
Speculative Multithreaded Processors

Guri Sohi and Amir Roth

Computer Sciences Department
University of Wisconsin-Madison

Slide
2

tive threads

sues
Ou
Speculative Multithreaded Processors

tline

• Trends and their implications

• Workloads for future processors

• Program parallelization and specula
O speculative control-driven threads
O speculative data-driven threads

• Sample applications and research is

• Summary

Slide
3

ints

aviors
Dri
Speculative Multithreaded Processors

ving Factors

• Match upcoming technology trends

• Match upcoming software trends

• Match upcoming technology constra

• Match upcoming design constraints

• Learn, and exploit, new program beh

Slide
4

Ha
Speculative Multithreaded Processors

rdware/Design Trends

• Increasing wire delays

• Increasing memory latencies

• Deeper pipelines

• Design complexity

• Verification complexity

• Power issues

Slide
5

ding

architecture?
Im

Qu
Speculative Multithreaded Processors

plications of Trends

• Distributed microarchitectures

• Clustered superscalar, with multithrea

• Chip multiprocessor

estion: what to run on underlying micro

Slide
6

essor

d application

rogram

 important
le program?
Wo
Speculative Multithreaded Processors

rk for Distributed/Multithreaded Proc

• Independent programs
O increase overall processing throughput
O works well in server environment

• Independent threads of multithreade
O increase overall throughput
O compatible with software trends?

• Related threads
O e.g., for reliability

• But what about speeding up single p
execution?

O single program speed will continue to be
O how to ‘‘parallelize’’ or ‘‘multithread’’ sing

Slide
7

ons
Pro
Speculative Multithreaded Processors

gram Parallelization

• What does it mean to parallelize?
O how to divide program into multiple porti

• What constrains parallelization?
O dependences (especially ambiguous)

• How to overcome constraints?
O use speculation

Slide
8

ds
tions
endences

control-driven

e constraints
Pro
Speculative Multithreaded Processors

gram Parallelization -- Theme I

• Traditional view: control-driven threa
O divide work into multiple groups of instruc

- conservative assumptions about dep
constrain parallelization

O each group is specified using traditional
(von Neumann) semantics

• A newer view: multiscalar
O use dependence speculation to overcom
O commercial example: Sun MAJC

Slide
9

 Threads

edict

PROC
UNIT
 3

C

Mu
Speculative Multithreaded Processors

ltiscalar: Speculative Control-Driven

predict pr

PROC
UNIT
 1

PROC
UNIT
 2

A
B

PROGRAM

A

B

C

Slide
10

ns
ta-driven manner

n “threads”
ion
Pro
Speculative Multithreaded Processors

gram Parallelization -- Theme II

• Another traditional view: dataflow
O divide work into (dependent) computatio
O each computation is represented in a da

• A newer view: speculative data-drive
O use speculation to facilitate thread creat

Slide
11

-latency
ncy events

 isn’t crucial

hat matters!

 events early
Mo
Speculative Multithreaded Processors

tivation for Data-driven Threads

• program execution: processing of low
instructions, with pauses for high-late

• parallelizing low-latency instructions

• overlapping high-latency events is w

• “threads” should create high-latency

Slide
12

late thread(s)

rallel with
Spe
Speculative Multithreaded Processors

culative Data-Driven Threads

• Use dependence relationships to iso
of code from main program thread

O use speculation to facilitate creation

• Execute threads (speculatively) in pa
“main program”

O “assist” main thread via side-effects
O don’t impact architectural correctness

Slide
13

 Mispredicts

Control

% dyn.
branch %misp

26 77

7 30

13 71

10 65

6 34

14 55

20 71

10 38

7 61

39 73

1 41

16 75
Ap
Speculative Multithreaded Processors

plication: Cache Misses and Branch

Memory

Spec2000
Benchmark # inst % dyn.

memops % miss # inst

bzip2 24 3 63 62

crafty 35 2 54 51

eon Insufficient misses 24

gap 66 1 28 123

gcc 122 4 5 122

gzip 15 21 75 46

mcf 42 35 69 32

parser 70 4 42 80

perl 74 1 26 43

twolf 116 7 60 87

vortex 71 1 22 83

vpr (route) 55 13 67 72

Slide
14

oracle-all

oracle-probs

baseline

Pe cant performance
d data cache
Per

rfec
m

Speculative Multithreaded Processors

bz
ip

2
cr

af
ty
eo

n

ga
p

gc
c

gz
ip

mc
f

pa
rs

er
pe

rl
tw

ol
f

vo
rt

ex
vp

r

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
IP

C

formance Leverage

ting a small set of instructions provides signifi
uch of that of a perfect branch predictor an

Slide
15

TIME

ANCH
Usi
Speculative Multithreaded Processors

ng Speculative Data-driven Threads

TIME
BRANCH

LOAD

branch
mispredict

cache
miss

RETIREMENT
STREAM

BR

BRANCH

FORK

BRANCH
OUTCOME

AVOID MISPREDICTION

sub
program

Pre-execution

Slide
16

on 20B run)
ictors

ANCHES

ictions is not

ispredictions

ate /1000 inst

.3% 7.0

.2% 2.1
Sam

VPR

32%

b

w/
Speculative Multithreaded Processors

ple Performance Results

(ROUTE)

• 200M instruction sample (starting at 14.1
• 100M instruction warm-up for caches/pr

SPEEDUP: 16% FROM PRE-FETCHING, 16% FROM

• The full latency of the misses and mispre
always hidden

Cache Misses (primary L1) Branch

number rate /1000 inst number

ase 2,850,000 3.3% 14.3 1,400,000

slices 1,340,000 1.6% 6.7 420,000
B
ed

BR

d

M

r

7

2

Slide
17

gement
Sam
Speculative Multithreaded Processors

ple Applications

• Cache prefetching/management

• Computing branch outcomes

• TLB prefetching/management

• I/O prefetching

• Multiprocessor communication mana

Slide
18

 into data-

s?
Som
Speculative Multithreaded Processors

e Research Issues

• How to divide control-driven program
driven threads?

• When to divide program?

• How to represent data-driven thread

• Managing mixed thread workloads

Slide
19

 to

ead types on

culation

 done
Sum
Speculative Multithreaded Processors

mary

• Hardware and design trends will lead
distributed/multithreaded processors

• Many options for running different thr
underlying microarchitecture

• Overcome constraints to traditional
“parallelization” techniques with spe

O speculative control-driven threads
O speculative data-driven threads

• Most of the research still needs to be

	Multiscalar: Speculative Control-Driven Threads
	Work for Distributed/Multithreaded Processor
	• Independent programs
	O increase overall processing throughput
	O works well in server environment

	• Independent threads of multithreaded application
	O increase overall throughput
	O compatible with software trends?

	• Related threads
	O e.g., for reliability

	• But what about speeding up single program execution?
	O single program speed will continue to be important
	O how to ‘‘parallelize’’ or ‘‘multithread’’ single program?

	Speculative Multithreaded Processors
	Guri Sohi and Amir Roth
	Computer Sciences Department
	University of Wisconsin-Madison

	Outline
	• Trends and their implications
	• Workloads for future processors
	• Program parallelization and speculative threads
	O speculative control-driven threads
	O speculative data-driven threads

	• Sample applications and research issues
	• Summary

	Program Parallelization
	• What does it mean to parallelize?
	O how to divide program into multiple portions

	• What constrains parallelization?
	O dependences (especially ambiguous)

	• How to overcome constraints?
	O use speculation

	Program Parallelization -- Theme II
	• Another traditional view: dataflow
	O divide work into (dependent) computations
	O each computation is represented in a data-driven manner

	• A newer view: speculative data-driven “threads”
	O use speculation to facilitate thread creation

	Hardware/Design Trends
	• Increasing wire delays
	• Increasing memory latencies
	• Deeper pipelines
	• Design complexity
	• Verification complexity
	• Power issues

	Implications of Trends
	• Distributed microarchitectures
	• Clustered superscalar, with multithreading
	• Chip multiprocessor

	Driving Factors
	• Match upcoming technology trends
	• Match upcoming software trends
	• Match upcoming technology constraints
	• Match upcoming design constraints
	• Learn, and exploit, new program behaviors

	Some Research Issues
	• How to divide control-driven program into data- driven threads?
	• When to divide program?
	• How to represent data-driven threads?
	• Managing mixed thread workloads

	Speculative Data-Driven Threads
	• Use dependence relationships to isolate thread(s) of code from main program thread
	O use speculation to facilitate creation

	• Execute threads (speculatively) in parallel with “main program”
	O “assist” main thread via side-effects
	O don’t impact architectural correctness

	Program Parallelization -- Theme I
	• Traditional view: control-driven threads
	O divide work into multiple groups of instructions
	- conservative assumptions about dependences constrain parallelization

	O each group is specified using traditional control-driven (von Neumann) semantics

	• A newer view: multiscalar
	O use dependence speculation to overcome constraints
	O commercial example: Sun MAJC

	Application: Cache Misses and Branch Mispredicts
	Performance Leverage
	Vpr (route)
	• 200M instruction sample (starting at 14.1B on 20B run)
	• 100M instruction warm-up for caches/predictors
	32% speedup: 16% from pre-fetching, 16% from branches

	base
	2,850,000
	3.3%
	14.3
	1,400,000
	7.3%
	7.0
	w/slices
	1,340,000
	1.6%
	6.7
	420,000
	2.2%
	2.1
	• The full latency of the misses and mispredictions is not always hidden

	Sample Performance Results
	bzip2
	24
	3
	63
	62
	26
	77
	crafty
	35
	2
	54
	51
	7
	30
	eon
	Insufficient misses
	24
	13
	71
	gap
	66
	1
	28
	123
	10
	65
	gcc
	122
	4
	5
	122
	6
	34
	gzip
	15
	21
	75
	46
	14
	55
	mcf
	42
	35
	69
	32
	20
	71
	parser
	70
	4
	42
	80
	10
	38
	perl
	74
	1
	26
	43
	7
	61
	twolf
	116
	7
	60
	87
	39
	73
	vortex
	71
	1
	22
	83
	1
	41
	vpr (route)
	55
	13
	67
	72
	16
	75
	Perfecting a small set of instructions provides significant performance - much of that of a perfe...

	Using Speculative Data-driven Threads
	Sample Applications
	• Cache prefetching/management
	• Computing branch outcomes
	• TLB prefetching/management
	• I/O prefetching
	• Multiprocessor communication management

	Summary
	• Hardware and design trends will lead to distributed/multithreaded processors
	• Many options for running different thread types on underlying microarchitecture
	• Overcome constraints to traditional “parallelization” techniques with speculation
	O speculative control-driven threads
	O speculative data-driven threads

	• Most of the research still needs to be done

	Motivation for Data-driven Threads
	• program execution: processing of low-latency instructions, with pauses for high-latency events
	• parallelizing low-latency instructions isn’t crucial
	• overlapping high-latency events is what matters!
	• “threads” should create high-latency events early

