when its valid region is exited; it merely
must be killed before the next instance of the problem
branch is fetched. Because of the reconvergent nature of
control flow in real programs, all paths tend to be channeled
back together at distinct points (e.g., all paths through a
function eventually return from the function). For this rea-
son, we merely need to select a reconvergent point that
occurs between the two instances of the problem branch.
More precisely, we select a point (or set of points) in the
program that post-dominates all of the valid region exits and
dominates the next execution of the problem instruction. In
practice, we have found selecting such points to be straight-
forward. In our example, block F can serve as a loop itera-
tion kill and block G as a slice kill. Figure 9(b) shows the
operation of our mechanism for this example loop.

In this work, we identify existing instructions in the main
thread for use as kills; the slice table provides these kill PCs
to the prediction correlator when a slice is forked. Typically,
a small number of kill instructions is sufficient to perform
correlation correctly. We have found that often the best loop
iteration kill block is the block that is the target of loop
back-edges. In this case, the first instance of the block
should not kill any predictions.

5.2 Mis-speculation Recovery
Modern processors employ speculation in many respects,

often squashing and re-fetching instructions to recover from
mis-speculation. In order to properly correlate predictions, it
is necessary to undo any actions performed on the correlator
by the squashed instructions (much like branch history must
be restored). The obvious solution is to restore predictions if
the killing instruction gets squashed. Thus predictions are

Figure 9. Killing predictions when they are no longer valid. Figure (a) shows the regions in which the predictions for the first and
second iterations are valid on an unrolled control flow graph. Block F (the loop back-edge) can be used to kill the prediction for each
iteration, and block G (the loop exit) should be used to kill all predictions. Figure (b) shows how loop iteration kills (block F) and slice
kills (block G) can be used to ensure correct prediction correlation. The path taken is ABCFBCDFBG.

with prediction for second iteration.

A

B

C

F

E

D

B

C

D

G

F

F E

G

1st pred

2nd pred

a)

P1 P2 P3

Main thread fetch events Prediction queue state

Block D1 not fetched

-no change-

P3
Loop exits (Block G)

Slice guesses loop will be executed

Problem branch is not executed on

Remaining predictions killed.

Problem branch correctly matchedBlock D2 fetched

Initial State

ti
m

e

b)

3 times, generates 3 predictions.

first iteration.

P2 P3

Block F1 fetched

Block F2 fetched

-no change-

Second iteration prediction killed.

First iteration prediction killed.

-empty -

0-7695-1162-7/01/$10.00 (C) 2001 IEEE
Authorized licensed use limited to: EFPL LAUSANNE. Downloaded on January 8, 2009 at 08:58 from IEEE Xplore. Restrictions apply.

not deallocated until the kill instruction retires, but merely
marked as killed and ignored for future correlations. We
store the Von Neumann number (VN#, a sequence number
used for ordering instructions) of the kill instruction with the
prediction. If the kill VN# is in the range of squashed VN#s,
we clear the kill bit, restoring the prediction.

5.3 Late Predictions
Late predictions can cause mis-correlation if the predic-

tion arrives after the associated kill. Two factors affect the
latency of generating a prediction: (1) the pipeline depth,
because the prediction generating instruction (PGI) must
reach the execute stage before the prediction is computed,
and (2) the execution latency of the slice (recall that problem
branches often depend on problem loads). Because not all
slices are forked sufficiently early, our mechanism grace-
fully supports late predictions.

To avoid mis-correlation, we allocate a prediction in the
queue when the PGI is fetched, rather than executed,
because it is easy to ensure that the PGI is fetched before its
kill. This entry is initialized to the Empty state and changed
to the Full state when the PGI executes. If an empty entry is
matched to a branch, the traditional predictor is used. Kills
behave the same whether the entry is Empty or Full.

Late predictions can also be used for early “resolution,”
because a late prediction may still arrive significantly in
advance of when the problem branch is resolved. If a predic-
tion in the Empty state is matched to a problem branch, it
transitions to the Late state and the VN# of the branch and
the prediction it used are stored in the prediction entry.
Later, when the PGI is executed, if the computed branch out-
come does not match the stored prediction and the branch
has yet to be resolved, the prediction is reversed and fetch is
redirected. Because speculative slices are not necessarily
correct, extra squashes can be introduced. These rare occur-
rences are corrected when the branch is resolved.

5.4 Prediction Correlation Hardware
Given prediction entries that support conditionally exe-

cuted branches, mis-speculation recovery, and late predic-
tions, it is straightforward to construct an accurate
prediction correlator. Figure 10 shows one possible imple-
mentation of such a correlator. More efficient implementa-
tions, as well as those that support recursion, are possible,
but they cannot be covered here due to space considerations.
Also, much of the CAM circuitry can be avoided by putting

explicit kill annotations into the program, as was described
for fork instructions in Section 4.2.

6 Performance Results
Significant performance benefits can be achieved through

speculative slice pre-execution. Because the slices in this
work have been constructed manually, we have only gener-
ated slices for a portion of the problem instructions in each
benchmark. We have profiled the runs of the SPEC2000
integer benchmarks and have selected a 100 million instruc-
tion region of the execution in the dominant phase of each
simulation2. We have identified the problem instructions in
this region and constructed slices to cover some of them. We
warm-up the caches and branch predictors by running 100
million instructions. For these experiments we assume that
only a single program is running, hence all remaining thread
contexts are idle. If multiple applications are running, higher
throughput will likely be achieved by using the thread con-
texts to run those applications instead of slices.

We present results for three experiments: 1) a base case
with the microarchitecture described in Section 2.1, 2) the
base case augmented with speculative slices (on a 4 thread
SMT), and 3) a constrained limit study to understand how
effectively the slices are achieving their goals. This con-
strained limit study is performed by “magically” avoiding
the PDEs from the problem instructions covered by our
slices. The speedups of the slice and limit cases, relative to
the base case, are shown in Figure 11 for a 4-wide machine
(the 8-wide results, omitted for space, are similar). Supple-
mental data for the benchmarks with non-trivial speedups is
provided in Table 4; the others are discussed in Section 6.2.

Substantial speedups are achieved (note that many of
these programs are within 30-50% of peak throughput, as
shown in Figure 1) by reducing the number of mispredic-
tions and cache misses (up to 72% and 64%, respectively).
For most benchmarks, the speedup is largely derived from
avoiding mispredictions; only gap, mcf, and vpr get a
majority of their benefit from prefetching. The speedups are
on the order of half of the speedup of the limit case.

6.1 Analysis
Achieving the speedup attained by the limit study necessi-

tates that the predictions and prefetches are both accurate
and timely. Accuracy is seldom a problem; our slices and

CAMCAM CAM CAMCAM

Figure 10. Prediction correlation hardware. A single entry of the branch queue contains a valid bit (valid), the PC of the branch in the
main thread (branch PC), the PCs of loop kill and slice kill instructions in the main program (loop PC and kill PC), and state for 8
predictions. Each prediction has a state (one of Invalid, Empty, Full, and Late), the direction of the prediction (T/NT), the Von Neumann
number (VN#) of the consuming instruction (consumer #) if the prediction is late, the VN# of the instruction that killed this prediction
(killer #), and whether the prediction has been killed. The table contains about 1KB of state.

T/NTstate consumer # killer #
branch PC kill PC kill PCkill PCloop PC

killed
valid

per problem branch state per prediction statebranch queue
8 predictions/branch

64 branches

2. Because the data shown here is only for a sample of the program’s exe-
cution, it cannot be compared directly with data presented in Section 2.

0-7695-1162-7/01/$10.00 (C) 2001 IEEE
Authorized licensed use limited to: EFPL LAUSANNE. Downloaded on January 8, 2009 at 08:58 from IEEE Xplore. Restrictions apply.

prediction correlation mechanism exceed a 99% prediction
accuracy when they override the traditional predictor (4 of
the 8 benchmarks in Table 4 have no induced mispredic-
tions). On the other hand, forking a slice sufficiently early to
tolerate the full latency of a misprediction or cache miss can
be problematic (discussed in Section 3.2). Around a quarter
of the slices constructed are consistently late, reducing their
benefit. One such example is prefetching the tree for mcf;
the work performed at each node is insufficient to cover the
latency of the sequential memory accesses.

Furthermore, executing slices is not free; there is the
opportunity cost of stealing resources — mostly instruction
fetch opportunities — from the main thread that contributes
to the performance discrepancy in Figure 11. This overhead

depends not only on the number of dynamic instructions
executed by a slice, but also on the cost of stealing an
instruction opportunity from the main thread. If the main
thread has insufficient ILP, is stalled on an untolerated cache
miss, or is fetching down a false path, the cost of executing
the slice can be small. On the other hand, if the main thread
is efficiently utilizing the processors resources (indicated by
a high base IPC), executing a slice can be expensive, making
many potential slices unprofitable.

Overhead is aggravated because not every instance of a
problem instruction will miss or be mispredicted. Although
many problem loads consistently miss in the cache, branch
predictors are good enough that even problem branches are
predicted 70-85% correctly. Overhead is consumed when-
ever a slice is executed, but benefit is derived only when a
PDE is avoided; this magnifies the overhead by the inverse
of the miss/misprediction rate.

As can be seen in Table 4, the amount of overhead can be
substantial. As much as 10-15% of the instructions fetched
belong to slices, but in all cases the total number of instruc-
tions fetched is reduced. Experiments (data not shown) esti-
mate that this execution overhead represents about half of
the discrepancy between our results and the limit study.
Some of the fetched slice instructions fail to “retire,” gener-
ally because the associated fork point was squashed. Fetch
bandwidth wasted on squashed slices is not a large concern

Figure 11. Speedup achieved by the slice-assisted execution
and a limit study that perfects the same set of problem
instructions. Data shown for a 4-wide machine.

0

10

20

30

40

50

60

70

80

sp
ee

d
u

p
 (

%
)

slice

limit

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr

Table 4. Characterization of program execution with and without speculative slices for benchmarks with non-trivial speedups. Each
benchmark was run for 100 million instructions.

bzip2 eon gap gzip mcf perl twolf vpr

Base Program instructions fetched (M) 187.8 154.0 127.5 179.8 357.5 133.9 200.0 175.8

Branch mispredictions (M) 1.0 0.3 0.3 1.1 2.6 0.1 1.2 0.7

Load misses (M) 0.7 0.0 0.1 0.1 6.8 0.2 1.4 1.3

Base +
Slices

Program instructions fetched (M) 148.0 133.9 112.8 127.9 273.4 121.9 164.6 130.6

Slice instructions fetched (M) 11.5 6.5 4.0 15.3 40.8 2.0 6.6 16.3

Slice instructions “retired” (M) 11.3 5.1 3.9 9.8 40.7 1.9 3.3 14.5

Fork Points (K) 306 455 135 928 8 138 594 893

Fork Points Squashed (K) 53 141 12 334 3 18 254 78

Fork Points Ignored (K) - - - - - - 0 15

Problem Branches Covered 8 9 5 25 3 12 12 6

Predictions generated (K) 3,303 1,300 2,365 2,867 2,540 687 3,610 2,131

Mis-predictions “covered” (K) 393 261 221 687 413 161 471 547

Mis-predictions removed (K) 370 257 215 680 388 120 380 510

Total mis-predictions removed (%) 37% 52% 64% 64% 15% 35% 33% 72%

Incorrect predictions (K) 1 - - 5 - - 0 3

Late predictions (%) 15% 40% 1% 11% 4% 20% 1% 31%

Problem Loads Covered 4 0 2 0 8 1 1 7

“prefetches” performed (K) 1,876 - 222 - 20,253 379 272 4,689

Cache misses “covered” (K) 547 - 37 - 4,940 58 346 1,299

Net reduction in misses (K) 396 - 37 - 3,798 51 172 1,261

Net reduction in total misses (%) 46% - 60% - 55% 30% 12% 64%

Fraction of speedup from loads ~10% - ~50% - ~80% ~20% ~10% ~50%

0-7695-1162-7/01/$10.00 (C) 2001 IEEE
Authorized licensed use limited to: EFPL LAUSANNE. Downloaded on January 8, 2009 at 08:58 from IEEE Xplore. Restrictions apply.

because it only reduces the number of wrong path instruc-
tions fetched by the main thread. Only two programs, twolf
and vpr, ignore fork requests on a machine with 3 idle
helper threads, but most programs benefit from having more
than one idle thread. Often there is one long-running, “back-
ground” slice and a number of periodic, localized slices.

6.2 Slice Construction Failures
For the selected phase of execution, we were unable to

achieve significant speedups on 3 of the benchmarks consid-
ered: gcc, parser, and vortex3. These benchmarks pro-
vide examples of difficulties in slice construction.

Many problem branches in gcc are in functions that pro-
cess rtx structures. Typically these functions have a switch
statement based on the node type, and they recursively
descend the tree-like rtx on a subset of the cases. This
switch statement is frequently a problem branch. The unpre-
dictability of the traversal, coupled with fact that computing
the traversal order is a substantial fraction of these functions,
makes generating profitable slices difficult.
Parser has two main problem localities: a hash table and

memory deallocation. Key generation for the hash table is
computationally intensive, over 50 instructions, and it
occurs right before the problem instructions. These instruc-
tions would be replicated, causing substantial slice over-
head. The memory allocator is organized as a stack, and
much of the work of deallocation is deferred until the deallo-
cated chunk becomes the top of the stack. Thus, when the
top of stack element is deallocated, a long cascade of deallo-
cations is performed. To prefetch the sequential accesses,
the fork point must be hoisted up significantly, but the
unpredictability of which call to xfree will cause the cas-
cade obstructs hoisting without causing many useless slices.

The problems with vortex are more mundane. Its base
IPC is high, within 13% of peak throughput for our 4-wide
machine, which makes the opportunity cost of slice execu-
tion high. This is aggravated by low miss/misprediction
rates by some problem instructions.

In some cases, notably parser, minor source-level
restructuring could likely enable these slices to be profitable.

6.3 Summary
Execution-based prediction using speculative slices

appears to be very promising. By adding only a small
amount of hardware (a few kilobytes of storage), we were
able to significantly improve performance on an already
aggressive machine for many of the benchmarks studied. In
considering other possible implementations, we can qualita-
tively reason about some aspects of performance:
• The speculative optimizations applied to slices have a

two-fold benefit: overhead is reduced by reducing slice

size, and timeliness is improved by reducing the critical
path through the slice.

• Programs and processors with low base IPCs (relative to
peak IPC) are more likely to benefit from slices because
the opportunity cost of slice execution is lower.

• Overhead can be reduced by not executing slices for
problem instructions that will not miss/mispredict. Some
of our slices do this statically; if the problem instructions
behave differently in different calling contexts and the
fork point is hoisted into the calling procedure, only the
profitable contexts fork slices. Obvious future work is
gating the fork using confidence [8].

• Execution overhead could be eliminated by having dedi-
cated resources to execute the slice at the expense of
additional hardware. In addition, existing slices may be
improved and additional slices may be profitable without
resource constraints.

7 Related Work
Besides our previously mentioned research to understand

backward slices [19], the closest related work is speculative
data-driven multithreading (DDMT) [13]. In that work,
Roth and Sohi describe a multithreaded processor that can
fork critical computations (much like our slices) to tolerate
memory latency and resolve branches early. The differences
between the DDMT work and this research are largely
derived from the former being implemented around a tech-
nique called register integration [12]. Integration allows the
results of speculatively executed instructions to be incorpo-
rated into the main thread when a data-flow comparison
determines that they exactly match instructions renamed by
the main thread. In this way, mispredicted branches that
were pre-executed are resolved at the rename stage (as
opposed to at fetch as with our control-based scheme) and
the main thread avoids the latency of re-executing instruc-
tions that have been pre-executed. This data-flow compari-
son requires one-to-one correspondence in the
computations, precluding optimization of slices. Further-
more, in this work we consider pre-executing computations
that contain control flow (loops and if-converted general
purpose control flow).

Three earlier works provide more restricted implementa-
tions of pre-execution, including support for linked data
structures [10], virtual function call target computation [11],
and conditional branches in “local loops” [7]. Farcy, et al.
describe a simple prediction correlator that supports
mis-speculation and late predictions, but not conditionally
executed branches [7]. The prediction correlation technique
proposed by Roth, et al. [11] is, in some sense, the comple-
ment of the one described here; it uses the path through the
program to attempt to determine when a prediction should
be used, while we use the path to invalidate predictions.

Sundaramoorthy, et al. propose a different approach to
producing a reduced version of the program with the poten-
tial to execute instructions early [15]. Their slipstream archi-

3. We also did not significantly improve crafty’s performance. Many of
crafty’s problem instructions occur in two functions, FirstOne and
LastOne, which find first and last set bits in 64-bit integers, respec-
tively. Because the Alpha architecture has instructions for these func-
tions, we did not bother optimizing them.

0-7695-1162-7/01/$10.00 (C) 2001 IEEE
Authorized licensed use limited to: EFPL LAUSANNE. Downloaded on January 8, 2009 at 08:58 from IEEE Xplore. Restrictions apply.

tecture executes a program on two cores of a chip
multiprocessor (CMP), speculatively removing “ineffectual”
computations from the first execution (the A-stream) and
verifying the speculation with the second execution (the
R-stream). Prediction correlation between the executions is
performed by the A-stream supplying a complete “trace” of
predictions to the R-stream. If the R-stream detects an incor-
rect prediction in the trace, the trace and the A-stream exe-
cution are squashed.

The uneven distribution of performance degrading events
has previously been observed. Abraham, et al. [1] quantified
the concentration of cache misses by static instruction in
SPEC89 benchmarks. Mowry and Luk [9] found that path
and context could be used to predict which dynamic
instances of instructions were likely to cache miss. Jacob-
sen, et al. [8] characterized confidence mechanisms to iden-
tify the static branches, as well as the particular dynamic
instances of those branches, likely to be mispredicted.

SSMT [3] and Assisted Execution [14] propose the con-
cept of helper threads (i.e., using idle threads in a multi-
threaded machine to improve single thread performance by
executing auxiliary code), and explore helper thread imple-
mentations of local branch prediction and stride prefetching,
respectively.

8 Conclusion
We have shown that a small set of static instructions,

which we call problem instructions, are responsible for a
significant amount of lost performance. These instructions
are not easily anticipated with existing caching, prefetching,
and branch prediction mechanisms because their behavior
does not exhibit any easily exploited regularity.

Because the program correctly computes the outcome of
all instructions, we can predict the behavior of problem
instructions by building approximations of the program
called speculative slices. These speculative slices are exe-
cuted, in advance of when the problem instructions are
encountered by the main thread, to perform memory
prefetching and generate branch predictions. The effects of
the slices are completely microarchitectural in nature, in no
way affecting the architectural state (and hence correctness)
of the program. We have found that efficient and accurate
speculative slices can be constructed for many problem
instructions. With moderate hardware extensions to a multi-
threaded machine, these slices can provide a significant
speedup (up to 43 percent).

In order to benefit from branch predictions generated by
speculative slices, we must correlate these predictions with
problem branches as they are fetched by the program. The
final contribution of this paper is a prediction correlation
mechanism that uses the path taken by the program to kill
predictions when they can no longer be used. This technique
is accurate and can potentially be used to correlate other
types of predictions (e.g., value predictions).

9 Acknowledgements
The authors would like to thank Ras Bodik, Adam Butts,

Charles Fischer, Milo Martin, Manoj Plakal, Dan Sorin, and
Amir Roth for commenting on drafts of this paper. This
work was supported in part by National Science Foundation
grants CCR-9900584 and EIA-0071924, donations from
Intel and Sun Microsystems, and the University of Wiscon-
sin Graduate School. Craig Zilles was supported by a Wis-
consin Distinguished Graduate Fellowship.

10 References
[1] S. Abraham, R. Sugumar, D. Windheiser, B. Rau, and R. Gupta. Pre-

dictability of Load/Store Instruction Latencies. In Proc. 26th Interna-
tional Symposium on Microarchitecture, pages 139–152, Dec. 1993.

[2] D. Burger and T. Austin. The SimpleScalar Tool Set, Version 2.0.
Technical Report CS-TR-97-1342, University of Wisconsin-Madi-
son, Jun. 1997.

[3] R. Chappell, J. Stark, S. Kim, S. Reinhardt, and Y. Patt. Simulta-
neous Subordinate Microthreading (SSMT). In Proc. 26th Interna-
tional Symposium on Computer Architecture, May 1999.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Al-
gorithms. The MIT Press, 1990.

[5] K. Driesen and U. Hoelzle. The Cascaded Predictor: Economical and
Adaptive Branch Target Prediction. In Proc. 31st International Sym-
posium on Microarchitecture, pages 249–258, Dec. 1998.

[6] A. Eden and T. Mudge. The YAGS Branch Prediction Scheme. In
Proc. 31nd International Symposium on Microarchitecture, pages
69–77, Nov. 1998.

[7] A. Farcy, O. Temam, R. Espasa, and T. Juan. Dataflow Analysis of
Branch Mispredictions and Its Application to Early Resolution of
Branch Outcomes. In Proc. 31st International Symposium on Mi-
croarchitecture, pages 59–68, Dec. 1998.

[8] E. Jacobsen, E. Rotenberg, and J. Smith. Assigning confidence to
conditional branch predictions. In Proc. 29th International Sympo-
sium on Microarchitecture, Dec. 1996.

[9] T. Mowry and C.-K. Luk. Predicting Data Cache Misses in Non-Nu-
meric Applications Through Correlation Profiling. In Proc. 30th In-
ternational Symposium on Microarchitecture, pages 314–320, Dec.
1997.

[10] A. Roth, A. Moshovos, and G. Sohi. Dependence Based Prefetching
for Linked Data Structures. In Proc. 8th Conference on Architectural
Support for Programming Languages and Operating Systems, pages
115–126, Oct. 1998.

[11] A. Roth, A. Moshovos, and G. Sohi. Improving Virtual Function Call
Target Prediction via Dependence-Based Pre-Computation. In Proc.
1999 International Conference on Supercomputing, pages 356–364,
Jun. 1999.

[12] A. Roth and G. Sohi. Register Integration: A Simple and Efficient
Implementation of Squash Reuse. In Proc. 33nd International Sym-
posium on Microarchitecture, Dec. 2000.

[13] A. Roth and G. Sohi. Speculative Data-Driven Multi-Threading. In
Proc. 7th International Symposium on High Performance Computer
Architecture, Jan. 2001.

[14] Y. Song and M. Dubois. Assisted Execution. Technical Report
#CENG 98-25, Department of EE-Systems, University of Southern
California, Oct. 1998.

[15] K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slipstream Proces-
sors: Improving both Performance and Fault Tolerance. In Proc. 9th
International Conference on Architectural Support for Programming
Languages and Operating Systems, Nov. 2000.

[16] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm. Ex-
ploiting Choice: Instruction Fetch and Issue on an Implementable Si-
multaneous Multithreading Processor. In Proc. 23rd International
Symposium on Computer Architecture, pages 191–202, May 1996.

[17] S. Wallace, B. Calder, and D. Tullsen. Threaded multiple path execu-
tion. In Proc. 25th International Symposium on Computer Architec-
ture, pages 238–249, Jun. 1998.

[18] M. Weiser. Program Slicing. IEEE Transactions on Software Engi-
neering, 10(4):352–357, 1984.

[19] C. Zilles and G. Sohi. Understanding the Backwards Slices of Perfor-
mance Degrading Instructions. In Proc. 27th International Sympo-
sium on Computer Architecture, June 2000.

0-7695-1162-7/01/$10.00 (C) 2001 IEEE
Authorized licensed use limited to: EFPL LAUSANNE. Downloaded on January 8, 2009 at 08:58 from IEEE Xplore. Restrictions apply.

