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Abstract 

This paper explores Speculative Precomputation, a tech- 
nique that uses idle thread contexts in a multithreaded ar- 
chitecture to improve performance of single-threaded appli- 
cations. It attacks program stalls from data cache misses by 
pre-computing future memory accesses in available thread 
contexts, and prefetching these data. This technique is eval- 
uated by simulating the performance of a research proces- 
sor based on the ltanium T M  ISA supporting Simultaneous 
Muhithreading. Two primary forms of Speculative Precom- 
putation are evaluated. If only the non-speculative thread 
spawns speculative threads, performance gains of up to 30% 
are achieved when assuming ideal hardware. However, this 
speedup drops considerably with more realistic hardware as- 
sumptions. Permitting speculative threads to directly spawn 
additional speculative threads reduces the overhead associ- 
ated with spawning threads and enables significant~, more 
aggressive speculation, overcoming this limitation. Even 
with realistic costs for spawning threads, speedups as high 
as 169% are achieved, with an average speedup of 76%. 

1. Introduction 

Memory latency still dominates the performance of many 
applications on modern processors, despite continued ad- 
vances in caches and prefetching techniques. This prob- 
lem will only worsen as CPU clock speeds continue to ad- 
vance more rapidly than memory access times, and as the 
data working sets and complexity of typical applications in- 
crease. One approach to overcome this has been to attempt 
to overlap stalls in one program with the execution of use- 

ful instructions from other programs, using techniques such 
as Simultaneous Multithreading (SMT) [19, 20] as imple- 
mented in the Alpha 21464 [5]. The SMT techniques can im- 
prove overall instruction throughput under a multiprogram- 
ming workload; however, it does not directly improve per- 
formance when only a single thread is executing. 

We propose Speculative Precomputation (SP) as a tech- 
nique to improve single-thread performance on a multi- 
threaded architecture. It utilizes otherwise idle hardware 
thread contexts to execute speculative threads on behalf of  
the non-speculative thread. These speculative threads at- 
tempt to trigger future cache miss events far enough in ad- 
vance of  access by the non-speculative thread that the mem- 
ory miss latency is avoided entirely. Speculative precom- 
putation could be thought of as a special prefetch mech- 
anism that effectively targets load instructions that tradi- 
tionally have been difficult to handle via prefetching, such 
as loads that do not exhibit predictable access patterns and 
chains of dependent loads. 

To limit the increase in contention for fetch, execute, and 
memory system bandwidth from these speculative threads, 
SP is targeted only at the static loads that cause the most 
stalls in the non-speculative thread, which we call delinquent 
loads. We find that in most programs the set of delinquent 
loads is quite small; commonly 10 or fewer static loads cause 
more than 80% of L 1 data cache misses. Similar observation 
has been made in [1]. 

Speculative threads execute precomputation slices (p- 
slices), which are sequences of dependent instructions which 
have been extracted from the non-speculative thread and 
compute the address accessed by delinquent loads. When 
a speculative thread is spawned, it precomputes the address 
expected to be accessed by a future delinquent load, and 
prefetches the data. Speculative threads can be spawned 
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when a designated instruction from the non-speculative 
thread reaches a particular stage in the pipeline (e.g, the com- 
mit stage) or by one speculative thread explicitly spawning 
another. These conditions are referred to as a basic trigger 
and a chaining trigger, respectively. Though not explored 
here, further advanced trigger types could be used, such as 
those described in [23]. 

This work evaluates the performance gains provided by 
both forms of speculative precomputation on a research SMT 
processor implementing the Itanium TM instruction set [8]. 
Our results show that under ideal conditions, SP with basic 
triggers provides gains as high as 30%, but under realistic 
hardware assumptions these gains are reduced significantly. 
However, using chaining triggers in addition to basic trig- 
gers on a processor with 8 total thread contexts achieves a 
speedup of up to 169% (average 76%), even with realistic 
hardware assumptions. 

The remainder of the paper is organized as follows. 
Section 2 discusses related research. Section 3 presents 
our baseline processor model and outlines the evaluation 
methodology. Section 4 provides motivation for SR Section 
5 explains algorithms for extracting and optimizing p-slices 
and mechanisms employed by SP at runtime. Section 6 pro- 
vides experimental results for SP when only basic triggers 
are used. Section 7 shows results when both basic triggers 
and chaining triggers are used. Section 8 concludes. 

2. Related Work  

Various research projects have considered leveraging idle 
multithreading hardware to improve single-thread perfor- 
mance. Roth and Sohi proposed speculative data driven mul- 
tithreading (DDMT) [13], in which speculative threads exe- 
cute on idle hardware thread contexts to prefetch for future 
memory accesses and predict future branches. Their work 
focused on application to an out-of-order processor. In this 
paper, we first evaluate an idea motivated by Roth's research 
in the basic trigger scheme to gauge its potential for the Ita- 
nium architecture and to identify areas for further improve- 
ment. This work focuses on a research Itanium family SMT 
processor in which the core pipeline is in-order. 

ZiJles and Sohi studied the backward slices of perfor- 
mance degrading instructions [25]. Their work focused 

on characterizing the instructions preceding hard-to-predict 
branches or cache misses and on exploring techniques to 
minimize the size of the backward slices. The precomputa- 
tion slices used by our work are constructed within an in- 
struction window of size 128-256, in a similar manner to 
Zilles and Sohi's work, which assumed a window size of 
512. 

Chappel et al. proposed Simultaneous Subordinate Mi- 
crothreading (SSMT) [4], in which sequences of microcode 
are injected into the main thread when certain events occur, 
providing a software mechanism to override default hard- 
ware behavior, such as branch predictor algorithms. Dubois 
and Song proposed Assisted Execution [ 15] in which tightly- 
coupled subordinate threads, known as nanothreads, share 
fetch and execution resources on a dynamically scheduled 
processor to accelerate or gather performance statistics on 
the main thread. 

Sundaramoorthy et al. proposed Slipstream Proces- 
sors [17], in which a non-speculative version of a program 
runs alongside a shortened, speculative version. Outcomes 
of certain instructions in the speculative version are passed 
to the non-speculative version, providing a speedup if the 
speculative outcome is correct. Their work focused on im- 
plementation on a chip-multiprocessor (CMP). 

Wallace et al. proposed Threaded Multipath Execution 
(TME) [22]. TME attempts to reduce performance loss due 
to branch mispredictions by forking speculative threads that 
execute both directions of a branch, when a hard to predict 
branch is encountered. Once the branch direction is known, 
the incorrect thread is killed. 

This work is unique in its targeting of the Itanium fam- 
ily processor, the low hardware cost of our thread spawning 
mechanisms, and the use of chaining triggers to greatly in- 
crease the effectiveness of these techniques. 

3. Exper imenta l  M e t h o d o l o g y  

This paper studies the effects of Speculative Precompu- 
tation on a research SMT processor implementing the Ita- 
nium [7] instruction set architecture. The pipeline organiza- 
tion is depicted in Figure 1. Processors in the Itanium family 
fetch instructions in units of bundles, rather than individual 
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Pipeline Structure 2GHz: 8 stage pipeline, 1 cycle misfetch penalty, 6 cycle mispredict penalty 
4GHz: 10 stage pipeline, 1 cycle misfetch penalty, 8 cycle mispredict penalty 
8GHz: 12 stage pipeline, 2 cycle misfetch penalty, 10 cycle mispredict penalty 

Fetch 2 bundles from 1 thread, or 1 bundle from 2 threads 
Branch Predictor 2K entry GSHARE, 256 entry 4-way associative BTB 
Expansion Queue Private, per-thread, in-order 8 bundle queue 
Register Files Private, per-thread register files. 128 Int Reg, 128 FP Reg, 64 Predicate Reg 
Execute Bandwidth Up to 6 instructions from one thread or up to 3 instructions from 2 threads 
Memory Hierarchy 

Memory latency 
TLB Miss Penalty 

L1 (separate I and D): 16K 4-way, 8 way banked, 1 cycle latency 
L2 (shared): 256K 4-way, 8 way banked, 7 cycle latency 
L3 (shared): 3072K 12-way, 1 way banked, 15 cycle latency 
All caches have 64 byte lines 
2GHz: 115 cycles, 4GHz: 200 cycles, 8GHz: 357 cycles 
2GHz: 30 cycles, 4GHz: 60 cycles, 8GHz: 120 cycles 

Table 1. Details of  the modeled research Itanium processor 

instructions [8]. Each bundle is comprised of three indepen- 
dent instructions that the compiler has grouped together. The 
modeled processor has a maximum fetch bandwidth of two 
bundles per cycle. 

Instructions are issued in-order, from an 8-bundle ex- 
pansion queue, which operates like an in-order instruction 
queue. The maximum execution bandwidth is 6 instructions 
per cycle, which can be from up to two bundles. Suffi- 
cient functional units exist to guarantee that any two issued 
bundles are executed in parallel without functional unit con- 
tention, and up to four loads or stores can be performed per 
cycle. 

The aggressive memory hierarchy consists of separate 
16K 4-way set associative L1 Instruction and Data caches, 
a 256K 4-way set associative L2 shared cache and a 3072K 
12-way set associative shared L3 cache. All caches are on 
chip. Data caches are multi-way banked, but the instruction 
cache is dual ported to avoid fetch conflicts between threads. 
Note: even on a processor with more than 2 thread contexts, 
dual- ported I-Cache is assumed. More details are described 
in the next subsection. Caches are non-blocking with up to 
16 misses in flight at once, where multiple misses to the same 
cache line each count separately. A miss upon reaching this 
limit stalls the execute stage. Speculative threads are permit- 
ted to issue loads that will stall the execute stage. 

We model a pipelined hardware TLB miss handler [14]. 
It resolves TLB misses by fetching the TLB entry from an 
on-chip buffer (separate from data and instruction caches). 
In the default configuration, TLB misses are handled in 30 
clock cycles, and we allow memory accesses from specula- 
tive threads to initiate TLB update. 

The baseline processor has a 2GHz clock rate. Higher 
clock frequencies are modeled by increased latency to main 
memory, extra overhead for TLB miss handler and longer 
penalties for both branch misprediction and instruction mis- 
fetch. On-chip cache latencies remain constant in terms of 
CPU cycles. Unless otherwise noted, simulations assume a 
2GHz processor configuration. Full details of the modeled 

Suite Benchmark Input Fast-forward 
SPECFP art Training 1 billion 
SPECFP equake Training 1 billion 
SPECINT gzip Training 1 billion 
SPECINT mcf Training 1 billion 
Olden health 5 Levels I00 million 
Olden mst 1031 nodes 230 million 

Table 2. Workload Setup 

processor are shown in Table 1. 

3.1. Mul t i thread ing  

All simulations in this work assume a single non- 
speculative thread persistently occupies one hardware thread 
context throughout its execution while the remaining hard- 
ware thread contexts are either idle or occupied by spec- 
ulative threads. The term "non-speculative thread" will be 
used interchangeably with "main thread" throughout this pa- 
per. Each hardware thread context has a private, per-thread 
expansion queue and register files. All architecturally visi- 
ble registers, including 128 general purpose integer registers 
(GR), 128 fp registers (FR), 64 predicate registers (PR) and 
128 control registers [14] are replicated for each thread. 

If  more than one thread is ready to fetch or execute, two 
threads are selected from those that are ready, and each is 
given half of the resource bandwidth. Thus, if two threads 
are ready to fetch, each is allowed to fetch one bundle. A 
round-robin policy is used to prioritize the sharing between 
threads. If only one thread is ready, it is allocated the entire 
bandwidth. 

If instructions stall before they reach the expansion queue, 
the stall will cause pipeline backpressure. To prevent a 
stalling thread from affecting all other threads, a fetch-replay 
is performed when a thread attempts to insert a bundle into its 
already full queue. When this occurs, the bundle is dropped 
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Figure 2. Cumulative L1 data cache misses con- 
tributed by the worst behaving static loads. 

by the expansion queue, and the thread of concern is pre- 
vented from fetching again until it has issued an instruction. 

3.2. Simulation Environment and Workloads 

We model processor performance using a version of the 
SMTSIM simulator [ 18] that has been enhanced to work with 
Itanium binaries. SMTSIM is a cycle-accurate, execution- 
driven simulator of SMT processors. Benchmarks for this 
study include both integer and floating point benchmarks se- 
lected from the CPU2000 suite [16] and pointer-intensive 
benchmarks from the Olden suite [3]. Benchmarks are se- 
lected because their performance is limited by poor cache 
performance or because they experience high data cache 
miss rates. The benchmarks and simulation setup are sum- 
marized in Table 2. Unless otherwise noted, all benchmarks 
are simulated for 100 million retired instructions after fast- 
forwarding past initialization code (with cache warmup). In 
our initial simulation experiments, much longer runs of the 
benchmarks were performed, however it was observed that 
the longer-running simulation results yielded only negligible 
performance differences. 

All binaries used in this work are compiled with the In- 
tel Electron compiler for the Itanium architecture [2, 11]. 
This advanced compiler incorporates the state-of-the-art op- 
timization techniques known in the compiler community as 
well as novel techniques designed specifically for the fea- 
tures of the Itanium architecture. Benchmarks for this re- 
search are compiled with maximum compiler optimizations 
enabled, including those based on profile driven feedback, 
such as aggressive software prefetching, software pipelining, 
control speculation and data speculation. 

4. D e l i n q u e n t  Loads  

For most programs, only a small number of static loads 
are responsible for the vast majority of cache misses [ 1 ]. Fig- 
ure 2 shows the cumulative contributions to L1 data cache 
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Figure 3. Speedup when 10 worst behaving static 
loads are assumed to always hit in cache. 

misses by the top 50 static loads for the processor modeled 
in this research, running benchmarks to completion. It is ev- 
ident that cache misses in these programs are dominated by 
a few static loads. We call these poorly behaved loads delin- 
quent loads. 

In order to gauge the impact of these loads on perfor- 
mance, Figure 3 compares results when the worst 10 delin- 
quent loads are assumed to always hit in the L I cache, ver- 
sus a perfect memory subsystem where all loads hit in the 
L1. In most cases, eliminating performance losses from only 
the delinquent loads yields much of the speedup achievable 
by zero-miss-penalty memory. This data motivates special 
focus on a technique that targets these delinquent loads. 

5. Specu la t ive  P r e c o m p u t a t i o n  

In speculative precomputation, an event triggers the invo- 
cation and execution of a p-slice. A p-slice is a speculative 
thread that computes and prefetches an address expected to 
be accessed by a delinquent load in the near future. Specula- 
tive threads are spawned under one of two conditions: when 
encountering a basic trigger, which occurs when a designated 
instruction in the main thread reaches a particular pipeline 
stage (such as the commit stage), or a chaining trigger, when 
one speculative thread explicitly spawns another. 

A speculative thread is spawned by allocating a hardware 
thread context, copying necessary live-in values into its reg- 
ister file, and providing the thread context with the address of 
the first instruction of the thread. If  a free hardware context 
is not available the spawn request is ignored. 

Necessary live-in values are always copied into the thread 
context when a speculative thread is spawned. This elimi- 
nates the possibility of inter-thread hazards, where some reg- 
ister is overwritten in one thread before a child thread has 
read it. Fortunately, as shown in Table 3, the number of live- 
in values that must be copied is very small. 

When spawned, a speculative thread occupies a hardware 
thread context until the speculative thread completes execu- 
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Benchmark # Slices(Opt) Average Average 
Length(Opt) # Live-in 

art 26 (2) 14.7 (4) 3.5 
equake 35 (8) 13.1 (12.5) 4.5 
gzip 307 (9) 14.0 (9.5) 6.0 
mcf 49 (6) 5.2 (5.8) 2.5 
health 33 (8) 15.9 (9.1) 5.3 
mst 138 (8) 34.8 (26) 4.7 

Table 3. Statistics on p-slices for delinquent loads. 
Numbers shown in parenthesis are values after op- 
timization. 

tion of all instructions in the p-slice. Speculative threads 
must not update the architectural state, for example, by exe- 
cuting a store instruction. 

5.1. Speculative Precomputation Tasks 

Several steps are necessary to employ speculative pre- 
computation: identification of the set of delinquent loads, 
construction of p-slices for these loads, and the establish- 
ment of triggers. This work assumes that these steps are 
performed with some compiler assistance as well as some 
hardware support. Our future work will explore the actual 
implementation details of both compiler assistance and hard- 
ware support needed. The following section gives details on 
each phase of the procedure, followed by a demonstration 
of the procedure when applied to a delinquent load from the 
CPU2000 benchmark mcf, in Section 5.2. 

Optimize Basic Triggers and P-Slices Many of the iden- 
tified p-slices can be removed. These include redundant 
triggers (multiple triggers targeting the same load), rarely- 
executed triggers, and triggers that are too close to the target 
load. Table 3 shows that most potential p-slices are actu- 
ally removed in this phase. Additionally, generated slices 
are modified to make use of induction unrolling [13]. 

Identify Delinquent Loads The set of delinquent loads 
that contribute the majority of cache misses is determined 
through memory access profiling, performed either by the 
Compiler or a memory access simulator, such as dinero [10]. 
From this profile analysis, the loads that have the largest im- 
pact on performance are selected as delinquent loads. This 
work uses the total number of LI cache misses as the crite- 
rion to select delinquent loads, but other filters (e.g., one that 
also accounted for L2 or L3 misses or total memory latency) 
Could also be used. 

Construct P-Slices In this phase, each benchmark is sim- 
ulated on a functional Itanium simulator [21] to create the 
p- slices for each delinquent load. Whenever a delinquent 
load is executed, the instruction that had been executed 128 

arc=arcs+group_/oos; 
for(;arc<stoparcs;arc÷=nr_group)( 

if(arc-,ident>BASIC)( 
red_cost=arc->cost-arc->tail->potentlal + 

arc->head->potential; 
if((red_cost<0&&arc->ident==AT_LOWER) ll 

(~ed_cost>0&&arc->ident==AT_UPPER)){ 
basket_size++; 
perm[basket_size]->a=arc; 
perm[basket_size]->cost=redcost; 

Delinquent Load#1  

Delinquent Load#2 
Delinquent Load#3 

perm[basket size] ->abs_cost=ABS (red_cost) ; 

} t l  Miss Rate / L2 Miss Rate / L3 Miss Rate / 
% Capacity Miss % Capacity Miss % Capacity Miss 

Delinquent Load# I 99.95% / 99.98% 48.06% / 82.78% 67.64% / 97.38n/o 

Delinquent Load# 2 89.92% / 97.60% 63.55% / 86.51% 20.04% / 47.88% 

Delinquent Load# 3 93.1 On/, / 99.1% 45.33% / 74.65% 20.70% / 44.74% 

Figure 4. Sample procedure from MCF, pbeampp.c 
lines 180-195, containing 3 delinquent loads. 

instructions prior in the dynamic execution stream is marked 
as a potential basic trigger. The next few times that this po- 
tential trigger is executed, the instruction stream is observed 
to verify the same delinquent load will be executed some- 
where within the next 256 instructions. If the potential trig- 
ger consistently fails to lead to the delinquent load, it is dis- 
carded. Otherwise, if the trigger does consistently lead to 
the delinquent load, the trigger is confirmed and the back- 
ward slice of instructions between the delinquent load and 
the trigger is captured. This work considers a smaller win- 
dow of instructions from which to generate the p-slice than 
previous work [25, 13] in anticipation of efficient hardware 
implementation. Instructions (limited to maximum of 256) 
between the trigger and the delinquent load constitute poten- 
tial instructions for constructing the p-slice. Those unneces- 
sary to compute the address accessed by the delinquent load 
are eliminated, resulting in small p-slices generally between 
5 to 15 instructions in length. 

Link Slices into Binary For each benchmark, the instruc- 
tions from each p-slice are appended to the program binary 
in a special program text segment. Steps can be taken to min- 
imize potential instruction cache interference between the 
speculative thread and the main thread [24]. However, for 
this study we found instruction fetch for the p-slices did not 
introduce any noticeable increase in I-cache misses for the 
non-speculative thread. 

5.2. A n  E x a m p l e  - M C F  

Figure 4 illustrates the source code for a key loop from the 
mcf benchmark. The loop contains three delinquent loads, 
which are annotated, and their cache miss statistics shown. 
It is important to note the high number of  cache misses at 
both L1 and L2 are due to capacity misses [6]. Conventional 
wisdom dictates that we increase the size of  the cache, how- 
ever, this risks impacting the cache access latency. 

Figure 5 shows a partial assembly listing and a p-slice 
captured from this procedure when applied to delinquent 
load #3 in Figure 4. The p-slice targets an instance of 
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Loop Carried Dependence 
I 

I 404900: add r14=r14, rll 

L4m" 404901: add r9=r9, rll ~iC 

~. ©,~ :, . . . . . . . .  ! . i  ~ ~:== ~ ~:~ ~ ~ "<4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i :  ++~-<i ~ii ~:; 4 

404910: add r40=r40,rll; ; 
404911: id4 r17=[r14] 

404912: add r3=r3,rll 

404920: idS.s r2= [r40] 

404921: add r26=8,r20; ; Basic P-Slice 
404922 : cmp. itu.unc p15 ,p14=r3 , r30 

add r9=r9, ii 
404930: id8.s r16=[r9] ~ id8.s r16=[r9] 

404931: id4.s r25=[rS] add r15=80,r16 
404932: add r28=l,r50; ; idv r21=[r15] 

404940: add r24=80,r2 

404941 : cmp4 . le. unc p13 , p12=r17, rO 

404942 : cmp4 .ne .unc p14 ,p6=l , r17 

404950: idS.s r19= [r26] 

404951: nop.f 0 

404952: (p13) br.cond.dpnt .b6 87; ; 

404960: add r15=80, r16 

404961: chk.s r16, .b6_164 
404962: nop.i 0 

404990: id4 .s r23=[r24] ; ; 
404991: Id4 r21= [r15] ~ 

404992: chk.s r2, .b6_166"~, 

Delinquent 
Loadt 

Figure 5. The p-slice for an example delinquent load. 

the delinquent load one loop iteration ahead of the non- 
speculative thread when the p-slice is spawned. 

It is important to note that simply embedding the instruc- 
tions from the p-slice directly in the main program as a form 
of software prefetch will not be as effective as SR and in 
some circumstances could actually lower performance. If the 
first load misses in cache and the add which follows attempts 
to access this data before it has arrived, the main thread will 
stall. In contrast, when executed as a speculative thread, the 
main thread is unaffected by any stalls that occur when exe- 
cuting a p-slice. 

5.3. Comparison to Traditional Prefetching 

We briefly highlight the key differences between specu- 
lative precomputation and traditional forms of prefetching. 
Software prefetching places explicit prefetch instructions in 
the main program code in advance of loads. These tech- 
niques are less effective in the presence of irregular con- 
trol flow or load misses that depend on other load misses 
(particularly in an in-order processor, where a load miss can 
stall the processor, even if it is only computing an address 
to be used in a later prefetch). Hardware prefetching tech- 
niques work best on regular data accesses; hardware tech- 
niques that do well with pointer-chasing codes have been 
proposed [12, 9], but employ complex prefetch hardware 
and large tables to capture these patterns (assuming they 
remain stable). Those cases that conventional prefetching 
techniques do not cover well are handled in a straightfor- 
ward manner with speculative precomputation because the 
prefetching threads are allowed to run decoupled from the 
main thread, and because addresses are calculated using code 

extracted from the original thread. 

6. Speculative Precomputation using Basic 
Triggers 

This section examines the performance gains of SP with 
basic triggers under two scenarios: in the first, ideal scenario, 
aggressive hardware support is assumed to gauge the upper 
bound for potential performance gains. In the second sce- 
nario, realistic implementation constraints for the Itanium 
family processors are taken into account, in which we lever- 
age existing Itanium architectural features to facilitate im- 
plementation of SP without assuming aggressive hardware 
support. 

6.1. Bounding Basic Trigger Performance 

This subsection models two idea'l SP configurations. Both 
only spawn speculative threads on the correct control path, 
but one does so when a trigger instruction reaches the rename 
stage (even though instructions which reach this stage are not 
guaranteed to be on the correct control path, we do not model 
wrong path spawning in this work), while the other waits un- 
til the commit stage (where the instruction is guaranteed to 
be on the correct path). In both cases, we assume aggres- 
sive and ideal hardware support for directly copying live-in 
values from the main thread's context to its child thread's 
context, i.e., one-cycle flash-copy. This allows the specula- 
tive thread to begin precomputation of a p-slice just one cycle 
after it is spawned. 

Figure 6 shows the performance gains achieved through 
SP as the total number of  hardware thread contexts is varied. 
For each benchmark, results are grouped into three pairs, 
corresponding to 2, 4 or 8 total hardware thread contexts. 
Within each pair, the configuration on the left models spawn- 
ing speculative threads in the rename stage, and the one on 
the right models thread spawning in the commit stage. 

Most benchmarks show gains from SP. For the most ag- 
gressive configuration (8 threads contexts, spawn in rename) 
the average speedup is 13.5%, and mst enjoys speedup of 
32%. Gzip and health are the noticeable exceptions. As 
shown in Figure 3, having perfect delinquent loads only 
yields a 4% speedup for gzip (due to its high L2 hit rate). 
Thus, overhead from executing speculative threads hinders 
any performance gain. Health has potential for high speedup, 
but fails to achieve this speedup because it is not possible to 
sufficiently distance basic triggers from the targeted delin- 
quent loads in its tight, pointer chasing loops. In Section 7, 
a new technique is introduced that overcomes this problem. 

Increasing the number of  hardware thread contexts results 
in opportunities for more speculation to be performed at run- 
time, reducing cancellation of  thread spawning due to un- 
available thread contexts. It is interesting to note that for all 
benchmarks which show benefits from SE increasing thread 
contexts brings about more speedup. However, the contrary 
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is also true for benchmarks that suffer from SP; as the num- 
ber of thread contexts is increased, gzip shows larger perfor- 
mance degradation. 

6.2. S o f t w a r e - B a s e d  Speculat ive  P r e c o m p u t a t i o n  

The previous subsection assumes a machine that em- 
ploys ideal, one-cycle flash-copy between register files of the 
two thread contexts, permitting the non-speculative thread 
tO spawn speculative threads instantly and without incurring 
any overhead cycles. Such an ideal machine may be diffi- 
cult to implement for the Itanium family processors due to 
the cost of implementing a flash copy mechanism for such 
large register files. This reality motivates us to explore a less 
aggressive but more practical software-based SP (SSP) ap- 
proach, which circumvents such hardware costs by directly 
taking advantage of the existing Itanium architectural fea- 
tures. 

Before introducing the details of SSR it is important 
tO note that SP requires two basic mechanisms to support 
thread spawning regardless of implememat ion-a  mechanism 
tO bind a spawned thread to a free hardware context, and a 
mechanism to transfer necessary live-in values to the child 
thread. Both of these can be implemented using existing 
features of the Itanium processor family: on-chip memory 
buffers, which are used as spill area for the backing store of 
the Register Stack Engine (RSE) [8]; and the lightweight ex- 
ception recovery mechanism, which is used to recover from 
incorrect control- and data speculations [14]. The result of 
using these existing Itanium features is a software-based ap- 
proach for SP that does not require additional dedicated hard- 
ware. The details are described below. 

Using LIB for Lightweight Live-in Transfer Without 
flash-copy hardware, one thread cannot directly access the 
registers of another thread, necessitating an intermediate 
buffer for transfer of live-in values from a parent thread to 
its child. Processors in the Itanium family contain special 
on-chip memory buffers for use as backing store for the RSE 
tO host temporarily spilled registers. These buffers are ar- 
chitecturally visible, and can be accessed from every thread 
context. We allocate a portion of this buffer space and ded- 
icate it as an intermediate buffer for passing live-in values 
from a parent thread to a child thread. We call this buffer 
space the Live-in Buffer (LIB). 

The LIB is accessed through normal loads and stores, 
which are conceptually similar to spilling and refilling in- 
structions except across register files of different thread con- 
texts. The parent thread stores a sequence of values into the 
LIB before spawning the child thread, and the child thread, 
right after binding to a hardware context, loads the live-in 
values from the LIB into its context prior to executing the p- 
slice instructions. As shown in Table 3, there are fewer than 
8 live-in values for most slices. Our processor features 4 
10ads/store units, permitting these live-in values to be passed 
from parent to child in only 4 cycles total. 

i DS~-wn Rename~ 2 Con~:~ 13 Spawn Commit, 2 Context 
[] Spawn Rename, 4 Context 
F] Spawn Rename, 8 Context 

[] Spawn Commit, 4 Context 
[] Spawn Commit, 8 Context 

• 1.4 
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~ 0.9 . . . . . . . . . . . . . . .  

0.8 . . . . . . . .  
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Figure 6. Speedup provided by basic triggers with 
ideal hardware assumptions. 

Spawning Threads Via Lightweight Exception Recovery 
We can spawn a speculative thread and bind it to a free hard- 
ware context via the lightweight exception-recovery mecha- 
nism in the Itanium architecture. This mechanism uses the 
speculation check instructions to examine the results of user- 
level control- or data- speculative calculations to determine 
success or failure. Should failure occur, an exception sur- 
faces and a branch is taken to a user defined recovery han- 
dler code within the thread, without requiring OS interven- 
tion. For example, when a chk.a (advanced load check) in- 
struction detects that some store conflicts with an earlier ad- 
vanced load, it will trigger branching into a recovery code [8] 
within the current program binary, and execute a sequence of 
instructions to repair the exception. Afterwards, the control 
branches back to the instruction following the one that raised 
the exception. We take advantage of this feature by intro- 
ducing a new speculation check instruction, chk.c (available 
context check). The chk.c instruction raises an exception if a 
free hardware context is available for spawning a speculative 
thread. Otherwise, chk.c behaves like a nop. 

A chk.c instruction is placed in the code wherever a basic 
trigger is needed. The recovery code simply stores the live- 
in state to the LIB, executes a spawn instruction to initiate 
the child thread and then returns. The child thread begins 
execution by loading the values from the LIB into its thread 
context. 

There are two strengths to this approach over simply em- 
bedding the spawn code directly in the main program. First, 
the spawn code is only executed when a free thread context 
is actually available. Second, existing binaries can be easily 
modified to take advantage of this mechanism by changing 
a single instruction (for example, a nop) to a chk.c instruc- 
tion and adding the recovery code at the end of the existing 
binary. 

The SSP approach differs from the idealized hardware ap- 
proach in two ways. First, spawning a thread is no longer 
instantaneous and will slow down the non-speculative thread 
by the time necessary to invoke and execute the exception 
handler. At the very minimum, invoking this exception han- 

20 



!DNo Spawn Cost DPipe flush BFlush+8 cyc DFlush+16 cyc i I 

, 1.4 

ic~1"2[~ 

~0.6; U 

0.2 
art equake gzip mcf health mst Average 

Figure 7. Speedup achieved by the software-based 
SP approach. Each bar corresponds to a different 
cost associated with spawning threads in the com- 
mit stage. 

dler requires a pipeline flush. The second difference is that p- 
slices must be modified to first load their live-in values from 
the LIB, delaying the beginning of precomputation. 

Performance of SSP Figure 7 shows the performance 
speedups achieved when using SSP for a processor with 
8 hardware thread contexts. Four processor configurations 
are shown, each corresponding to differing thread spawn- 
ing costs. The leftmost configuration is given for reference- 
speculative threads are spawned with no penalty for the non- 
speculative thread, but must still perform a sequence of load 
instructions to read their live-in values from the LIB. This 
configuration yields the highest possible performance under 
SSP becaUse the main thread is still instantaneous in spawn- 
ing a speculative thread. In the 3 remaining configurations, 
spawning a speculative thread causes the non-speculative 
thread's instructions following the chk.c to be flushed from 
the pipeline. In the configuration second from the left, this 
pipeline flush is the only penalty, while in the third and fourth 
configurations, an additional penalty of 8 and 16 cycles, re- 
spectively, is assumed for the cost of executing the recovery 
handler code. 

These results fall far short of the ideal hardware results 
(see Figure 6), due primarily to the spawning overhead. The 
penalty of pipeline flush and the cost of performing the store 
instructions, both negatively affect the performance of the 
non-speculative thread. Two approaches to this problem are 
either choosing delinquent loads more judiciously by taking 
into account the overhead associated with spawning threads, 
or through incorporating additional hardware to accelerate 
thread spawning. 

A third option is presented in the next section, which in- 
troduces a more aggressive form of SP that minimizes the 
overhead imposed on the non-speculative thread while still 
using the SSP approach. For the remainder of  this paper, we 
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Figure 8. Runtime behavior of p-slice from Figure 5 
after being enhanced to incorporate chaining trig- 
gers. 

assume SSP is still used to invoke basic t, iggers, and include 
its overhead in all our simulations (using the most conserva- 
tive estimate of thread spawning overhead, a pipeline flush 
plus 16 cycles). 

7. Speculat ive  Precomputat ion  with  Chaining  
Triggers 

Two problems limit performance gains from SP when 
only basic triggers are used. First, speculative threads are 
only spawned in response to progress made by the non- 
speculative thread. This means we are unable to spawn ad- 
ditional threads when the main thread stalls, when there is 
reduced fetch and execution contention. Second, to effec- 
tively prefetch data for delinquent loads, it is often neces- 
sary to precompute p-slices many loop iterations ahead of 
the non-speculative thread. Induction unrolling [13] was in- 
troduced for this purpose, but it increases the total number of 
speculative instructions executed without actually increasing 
the number of delinquent loads targeted. Executing more 
instructions also puts extra pressure on available hardware 
thread contexts because each speculative thread will occupy 
a thread context for a longer period. 

7.1. Chaining Triggers 

To overcome both problems described above we intro- 
duce a novel technique called chaining triggers, which al- 
lows one speculative thread to explicitly spawn another spec- 
ulative thread. To illustrate the use of chaining triggers, we 
return to the sample loop from mcf shown in Figure 4. A key 
feature for applying chaining triggers to this loop (which was 
not effectively exploited with only basic triggers) is that the 
stride in the addresses consumed by load #1 is a dynamic 
invariant whose value is fixed for the duration of the loop. 
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Figure 8 shows how the basic p-slice from Figure 5 be- 
haves at runtime after being enhanced to incorporate chain- 
ing triggers (notice the spawn instruction in the p-slice). Be- 
cause the only loop-carried dependence affecting the delin- 
quent loads is computed by the loop induction variable 
(which requires only a single add instruction), available 
parallelism can be aggressively exploited-immediately af- 
ter computing the next address to be accessed by load #1, 
Speculative threads are spawned to precompute for the next 
loop iteration. Thus, this use of chaining triggers makes 
it possible to precompute arbitrarily far ahead of the non- 
speculative thread, constrained only by the time necessary 
to compute necessary loop carried dependencies. In loops 
such as this one, where the loop-carried dependencies are 
Computed early, chaining triggers can advance to future loop 
iterations much faster than the non-speculative thread. This 
feature makes it possible to achieve dramatically higher per- 
formance than with basic triggers alone. 

Spawning a thread via a chaining trigger imposes signif- 
icantly less overhead than a basic trigger because a chain- 
ing trigger requires no action from the main thread; instead 
the speculative thread directly stores values to the LIB and 
Spawns child threads. For all benchmarks studied in this 
work except gzip, the vast majority of speculative threads 
are spawned from chaining triggers; for example, mcf con- 
tains a loop in which several hundred chaining triggers occur 
for each basic trigger. 

7.2. Generation of Chaining Triggers 

P-slices containing chaining triggers typically have three 
parts-a prologue, a spawn instruction for spawning another 
copy of this p-slice, and an epilogue. The prologue con- 
sists of instructions that compute values associated with a 
loop carried dependence, such as updates to a loop induction 
variable. The epilog consists of the instructions that actu- 
ally produce the address accessed by the targeted delinquent 
load. The goal behind chaining trigger construction is for 
the prologue to be executed as quickly as possible, enabling 
additional speculative threads to be spawned as soon as pos- 
sible. 

A simple process can be used to add chaining triggers to 
basic p-slices that target delinquent loads within loops. The 
algorithm presented in Section 5.1 is augmented to track the 
distance between different instances of a delinquent load. 
If two instances of the same load consistently occur within 
some fixed sized window of instructions, a new p-slice is cre- 
ated which targets the load via chaining triggers. The prolog 
of the p-slice consists of instructions which modify values 
that are used in some future loop iteration to compute the ad- 
dress accessed by the delinquent load. The epilogue consists 
of the actual instructions within the loop used to compute the 
delinquent load address. Between the prologue and epilogue, 
a spawn instruction is inserted to spawn another copy of this 
p-slice. 

7.3. Pending Slice Queue 

It can be advantageous, especially in processors with few 
hardware thread contexts, to support a larger number of spec- 
ulative threads than the number of total hardware thread con- 
texts. This permits aggressive thread spawning, where 'over- 
flow' speculative threads wait until a free thread context be- 
comes available. We introduce a new hardware structure, 
called the Pending Slice Queue (PSQ). When a p-slice is 
spawned but all thread contexts are occupied, the p-slice is 
instead allocated an entry in the PSQ, if one is available. 
Thus, the sum of the total entries in the PSQ and the num- 
ber of  hardware contexts is the upper bound on the number 
of speculative threads that can exist at one time, Once allo- 
cated, a PSQ entry remains occupied until the thread is as- 
signed to a hardware context. Waiting threads are allocated 
to hardware contexts using a FIFO policy. 

The addition of  the PSQ does not significantly increase 
processor complexity. The only necessary changes are to 
increase the size of  the LIB and to add logic that chooses the 
next pending slice to assign to a thread context. 

Because values stored in the LIB are no longer consumed 
immediately, it is necessary to increase its size to prevent 
useful values from being overwritten. However, the size of  
this buffer need not be excessively large-the number of reg- 
ister live-in values for all slices encountered in this research 
is never greater than 16. Assuming all of these values are 64 
bits, a LIB statically partitioned for 16 threads would only 
require 2KBytes of storage. 

It is in the use of  the PSQ that the true benefit of the LIB 
becomes evident. Copying the live-in values from the parent 
thread to the LIB at spawn time ensures that the child thread 
will have valid live-in values to operate on when it eventually 
binds to a thread context, regardless of how long it is forced 
to wait in the PSQ. 

7.4. Controlling Precomputation 

Because the use of  chaining triggers decouples thread 
spawning from progress made by the main thread, a con- 
trol mechanism is necessary to prevent overly aggressive pre- 
computation fi'om getting too far ahead and evicting useful 
data from the cache before it has been accessed by the main 
thread. In addition, once the main thread leaves the scope of  
a p-slice, e.g. after exiting a pointer chasing loop or proce- 
dure, all speculative threads should be terminated to prevent 
useless prefetches. 

We found that two simple mechanisms are sufficient to 
eliminate ineffective speculative threads. First, a thread that 
performs a memory access for which the hardware page table 
walker fails to find a valid translation, such as NULL pointer 
reference, is terminated; any chaining trigger executed after- 
wards in this p-slice is treated as a nop. This allows specula- 
tive threads to naturally "drain" out of the processor without 
spawning additional useless threads. 

The second mechanism eliminates speculative threads 
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Figure 9. Speedup from Speculative Precomputa- 
tion using both Basic and Chaining Triggers. 

when the non-speculative thread leaves a section of the pro- 
gram. This can be achieved by adding an additional ba- 
sic trigger that is equivalent to a speculative thread flush, 
which terminates all currently executing speculative threads 
and clears all entries in the PSQ. The thread flushing trigger 
can be inserted at the exit of scopes which spawn speculative 
threads. 

Speculative precomputation provides maximal benefit 
when speculative threads are aggressive enough to fully 
cover memory latencies, but not so aggressive as to evict 
data out of the cache before they are accessed by the non- 
speculative thread. This delicate balance can be realized 
if speculative threads are permitted to advance far enough 
ahead of the non-speculative thread until their prefetches 
cover up the latency to main memory, but no further. Future 
work will address how to achieve this in a dynamic man- 
ner. In this research, we introduce a hardware structure to 
limit speculative threads to running only a fixed number (p- 
slice specific) of loop iterations ahead of the non-speculative 
thread. 

The hardware structure is called the Outstanding Slice 
Counter (OSC). This structure tracks, for a subset of delin- 
quent loads, the number of instances of delinquent loads 
for which a speculative thread has been spawned but for 
which the main thread has not yet committed the corre- 
sponding load. Each entry in the OSC contains a counter, 
the IP (instruction pointer) of a delinquent load and the ad- 
dress of the first instruction in a p-slice, which uniquely 
identifies the p-slice. This counter is incremented when the 
non-speculative thread retires the corresponding delinquent 
load, and is decremented when the corresponding p-slice is 
spawned. When a speculative thread is spawned for which 
the entry in the OSC is negative, the resulting speculative 
thread is instead allocated an entry in the PSQ, where it waits 
without being considered for assignment to a thread context 
until its counter becomes positive. Entries in the OSC are 
manually allocated in the exception recovery code associated 
with some basic trigger, and this research assumes a four en- 
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Figure 10. Where delinquent loads satisfied when 
missing in L1. Partial indicates access to a cache 
line already in transit to L1 from the indicated 
memory structure. 

try, fully associative OSC. 

7.5. P e r f o r m a n c e  o f  SP with  C h a i n i n g  Triggers  

Figure 9 shows the speedup achieved from SP using 
chaining triggers as the number of  thread contexts is varied. 
Chaining triggers are highly effective at making use of avail- 
able thread contexts when sufficient memory parallelism ex- 
ists, resulting in average performance gains of 59% with 4 
threads and 76% with 8 threads. In these results, the size of 
the PSQ is varied to ensure the number of entries in the PSQ 
plus the number of hardware thread contexts equals 16. 

Though health did not benefit significantly from basic 
triggers (as shown in Figure 7), when using chaining trig- 
gers, the speedup is boosted to 169%, though opportunity 
for significant further improvement still exists (as shown in 
Figure 3). As noted in Section 6.1, health is dominated by 
tight pointer chasing loops, which are completely memory 
latency bound and exhibit no parallelism between loop iter- 
ations. By making use of chaining triggers, it is possible to 
precompute for multiple loop instances in parallel. 

Figure 10 shows the breakdown of which level of the 
memory hierarchy is accessed by delinquent loads under 
three processor configurations - -  the baseline processor 
which does not use SP, a processor with 8 thread contexts 
which uses basic triggers and spawns them in the rename 
stage, and a processor with 8 thread contexts which uses both 
basic and chaining triggers. Also shown is the percentage of 
accesses to cache lines which were already in transit to L1 
cache due to access by a prior load from the main thread or 
from a prefetch. 

Table 4 shows prefetch statistics assuming the two SP 
configurations from above. The following information is 
shown: 1) Accuracy-percentage of prefetched lines accessed 
by a delinquent load before being evicted from L1 cache, 
2) Partial-percentage of prefetched lines which are accessed 
before arriving at the L1 cache (partial loads are considered 
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'Benchmark Accuracy 
'art (B) 85.7% 
art (B+C) 35.0% 
'equake (B) 94.0% 
,equake (B+C) 91.4% 
,gzip (B) 67.4% 
gzip (B+C) 79.8% 
health (B) 10.9% 
health (B+C) 24.0% 
:mcf (B) 98.0% 
mcf (B+C) 92.4% 
rest (B) 90.7% 
'rest (B+C) 74.5% 

Partial 
14.2% 
60.3% 
58.8% 
O% 
9.3% 
11.6% 
86.7% 
17.1% 
37.8% 
13.6% 
46.1% 
0% 

Coverage Spec Instr 
50.0% 61.7M 
94.8% 33.1M 
59.4% 12.5M 
62.0% 11.9M 
58.6% 20.2M 
96.7% 9.9M 
95.6% 20.7M 
22.6% 46.4M 
76.2% 22.5M 
88.2% 18.2M 
66.6% 107.3M 
56.8% 50.4M 

Table 4. Statistics on prefetch accuracy and cover- 
age of delinquent loads when assuming only basic 
triggers (B) and both basic and chaining triggers 
(B+C). Accuracy and Partial are given as percent- 
ages of total prefetches, Coverage is given as the 
percentage of total delinquent loads. 

accurate), 3) Coverage-percentage of  delinquent loads cov- 
ered by SP, 4) Spec Instr-total number of speculative instruc- 
tions executed. 

In general, basic triggers provide high accuracy (for mcf, 
prefetch accuracy is 98%), but cover fewer loads than chain- 
ing triggers, and fail to significantly impact the number of 
loads which require access to main memory. For exam- 
ple, mcf only saw a 3% reduction in the number of loads 
that were satisfied from memory, although a large number of 
loads had their latency partially covered. Thus, basic triggers 
can be effective in targeting delinquent loads with relatively 
10w latency, such as L2 hits, but are not likely to significantly 
help accesses to main memory. 

Chaining triggers, on the other hand, achieve higher cov- 
erage and prefetch data in a much more timely manner, 
even data that requires access to main memory;  when tar- 
geting mcf, the number of accesses to main memory by the 
non-speculative thread was reduced by more than 13% over 
the baseline. One somewhat anomalous case to this rule is 
health. Using chaining triggers, health appears to have ex- 
tremely low prefetch accuracy. However, this is due primar- 
ily to the prefetching aggressiveness necessary to cover up 
the memory latency of its delinquent loads, causing useful 
prefetches to be evicted from L1 cache before being used. 
The high L2 cache hit rate attests to this. Thus, we see that 
one major advantage of chaining triggers over basic triggers 
is their ability to effectively target delinquent loads that are 
significantly far ahead of the non-speculative thread. 

Chaining triggers also allow the processor to better uti- 
lize available thread contexts. Because they spawn additional 
speculative threads as soon as the p-slice prologue has been 
executed, chaining triggers are able to quickly populate all 
available hardware thread contexts. The simulation data at- 
test to this-the average speedup from increasing the number 
of thread contexts from 4 to 8, when using chaining triggers, 
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Figure 11. Speedup Provided by Basic and Chain- 
ing Triggers at 2, 4 and  8 G l t z .  

is 17%; when using basic triggers alone and spawning in the 
rename stage, this speedup is only 2%. In addition, this cre- 
ates the opportunity for more outstanding prefetches to be in 
flight, effectively utilizing the bandwidth provided by non- 
blocking caches. 

Mcf  and mst both achieve large speedups over the base- 
line when the processor has four or eight total thread con- 
texts. Reducing the total number of contexts to only two 
results in the smaller, but still significant, speedups of 13% 
for mcf and 12% for rest. Because p-slices from these two 
benchmarks contain multiple dependent loads, threads ex- 
ecuting these p-slices are forced to stall when one of the 
loads misses in cache. With a larger number of thread con- 
texts, other speculative threads can be scheduled 'around'  
the stalled thread onto the other available contexts. How- 
ever, when only one thread context is available for specula- 
tive threads, a stall in a speculative thread prevents any fur- 
ther speculative threads from executing. We do not currently 
assume any preemption scheme for speculative threads, so 
the stalled thread will not relinquish its thread context to an- 
other speculative thread. 

7.6. Effects of Pipel ine Depth  and M e m o r y  Latency  

Figure 11 shows the performance gains provided by 
chaining triggers as clock frequency is increased, which im- 
plies higher memory latencies and longer pipelines (see Ta- 
ble 1). Results are shown for each benchmark for 3 clock fre- 
quencies (2GHz, 4GHz and 8GHz), with 8 total thread con- 
texts. All speedups are shown relative to a respective base- 
line processor with the same clock frequency. Performance 
results for 2 and 4 thread contexts show similar trends. 

Most benchmarks show continued speedups as clock fre- 
quency is increased. Equake is the primary exception to 
this. As shown in Figure 2, equake has a large number of 
delinquent loads and the 10 worst delinquent loads account 
for only about 60% of cache misses. As latency to mem- 
ory increases, the performance impact of the 40% of  misses 
not targeted by SP scales disproportionally, indicating that 
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at higher clock frequencies the criteria to select delinquent 
loads should be liberalized. However, the general trend 
is of increased effectiveness as the processor-memory gap 
widens. 

8. Conclusion 

This paper presents Speculative Precomputation (SP), a 
technique that allows a multithreaded processor to use spare 
hardware contexts to spawn speculative threads to prefetch 
data well in advance of the main thread. When the burden 
of spawning threads falls on the main non-speculative thread 
(via basic triggers), the potential speedup is as high as 30% 
assuming fast register copies between thread contexts. How- 
ever, under more realistic assumptions, the potential speedup 
is significantly reduced. On the other hand, when the spec- 
ulative threads can also spawn other speculative threads (via 
chaining triggers), dramatic speedups are possible on appli- 
cations that have historically been resistant to prefetching 
techniques. These speedups are as high as 169% and av- 
erage 76% over all benchmarks. This is achieved via a novel 
software based mechanism that can utilize existing Itanium 
processor features with very little additional hardware sup- 
port. 
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