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ving Factors

• Match upcoming technology trends

• Match upcoming software trends

• Match upcoming technology constra

• Match upcoming design constraints

• Learn, and exploit, new program beh
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rdware/Design Trends

• Increasing wire delays

• Increasing memory latencies

• Deeper pipelines

• Design complexity

• Verification complexity

• Power issues
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• Distributed microarchitectures

• Clustered superscalar, with multithrea

• Chip multiprocessor

estion: what to run on underlying micro
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• Independent programs
O increase overall processing throughput
O works well in server environment

• Independent threads of multithreade
O increase overall throughput
O compatible with software trends?

• Related threads
O e.g., for reliability

• But what about speeding up single p
execution?

O single program speed will continue to be
O how to ‘‘parallelize’’ or ‘‘multithread’’ sing
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• What does it mean to parallelize?
O how to divide program into multiple porti

• What constrains parallelization?
O dependences (especially ambiguous)

• How to overcome constraints?
O use speculation
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• Traditional view: control-driven threa
O divide work into multiple groups of instruc

- conservative assumptions about dep
constrain parallelization

O each group is specified using traditional 
(von Neumann) semantics

• A newer view: multiscalar
O use dependence speculation to overcom
O commercial example: Sun MAJC
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• Another traditional view: dataflow
O divide work into (dependent) computatio
O each computation is represented in a da

• A newer view: speculative data-drive
O use speculation to facilitate thread creat
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• program execution: processing of low
instructions, with pauses for high-late

• parallelizing low-latency instructions

• overlapping high-latency events is w

• “threads” should create high-latency
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• Use dependence relationships to iso
of code from main program thread

O use speculation to facilitate creation

• Execute threads (speculatively) in pa
“main program”

O “assist” main thread via side-effects
O don’t impact architectural correctness
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plication: Cache Misses and Branch

Memory

Spec2000
Benchmark # inst % dyn.

memops % miss # inst

bzip2 24 3 63 62

crafty 35 2 54 51

eon Insufficient misses 24

gap 66 1 28 123

gcc 122 4 5 122

gzip 15 21 75 46

mcf 42 35 69 32

parser 70 4 42 80

perl 74 1 26 43

twolf 116 7 60 87

vortex 71 1 22 83

vpr (route) 55 13 67 72
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(ROUTE)

• 200M instruction sample (starting at 14.1
• 100M instruction warm-up for caches/pr

SPEEDUP: 16% FROM PRE-FETCHING, 16% FROM

• The full latency of the misses and mispre
always hidden
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ple Applications

• Cache prefetching/management

• Computing branch outcomes

• TLB prefetching/management

• I/O prefetching

• Multiprocessor communication mana
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e Research Issues

• How to divide control-driven program
driven threads?

• When to divide program?

• How to represent data-driven thread

• Managing mixed thread workloads
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• Hardware and design trends will lead
distributed/multithreaded processors

• Many options for running different thr
underlying microarchitecture

• Overcome constraints to traditional
“parallelization” techniques with spe

O speculative control-driven threads
O speculative data-driven threads

• Most of the research still needs to be
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