
A Study of Source-Level Compiler
Algorithms for Automatic Construction
of Pre-Execution Code

DONGKEUN KIM and DONALD YEUNG
University of Maryland at College Park

Pre-execution is a promising latency tolerance technique that uses one or more helper threads
running in spare hardware contexts ahead of the main computation to trigger long-latency mem-
ory operations early, hence absorbing their latency on behalf of the main computation. This article
investigates several source-to-source C compilers for extracting pre-execution thread code automat-
ically, thus relieving the programmer or hardware from this onerous task. We present an aggressive
profile-driven compiler that employs three powerful algorithms for code extraction. First, program
slicing removes non-critical code for computing cache-missing memory references. Second, prefetch
conversion replaces blocking memory references with non-blocking prefetch instructions to min-
imize pre-execution thread stalls. Finally, speculative loop parallelization generates thread-level
parallelism to tolerate the latency of blocking loads. In addition, we present four “reduced” com-
pilers that employ less aggressive algorithms to simplify compiler implementation. Our reduced
compilers rely on back-end code optimizations rather than program slicing to remove non-critical
code, and use compile-time heuristics rather than profiling to approximate runtime information
(e.g., cache-miss and loop-trip counts).

We prototype our algorithms on the Stanford University Intermediate Format (SUIF) frame-
work and a publicly available program slicer, called Unravel [Lyle and Wallace 1997]. Using
our prototype, we undertake a performance evaluation of our compilers on a detailed architec-
tural simulator of an 8-way out-of-order SMT processor with 4 hardware contexts, and 13 ap-
plications selected from the SPEC and Olden benchmark suites. Our most aggressive com-
piler improves the performance of 10 out of 13 applications, reducing execution time by 20.9%.
Across all 13 applications, our aggressive compiler achieves a harmonic average speedup of
17.6%. For our reduced compilers, eliminating program slicing and relying on back-end optimiza-
tions degrades performance minimally, suggesting that effective pre-execution compilers can be
built without program slicing. Furthermore, without cache-miss profiles, we still achieve good
speedup, 15.5%, but without loop-trip count profiles, we achieve a speedup of only 7.7%. Fi-
nally, our results show compiler-based pre-execution can benefit multiprogrammed workloads.
Simultaneously executing applications achieve higher throughput with pre-execution compared
to no pre-execution. Due to contention for hardware contexts, however, time-slicing outperforms

This research was supported in part by National Science Foundation (NSF) Computer Systems
Architecture grant CCR-0093110, and in part by NSF CAREER Award CCR-0000988.
Authors’ address: University of Maryland at College Park, Department of Electrical and Computer
Engineering, Institute for Advanced Computer Studies, College Park, MD 20742; email: {dongkeun,
yeung}@eng.umd.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2004 ACM 0734-2071/04/0800-0326 $5.00

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004, Pages 326–379.

A Study of Source-Level Compiler Algorithms for Pre-Execution • 327

simultaneous execution in some cases where individual applications make heavy use of pre-
execution threads.

Categories and Subject Descriptors: B.8.2 [Performance and Reliability]: Performance Analy-
sis and Design Aids; C.0 [General]: modeling of computer architecture; system architectures; C.4
[Performance of Systems]: design studies; D.3.4 [Programming Languages]: Processors—
compilers

General Terms: Algorithms, Design, Experimentation, Performance, Measurement

Additional Key Words and Phrases: Data prefetching, multithreading, program slicing, speculative
loop parallelization, prefetch conversion, memory-level parallelism, pre-execution

1. INTRODUCTION

Processor performance continues to be limited by long-latency memory opera-
tions. In the past, researchers have studied prefetching [Chen and Baer 1995;
Mowry 1998] to tolerate memory latency, but these techniques are ineffective
for irregular memory access patterns common in non-scientific applications.
Recently, a more general latency tolerance technique has been proposed, called
pre-execution [Annavaram et al. 2001; Collins et al. 2001a, 2001b; Kim and
Yeung 2002; Liao et al. 2002; Luk 2001; Moshovos et al. 2001; Roth and Sohi
2001, 2002; Sundaramoorthy et al. 2000; Zilles and Sohi 2001]. Pre-execution
uses idle execution resources, for example spare hardware contexts in a si-
multaneous multithreading (SMT) processor [Tullsen et al. 1996], to run one
or more helper threads in front of the main computation. Such pre-execution
threads are purely speculative, and their instructions are never committed
into the main computation. Instead, the pre-execution threads run code de-
signed to trigger cache misses. As long as the pre-execution threads execute
far enough in front of the main thread, they effectively hide the latency of the
cache misses so that the main thread experiences significantly fewer memory
stalls.

A critical component of pre-execution is the construction of the pre-execution
thread code. Since this task is labor-intensive and prone to human error, it is
highly inconvenient for programmers to carry out. Hence, for pre-execution
to become a widely accepted latency tolerance technique, the construction of
pre-execution code must be automated.

The design space for automating pre-execution is quite large because pre-
execution code can be extracted at any point in time, e.g., compile, link, load,
or runtime. In Figure 1, we show four possible approaches. Figure 1(a) illus-
trates compiler-based extraction. In this approach, a source-to-source compiler
extracts the pre-execution code at compile time via static analysis of program
source code. The compiler emits source-level pre-execution code. Alternatively,
Figure 1(b) illustrates linker-based extraction. Rather than analyze source code,
this approach extracts pre-execution code from program binaries at link or
load time using a binary analysis tool, producing binary-level pre-execution
code. Similar to linker-based extraction, dynamic optimizer-based extraction1

1To our knowledge, dynamic optimizer-based extraction has not yet been studied, but we believe it
is a viable approach. For completeness, we include it in our design space.

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

328 • D. Kim and D. Yeung

Fig. 1. Four approaches for automatically extracting pre-execution code: (a) compiler-based extrac-
tion, (b) linker-based extraction, (c) dynamic optimizer-based extraction, and (d) hardware-based
extraction. The techniques differ in when the code extraction is performed.

in Figure 1(c) also analyzes and extracts binary-level code, but does so at run-
time using dynamic optimization techniques. Finally, Figure 1(c) illustrates
hardware-based extraction. In this approach, trace-processing hardware inside
the processor extracts the pre-execution code from instruction traces as they ex-
ecute at runtime. The extracted code, consisting of trace fragments, are cached
and used for pre-execution during the same program run.

Each approach in Figure 1 exhibits very different characteristics due to the
fact that code extraction is performed using different analysis techniques. This
leads to several tradeoffs:

Information for Code Extraction. Hardware- and dynamic optimizer-based
extraction can exploit runtime information to construct pre-execution traces.
By performing code extraction earlier, compiler- and linker-based extraction
do not have direct access to runtime information, and must rely on off-line
profiling if runtime information is desired, which is cumbersome and potentially
inaccurate. On the other hand, compiler- and linker-based extraction can exploit
information about high-level program structure such as loops or procedures. At
runtime, program structure information is typically not available.

Portability of Extracted Code. The earlier code extraction is performed, the
more portable the generated pre-execution code is. Compiler-based extraction
generates source-level pre-execution code that can be compiled onto multiple
target ISAs. Linker- and dynamic optimizer-based extraction relies on binary
analysis, so a different extractor is necessary for every target ISA. Worse yet,
hardware-based extraction requires a different hardware trace analyzer for
every processor implementation.2

Language Dependence of Extracted Code. While source-level pre-execution
code is portable, it is also language specific. Compiler-based extraction ana-
lyzes application source code. Thus, a different compiler front-end is required

2Note, the performance of compiler-generated pre-execution code may not port completely across
different platforms without re-extraction for each platform. Nevertheless, the compiler approach
permits the same pre-execution code to at least run on multiple platforms. For this reason, we claim
the compiler approach affords portability.

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

A Study of Source-Level Compiler Algorithms for Pre-Execution • 329

for each supported language. On the other hand, linker-, dynamic optimizer-,
and hardware-based extraction are language independent since they analyze
binaries or traces.

Transparency to the User. The later code extraction is performed, the more
transparent the technique is from the user’s standpoint. Since runtime extrac-
tion of pre-execution code happens in a dynamic optimizer or hardware, it is
transparent to the user. Linker-based extraction is less transparent than the
runtime approaches because it requires an off-line binary analysis step. How-
ever, it is more transparent than compiler-based extraction because it does not
require source code, making it a viable approach even when source code is not
available.

Hardware Complexity of the Approach. Compiler-, linker-, and dynamic
optimizer-based extraction are software techniques, so they reduce complexity
since the hardware is not involved in constructing pre-execution code. In con-
trast, hardware-based extraction requires adding trace-processing hardware to
each processor, increasing hardware complexity.

As demonstrated by these tradeoffs, each approach in Figure 1 offers dif-
ferent (and often complementary) advantages. To evaluate the effectiveness of
pre-execution thoroughly, we believe all approaches should be pursued. In this
article, we undertake a major investigation of the compiler-based approach for
automating pre-execution. We present the design, implementation, and evalu-
ation of several source-to-source C compilers for automatically extracting pre-
execution code. Our goal is to develop effective compiler algorithms, understand
their performance for different workloads, and quantify the advantages of the
compiler-based approach enumerated above.

We believe research of this nature is important for the following reasons.
First, given the advantages of compiler-based extraction mentioned earlier
(i.e., exploitation of program information, portability, and reduced hardware
complexity), we believe compilers will play an important role in enabling pre-
execution for future high-performance processors. Being one of the first com-
prehensive studies on the compiler-based approach, this article lays the initial
groundwork for such pre-execution techniques. And second, despite the impor-
tance of automating pre-execution, relatively little work has been devoted to
software techniques for extracting pre-execution code automatically [Kim and
Yeung 2002; Liao et al. 2002; Roth and Sohi 2002]. Most previous work has
either assumed manual construction of pre-execution code, or has focused on
hardware techniques. By studying compiler-based pre-execution, this article
helps bridge the gap between our understanding of pre-execution hardware
and how to generate code for it automatically using software tools.

This article represents an extension of our original work on compiler-based
pre-execution [Kim and Yeung 2002] which, to our knowledge, is the first work to
automate pre-execution using a compiler. In this article, we make the following
contributions:

(1) We propose several compiler algorithms for automatically extracting pre-
execution code, broken into two categories: aggressive and reduced. Our

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

330 • D. Kim and D. Yeung

aggressive algorithms exploit profile information to identify problematic
memory references and estimate work inside loops. In addition, they in-
clude three powerful performance algorithms: program slicing, prefetch
conversion, and speculative loop parallelization. These performance algo-
rithms enhance the ability of the pre-execution threads to get ahead of the
main thread, thus triggering cache misses sufficiently early to tolerate their
latency.

(2) In addition to the aggressive algorithms, we propose several “reduced” com-
piler algorithms for constructing pre-execution code that are less aggres-
sive, and thus enable us to analyze sensitivity to the type of algorithms.
Instead of program slicing, which requires sophisticated analysis, we rely
on back-end code optimizations performed during C compilation to remove
the code that is unnecessary to execute cache-missing memory references,
thus simplifying compiler implementation. Also, we develop simple compile-
time heuristics to approximate runtime information, thus eliminating the
profiling step and streamlining the compiler.

(3) We present 5 prototype compilers, each constructed using a mix of our ag-
gressive and reduced algorithms. Our prototype compilers are built from
three toolsets: Unravel [Lyle and Wallace 1997], a commercially available
program slicer, SimpleScalar [Burger and Austin 1997], and the Stanford
University Intermediate Format (SUIF) framework. Using our prototype
compilers, we conduct a detailed experimental evaluation of our compiler
algorithms using 13 benchmarks from the SPEC CPU2000 [SPEC 2000]
and Olden [Rogers et al. 1995] suites on an architectural simulator of
an SMT processor. Our evaluation quantifies the performance of our ag-
gressive compiler, measures the performance impact of our reduced com-
pilers, and studies the contributions to overall performance of individual
algorithms.

(4) In addition to evaluating pre-execution for individual benchmarks, we also
apply our techniques in the context of multiprogramming. We introduce a
new metric, Threading Duty Factor (TDF), to measure the portion of pro-
gram execution where pre-execution threads are active. This conveys the
demand an application places on the idle hardware contexts to run pre-
execution threads. Using 10 multiprogrammed workloads consisting of ap-
plications with different TDF values, we study the profitability of combining
pre-execution with simultaneous execution of multiple programs.

The remainder of this article is organized as follows. First, Section 2 presents
an overview of compiler-based pre-execution, briefly describing all our compiler
algorithms. Next, Sections 3 and 4 discuss the most aggressive algorithms in
detail: program slicing, slicing-based prefetch conversion, and speculative loop
parallelization. Then, Section 5 describes a prototype compiler that implements
these algorithms, and Section 6 evaluates the prototype compiler’s performance.
After discussing our most aggressive compiler, Section 7 presents and evaluates
our reduced compilers. This is followed by an evaluation of pre-execution in the
context of multiprogramming in Section 8. Finally, Section 9 discusses related
work, and Section 10 concludes the article.

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

A Study of Source-Level Compiler Algorithms for Pre-Execution • 331

2. COMPILER ALGORITHMS FOR PRE-EXECUTION

Our compiler algorithms address two performance considerations—cache-miss
coverage and pre-execution effectiveness—and one correctness consideration—
side effects. This section provides an overview of these algorithms. We first in-
troduce the performance algorithms, presenting the algorithms for cache-miss
coverage in Section 2.1 and the algorithms for pre-execution effectiveness in
Section 2.2. Then, in Section 2.3, we discuss how our compilers ensure correct-
ness of the pre-execution code they generate.

2.1 Cache-Miss Coverage

For pre-execution, high cache-miss coverage results from two factors. First,
pre-execution code generated by the compiler should execute those static loads
that suffer a large number of cache misses; hence, our compilers must iden-
tify the most problematic static loads in the application source code. Second,
pre-execution code should also compute the address streams of all identified
problematic loads accurately.

2.1.1 Identifying Problematic Loads. Our work explores two approaches
for identifying problematic static loads. One approach uses summary cache-
miss profiles [Abraham et al. 1993] to directly characterize memory behavior.
To acquire summary cache-miss profiles, we execute each program in a separate
profiling run prior to compiler analysis. During the profiling run, the number
of cache misses is accumulated for each static load in the application, thus
summarizing cache behavior on a per-load basis. Later, the cache-miss sum-
maries are used by our compiler to identify the program’s most problematic
static loads. Our most aggressive prototype compiler, described in Section 5,
uses this profile-based approach to identify problematic loads. In contrast, the
other approach relies solely on compile-time analysis to identify problematic
loads without cache-miss profiles. We develop static analysis combined with
simple heuristics to predict cache behavior. While predicting cache behavior
exactly at compile time is intractable due to the dynamic nature of memory
hierarchies, we find our compiler-based approach can effectively identify prob-
lematic loads in many cases. In Section 7, we will further discuss our compiler-
based approach for identifying problematic loads.

2.1.2 Generating Accurate Pre-Execution Code. In addition to identifying
problematic load instructions, our compilers must also generate pre-execution
code that will compute the address streams of problematic loads accurately.
Similar to most existing pre-execution techniques, our compilers generate sep-
arate code for pre-execution threads, and they do so via code cloning. (This is
in contrast to having pre-execution threads execute the same code executed by
the computation thread, as is done in Luk [2001]). Cloning produces accurate
pre-execution code trivially by copying the main computation thread code. Fur-
thermore, cloning decouples pre-execution and computation thread code, pre-
venting transformations on pre-execution code from affecting the main thread.
Most of the performance optimizations we will overview in Section 2.2 would not
be possible if our compilers did not perform cloning. Cloning, however, suffers

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

332 • D. Kim and D. Yeung

Fig. 2. Code analyses and transformations performed by our compilers. Profiling or static analysis
identifies cache-missing memory references (bold-faced code). Pre-execution region cloning guaran-
tees accurate execution of problematic loads. Program slicing or back-end code optimizations during
C compilation remove noncritical code and enable prefetch conversion. Speculative loop paralleliza-
tion creates thread-level parallelism for tolerating the latency of blocking load instructions.

from an increased instruction working set size. Fortunately, we have not ob-
served significant degradations in I-cache performance due to cloning for the
benchmarks we study.

Our compilers perform cloning at the granularity of a pre-execution region, a
code fragment encompassing the problematic load instruction or group of load
instructions that defines the scope for pre-execution. In our current compilers,
a pre-execution region is always a loop containing the problematic load(s). A
simple code example appears in Figure 2, showing a pre-execution region and
the code cloning step performed upon it (this example also illustrates other code
transformations discussed later). In Figure 2, the reference B[A[i]] in the main
program is a frequent cache-missing memory reference (identified via profiling
or compiler analysis as described earlier), and the shaded loop defines the pre-
execution region for this reference. Notice a pre-execution region spans multiple
procedures whenever loops call procedures containing problematic loads. In
Figure 2, the memory reference C[A[i]] in the bar procedure also misses the
cache frequently, and is included in the pre-execution region since bar is called
from the same loop. Our compilers generate pre-execution code by cloning the
shaded code, as shown in the right half of Figure 2.

2.2 Pre-Execution Effectiveness

Besides cache-miss coverage, another important performance consideration
is pre-execution effectiveness. For pre-execution to be effective, pre-execution
threads must trigger cache misses sufficiently early so that their latency can be
tolerated. Our compilers employ three types of optimizations on pre-execution
code to enhance pre-execution effectiveness. Two types of optimizations in-
crease the speed of a single pre-execution thread relative to the main thread by
removing unnecessary code and blocking associated with problematic loads. A
third type of optimization speeds up pre-execution progress by overlapping the
latency of blocking loads using multiple pre-execution threads.

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

A Study of Source-Level Compiler Algorithms for Pre-Execution • 333

2.2.1 Removing Unnecessary Code. Pre-execution threads need only exe-
cute the critical computations leading up to problematic load instructions; all
other computations can be removed, allowing pre-execution threads to run more
rapidly. We investigate two approaches for streamlining pre-execution code. The
first approach removes unnecessary code explicitly at the source-code level, us-
ing a technique called program slicing [Binkley and Gallagher 1996; Weiser
1984]. The second approach relies on back-end code optimizations applied dur-
ing compilation of the pre-execution code into machine code to perform code
removal.

Program slicing is a software evaluation technique with numerous applica-
tions in debugging and testing of high-integrity software, as well as automatic
parallelization. The goal of program slicing is to extract a code fragment, or
a program slice, from a program based on a slice criterion. The slice criterion
identifies an intermediate result in the original program, and the program slice
is the subset of source code lines from the original program responsible for com-
puting the slice criterion. We use program slicing to streamline pre-execution
code. By specifying the memory address of problematic load instructions as slice
criteria, our slicing analysis identifies the critical code necessary to execute
problematic loads. All program statements excluded from such memory-driven
slices do not affect problematic load execution, and can be removed from the
pre-execution code during cloning, as illustrated in Figure 2. We employ pro-
gram slicing in our most aggressive compiler by integrating into the compiler
an existing program slicer, called Unravel [Lyle and Wallace 1997]. Section 3
will describe Unravel, and how we adapt it to extract program slices for pre-
execution.

As we will see in Section 3, program slicing is complex, and slicing tools
such as Unravel require significant effort to integrate into compilers. Hence,
we would like program slicing to provide a benefit that justifies its implementa-
tion effort. However, we observe that program slicing can be redundant. Since
the pre-execution code our compiler generates is C code, it must be translated
into machine code by a C compiler. Most C compilers perform back-end code op-
timizations, such as dead code elimination, that already provide a code removal
benefit. In many cases, Unravel removes code that dead code elimination would
have removed anyways. To understand the extent to which program slicing is
redundant, we investigate a simpler approach that does not perform program
slicing, but instead relies on conventional code optimizations to remove unnec-
essary code as a consequence of C code compilation. Section 7 will discuss and
evaluate this simpler approach.

2.2.2 Removing Blocking Loads. In addition to removing unnecessary
code, another way to speed up pre-execution threads is to reduce blocking using
prefetch instructions. Since prefetch instructions are non-blocking, they allow
the pre-execution thread to trigger cache misses and continue executing, sav-
ing the pre-execution thread from having to wait for the data to be fetched.
However, prefetch instructions are only effective if the prefetched data is not
needed by the pre-execution thread shortly after the prefetch; otherwise, the
pre-execution thread will still block whether or not a prefetch is inserted.

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

334 • D. Kim and D. Yeung

Our compiler performs prefetch conversion on pre-execution code, as illus-
trated in Figure 2, to replace as many blocking loads as possible with prefetch
instructions. Prefetch conversion is considered for all problematic load instruc-
tions, but is applied only in those cases where it is profitable. This article studies
two algorithms for identifying candidates for prefetch conversion, one coupled
with program slicing (described in Section 3) and the other that can be per-
formed in the absence of program slicing (described in Section 7).

2.2.3 Tolerating Memory Latency. Removing unnecessary code and block-
ing loads both attempt to increase the speed of a single pre-execution thread
relative to the main computation thread by optimizing pre-execution code. In
many cases, however, these optimizations alone do not provide the speed ad-
vantage necessary for effective pre-execution. The problem we have observed
is blocking loads that cannot be converted into prefetches. If blocking loads re-
main in the pre-execution code after optimizations have been applied, the pre-
execution thread will stall, preventing it from getting sufficiently far ahead of
the main thread.

Pre-execution code with blocking loads can be handled using multiple pre-
execution threads, allowing individual threads to block independently and over-
lap their long-latency memory operations. We extract thread-level parallelism
by parallelizing loops, and initiating multiple pre-execution threads to execute
separate loop iterations simultaneously. Currently, our compilers recognize two
forms of loop-level parallelism: doall and doacross. We apply loop paralleliza-
tion transformations similar to those employed in conventional parallelizing
compilers [Cytron 1986; Padua et al. 1980] to exploit these forms of paral-
lelism. Figure 2 illustrates how our compilers insert parallelization directives
to initiate multiple pre-execution threads.

A key difference between our compilers and previous parallelizing com-
pilers is we can apply loop parallelization much more aggressively. Because
pre-execution threads run speculatively (see Section 2.3), they in turn permit
our compilers to parallelize loops speculatively (i.e., even when our compilers
cannot guarantee the legality or safety of transformations under all circum-
stances). In Section 4, we will discuss our speculative parallelization techniques
in greater detail.

2.3 Correctness

The algorithms introduced in Sections 2.1 and 2.2 are designed to generate
pre-execution code for high performance. In addition to performance, another
important design consideration is correctness. Specifically, our algorithms must
not compromise the correctness of the main computation in the process of opti-
mizing pre-execution code. To preserve the integrity of the main computation,
we rely on both the architecture to provide a speculative pre-execution model
as well as the compiler to remove side effects from pre-execution code.

2.3.1 Speculative Pre-Execution Model. As in previous pre-execution tech-
niques [Collins et al. 2001a, 2001b; Kim and Yeung 2002; Liao et al. 2002; Luk
2001; Roth and Sohi 2001, 2002; Zilles and Sohi 2001], we use a Simultaneous

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

A Study of Source-Level Compiler Algorithms for Pre-Execution • 335

Multithreading (SMT) processor to run pre-execution threads alongside the
main thread. We assume pre-execution threads run speculatively, using tech-
niques previously proposed to support speculation. In particular, our SMT pro-
cessor provides the following three speculative pre-execution model features:

(1) Results computed by pre-execution threads are never integrated into the
main thread.

(2) Exceptions signaled in pre-execution contexts terminate the faulting pre-
execution thread but do not disrupt main thread execution.

(3) kill instructions executed by the main computation thread halt active pre-
execution threads.

The first two features isolate pre-execution threads from the main com-
putation thread, preventing incorrect results or exceptions generated by pre-
execution code from disrupting the main computation. The last feature allows
the main computation to reclaim execution resources from runaway pre-
execution threads. As shown in Figure 2, our compilers insert a kill directive
that halts pre-execution threads still active after the main computation thread
leaves a pre-execution region.

2.3.2 Removing Side Effects. The architectural support described in
Section 2.3.1 provides a degree of isolation between pre-execution threads and
the main computation thread; however, under this architecture model, pre-
execution threads can still impact the main computation due to side effects
through memory. Because pre-execution threads share memory with the main
thread, we must guarantee pre-execution threads never write to main thread
data structures. Previous pre-execution techniques have proposed hardware
support to protect the main computation from stores executed by pre-execution
threads [Luk 2001]. In contrast, we rely on the compiler to provide memory iso-
lation. Our compilers perform store removal to eliminate memory side effects
from pre-execution code.

Aside from memory side effects, there are no other correctness issues that
our compilers need to consider. All other correctness assurances are provided
by the hardware, as described in Section 2.3.1. This enables our compilers
to be extremely aggressive. For example, many of the compiler optimizations
for pre-execution effectiveness described in Section 2.2 are not legal or safe
under all circumstances. Nevertheless, our compilers can apply them aggres-
sively due to the speculation hardware support, permitting our compilers to
make performance tradeoffs freely without worrying about their impact on
correctness.

3. PROGRAM SLICING

Having presented an overview of our compiler algorithms in Section 2, we now
describe them in greater detail. We begin by exploring the key performance
algorithms used in our most aggressive compiler: program slicing, slicing-
based prefetch conversion, and speculative loop parallelization. This section
discusses program slicing and slicing-based prefetch conversion, while Section 4

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

336 • D. Kim and D. Yeung

will discuss speculative loop parallelization. Then, following the implementa-
tion and evaluation of our aggressive compiler (Sections 5 and 6), Section 7
will explore the remaining compiler algorithms which are used in our reduced
compilers.

3.1 Unravel

To perform program slicing, our aggressive compiler uses Unravel, a publicly
available program slicer for ANSI C from the National Institute of Standards
and Technology (NIST).3 Unravel is a software evaluation tool designed to assist
programmers in debugging and program understanding tasks. It consists of an
analyzer, which parses all .c and .h source files in the application and generates
a program dependence graph (PDG) [Ferrante et al. 1987], and a slicer, which
traverses the PDG iteratively, performing data and control flow analyses to
extract the program slice.

3.1.1 Basic Analysis. Unravel’s slicer performs the basic program slicing
algorithm [Lyle et al. 1995] presented below in Eq. (1) and (2).

S<m,v> =
{

S<n,v> if v /∈ def s(n)
Sdef<n,v> otherwise

(1)

Sdef<n,v> = {n}
⋃(⋃

x∈refs(n)

S<n,x>

)⋃(⋃
y∈refs(k)

⋃
k∈control(n)

S<k, y>

)
(2)

In Eq. (1), S<m,v> denotes the program slice for the slice criterion <m, v>, or
variable v at statement m. The algorithm considers all statements n which are
predecessors of m. If n does not assign v, we omit n from the slice, and we
recursively evaluate S<n,v>, the program slice for variable v at statement n.
Otherwise, if n assigns v, we follow Eq. (2). In this case, we add n to the slice,
and we recursively evaluate the program slice for all referenced variables x
used to compute v at statement n (the first two terms in Eq. (2)). This captures
those statements that affect the dataflow to statement n. In addition, we also
recursively evaluate the program slice for all referenced variables y at all state-
ments k which control the execution of n, denoted by the control (n) function
(the last term in Eq. (2)). This captures those statements that affect the control
flow to statement n.

3.1.2 Advanced Analysis. In addition to the basic slicing algorithm pre-
sented in Eq. (1) and (2). Unravel’s slicer also performs several advanced anal-
yses intended to provide more exact dependence information, thus detecting
fewer false dependences and improving the quality of program slices. Specif-
ically, Unravel’s advanced analyses address the following language features
found in C code:

Arrays and Structures. Unravel performs index analysis on array refer-
ences, and resolves different structure fields. Hence, an assignment or reference

3Source code for Unravel can be downloaded from http://www.itl.nist.gov/div897/sqg/unravel/
unravel.html.

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

A Study of Source-Level Compiler Algorithms for Pre-Execution • 337

to an array element or structure field does not access the entire array or struc-
ture, but only the individual element.

Pointers. Unravel performs pointer analysis for statically allocated objects.
For every assignment and reference through a pointer to a static object, Unravel
keeps track of the set of objects that can possibly be reached. This analysis takes
into consideration accesses through multiple levels of indirection, treating the
objects at each indirection level separately. Unravel uses this information to
prune away those objects that cannot be reached at each pointer access, thus
disambiguating accesses to separate objects.

Procedures. Unravel constructs program slices across procedure bound-
aries. To enable inter-procedure slices, Unravel performs inter-procedure anal-
ysis, matching actual parameters with formal parameters and handling return
values at call sites to track data dependences across procedure calls.

Although the analyses performed by Unravel are quite sophisticated, one
noteworthy limitation is that Unravel ignores indirect procedure calls. Program
slicing terminates at the boundary of any procedure called indirectly, which
occurs with some frequency in our benchmarks.

3.2 Slicing for Pre-Execution

We use Unravel to compute program slices for memory references that suffer
frequent cache misses by specifying each memory reference to Unravel as a
separate slice criterion. We modified Unravel to address five issues related to
our memory-driven program slices: slice criterion specification, store removal,
slice termination, slice merging, and code pinning. This section describes our
modifications using the code example in Figure 3 from VPR, a SPEC CINT2000
benchmark.

Slice Criterion Specification. As described in Section 2.1.1, we rely on ei-
ther cache-miss profiles or static analysis to identify problematic loads. Our
aggressive compiler employs profiling, in which case, the problematic loads
are identified by the profiling tool as load PCs. We translate each of these
identified load PCs into a source code line number and variable name using
debugging information. In Figure 3, four frequent cache-missing memory ref-
erences in the VPR application appear in bold-face, labeled “1”–“4.” These mem-
ory references occur across three different procedures, try swap, net cost, and
get non updateable bb. Each memory reference is used as the slice criterion
during a single slicing run, described below.

Store Removal. As discussed in Section 2.3, pre-execution threads should
never modify memory state visible to the main thread to ensure correct main
thread execution. Our SUIF passes, described in Section 5, remove all stores
to statically allocated global variables, and stores to heap variables through
pointers when generating pre-execution code. Such store removal enables more
aggressive program slicing. In addition to removing code off the critical path
of cache-missing memory references, our program slicer can also remove code
associated with stores that will eventually be eliminated by SUIF. Hence, before

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

338 • D. Kim and D. Yeung

Fig. 3. VPR code example. Labels “1”–“4” indicate cache-missing memory references selected for
slicing. Labels “5” and “6” indicate memory references requiring store removal. Labels “7” and “8”
indicate loops that bound the scope of slicing. Labels “S1,” “S2,” “S3,” and “S4” show the slice result
for the selected memory references.

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

A Study of Source-Level Compiler Algorithms for Pre-Execution • 339

running the slicer, we delete all DEFs to global and heap variables in the PDG
produced by Unravel. When we run the slicer, all code associated with the
removed DEFs will themselves be sliced away. In Figure 3, the underlined
references labeled “5” and “6” represent stores to heap and global variables,
respectively. Our slicer removes the DEFs associated with these references.

While store removal is necessary for main thread correctness, it can disrupt
pre-execution code correctness. For example, the computations at “5” in Figure 3
are necessary to execute the cache-missing memory references at “2” and “3.” By
removing the stores at “5,” the cache misses will not be correctly pre-executed
each time net cost is entered following a call to get non updateable bb. Fortu-
nately, we find memory references “2” and “3” are exceptional cases, and that
dataflow through global or heap variables within a pre-execution region rarely
lead to cache-missing memory references. (See Section 6.2.3 for results that
support this observation, and for further discussion on why this observation
is true.) In exceptional cases like those in VPR, the speculative nature of pre-
execution threads ensures that incorrect pre-execution code never compromises
main thread integrity.

Slice Termination. After modifying the PDG to reflect store removal, we
run the slicer once for every criterion corresponding to a problematic load in-
struction. For each slicer run, Unravel computes a program slice across the
entire program. Such slices are too large; in fact, we are interested in slicing
only the code that will eventually form the pre-execution region for the prob-
lematic load. Unfortunately, Unravel does not know the extent of pre-execution
regions—these are determined in a separate compiler pass. However, as de-
scribed in Section 2.1.2, a pre-execution region is defined by a loop containing
one or more problematic load instructions. As we will see later in Section 4.2,
our pre-execution region selection algorithm chooses either the inner-most loop
or the next-outer loop encompassing a problematic load to serve as its pre-
execution region. Hence, we modified Unravel to terminate slicing once two
nested looping statements above the slice criterion have been encountered (if
two nested looping statements cannot be found, we terminate slicing after one
looping statement).

Figure 3 illustrates slice termination for the VPR benchmark. Memory refer-
ence “1” is contained inside the loop labeled “7.” The next outer loop, labeled “8,”
is where slicing terminates for this memory reference. Memory references “2,”
“3,” and “4” are contained inside the loop labeled “8.” The next outer loop, which
is not shown in Figure 3, is where slicing terminates for these three memory
references.

As illustrated in Figure 3, our slice termination policy permits slices to span
multiple procedures (there is no limit on call depth). From our experience,
inter-procedure analysis is important because loops can be nested across pro-
cedure boundaries in some cases, particularly in non-numeric applications like
VPR. When slicing across procedures, however, multiple paths can occur if a
procedure is called from multiple sites. Our slicer pursues all call paths and
searches for the two nested looping statements along every path, possibly iden-
tifying multiple loops where slicing terminates for a single problematic load

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

340 • D. Kim and D. Yeung

instruction. Smaller slices could be constructed if the slicer only considers the
most frequently executed paths (this applies to paths within procedures as well
as across procedures); however, this would require path profiles which are not
currently supported in our compiler.

Slice Merging. After slicing analysis completes, we have a program slice for
each sliced memory reference. Figure 3 illustrates the slices computed for the
four cache-missing memory references in VPR by placing an arrow to the left
of each source code line contained in the slice. The slices for memory references
“1”–“4” are specified by the columns of arrows labeled “S1,” “S2,” “S3,” and “S4,”
respectively. (Note, slices S2, S3, and S4 should continue up to the next outer
loop.) Unravel stores each program slice as a bitmask with one bit per line of
source code in the program.

Since invoking pre-execution threads for each individual slice may incur sig-
nificant overhead, we merge multiple slices and invoke pre-execution threads
once to cover all the problematic loads within each merged slice together.
Slice merging occurs at the granularity of pre-execution regions. Once the pre-
execution regions have been selected (see Section 4.2.1 for our selection algo-
rithm), we “OR” together the bitmasks of all slices whose problematic loads
reside in the same pre-execution region. We also clear any bits that lie outside
of the selected pre-execution region. For example, if the loop labeled “8” in Fig-
ure 3 were selected as a pre-execution region, we would merge the bitmasks
from slices S1–S4 since memory references “1”–“4” are included within loop
“8.” This merged slice would contain 28 out of the original 57 lines of code in
Figure 3.

Code Pinning. Since our compilers are source-to-source compilers, the gen-
erated pre-execution code is C code, and must eventually be translated into
machine code by a C compiler. Our system uses the gcc compiler for this pur-
pose. Unfortunately, pre-execution code by its very nature is dead code since
store removal eliminates all side effects, and is thus likely to be removed during
C code compilation (we compile pre-execution code with the “-O2” flag which
activates dead code elimination in gcc). For example, after store removal and
program slicing, the get non updateable bb function in Figure 3 is reduced to
a single loop that “touches” the elements in the block array. Since this code
performs no useful computation, gcc removes it.

To prevent pre-execution code removal during C compilation, we insert an
asm macro that artificially consumes the loaded value from each problematic
load instruction, thus “pinning” the load and all associated pre-execution code.
Figure 4(a) illustrates how our compilers perform code pinning. In Figure 4(a),
we show the pre-execution code for the get non updateable bb function from
Figure 3 after program slicing. An asm macro containing a null instruction,
labeled “1,” has been added to consume the data from the block array memory
reference (i.e., the slice criterion used by the program slicer). Since gcc does not
remove asm code, the asm code in turn prevents the removal of the pre-execution
code due to the data dependence between the null instruction and the block
array memory reference.

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

A Study of Source-Level Compiler Algorithms for Pre-Execution • 341

Fig. 4. Code generated by our aggressive compiler for the get non updateable bb function from
Figure 3. (a) Pre-execution code after program slicing with asm macro added for code pinning (label
“1”). (b) Pre-execution code after program slicing and prefetch conversion (label “2”). Bold-face code
denotes cache-missing memory references.

3.3 Prefetch Conversion

Program slicing removes noncritical computations from pre-execution code, re-
sulting in more efficient pre-execution threads. Another way to speed up pre-
execution threads is to reduce blocking by using prefetch instructions. However,
as described in Section 2.2.2, such a prefetch conversion optimization is prof-
itable only when the prefetched data is not needed by the pre-execution thread
shortly after the prefetch.

Since program slicing performs dependence analysis to identify unnecessary
code, it already computes the information necessary for prefetch conversion. As
a result, prefetch conversion can be performed trivially when coupled with a
program slicer (e.g., Unravel) in the following manner. We consider each prob-
lematic load instruction in all pre-execution regions after program slicing has
been performed. If the data accessed by the load instruction is not needed by
the slice code (i.e., the program statements dependent upon the load have been
removed by the program slicer), we convert the blocking load instruction into a
nonblocking prefetch. Applying this simple algorithm to the VPR code example
in Figure 3, we see that memory references “1,” “2,” and “3” can be converted
into prefetches. Figure 4b illustrates the final sliced pre-execution code for the
get non updateable bb function after converting the blocking memory refer-
ence (label “1” in Figure 3) into a nonblocking prefetch (label “2” in Figure 4(b)).
Notice, our compiler assumes the target architecture supports a prefetch in-
struction (see Section 5.2), which is in-lined into the pre-execution code using
the prefetch macro in Figure 4(b).

4. PRE-EXECUTION INITIATION AND SPECULATIVE LOOP
PARALLELIZATION

In addition to the program slicing and prefetch conversion optimizations
presented in Section 3, our aggressive compiler also employs multiple pre-
execution threads to tolerate the latency of blocking memory instructions, as

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

342 • D. Kim and D. Yeung

Fig. 5. Three pre-execution thread initiation schemes: (a) SERIAL, (b) DOALL, and (c) DOACROSS.
Solid lines denote the main thread, dotted lines denote pre-execution threads, arrows denote thread
spawning, and numeric labels denote loop iteration counts.

described in Section 2.2.3. In fact, our reduced compilers, which we will present
later in Section 7, use these same latency tolerance techniques as well. This sec-
tion describes how we initiate pre-execution threads, including the schemes for
creating multiple pre-execution threads through speculative loop paralleliza-
tion. First, Section 4.1 presents the thread initiation schemes used by our com-
pilers. Then, Section 4.2 discusses the algorithms for assigning thread initiation
schemes to pre-execution regions. Finally, Section 4.3 describes how our com-
pilers generate code for each initiation scheme assignment. (Note, while all our
compilers perform pre-execution initiation similarly, there are some slight dif-
ferences. In cases where differences exist, this section presents the approach
taken by our most aggressive compiler, leaving a discussion of the reduced com-
piler approaches to Section 7.)

4.1 Thread Initiation Schemes

Our compilers employ three schemes for initiating pre-execution threads:
SERIAL, DOALL, and DOACROSS. Figure 5 illustrates these schemes.

Serial. This scheme initiates a single pre-execution thread for each pre-
execution region. As shown in Figure 5(a), the main thread (solid line) forks
a single pre-execution thread (dotted line) prior to entering a pre-execution
region. The pre-execution thread then executes the code for the entire pre-
execution region sequentially.

For the SERIAL scheme to be successful, the lone pre-execution thread must
get ahead of the main thread to trigger cache misses sufficiently early to hide
their latency. Program slicing and prefetch conversion provide the pre-execution
thread with a speed advantage over the main thread. In many cases, un-
fortunately, these optimizations alone may not be sufficient. As explained in
Section 2.2.3, the problem is blocking loads that program slicing and prefetch
conversion are unable to remove. For example, memory reference “4” in Figure 3
is a problematic memory reference that cannot be converted into a prefetch
because the value it loads is needed by the pre-execution code. Such blocking

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

A Study of Source-Level Compiler Algorithms for Pre-Execution • 343

loads will cause the pre-execution thread to stall, preventing it from getting
ahead of the main thread.

DoAll. Pre-execution code with blocking loads can be handled using multi-
ple pre-execution threads, allowing individual threads to block independently
and tolerate the long-latency memory operations by overlapping memory stalls.
Our compilers extract thread-level parallelism for latency tolerance purposes
through loop parallelization. Conventional loop parallelization requires the
compiler to analyze dependences exactly, which is nearly impossible for the
loops we would like to pre-execute due to complex control flow and pointers.
Fortunately, our compilers do not need to guarantee correctness thanks to the
speculative pre-execution model described in Section 2.3.1, permitting us to
parallelize loops speculatively. Our compilers perform loop induction variable
analysis during parallelization, but we do not analyze dependences in the loop
body and assume (optimistically) that no loop-carried dependences exist except
through induction variables.

Our compilers recognize two types of loop induction variables, giving rise to
two speculative loop parallelization schemes. The first parallelization scheme,
DOALL, speculatively parallelizes affine loops (i.e., loops whose induction vari-
ables are updated arithmetically). When our compilers encounter an affine loop,
they assume the loop is fully parallel, and generate code to pre-execute the loop
iterations independently. As shown in Figure 5(b), the main thread forks multi-
ple pre-execution threads prior to entering a pre-execution region, with loop it-
erations distributed to threads in round robin sequence (denoted by the loop
iteration labels). In this scheme, each thread keeps a private copy of the loop
induction variable and updates it locally every iteration.

DoAcross. The second parallelization scheme, DOACROSS, speculatively par-
allelizes pointer-chasing loops (i.e., loops whose induction variables are updated
through a pointer dereference). Pointer-chasing loops are serial if for no other
reason due to the serial update of loop induction variables. However, they can
be speculatively parallelized by overlapping induction variable updates with
loop body computations. As shown in Figure 5(c), our compiler creates a single
thread, called the backbone thread, to execute the induction variable update
code serially. The backbone thread then forks additional threads at each it-
eration, called rib threads, to execute the loop bodies. Even though induction
variable updates are serialized, separate loop bodies execute in parallel. Note
in DOACROSS, inter-thread communication is required every loop iteration to
pass the induction variable value.

4.2 Scheme Selection Algorithm

Figure 6 presents our algorithm to determine the thread initiation schemes for
pre-execution. The algorithm operates in two steps. First, we compute the set
of pre-execution regions, P , from which we will initiate pre-execution threads.
Then, for each pre-execution region in P , we select one of the thread initiation
schemes from Section 4.1 that will provide the highest performance possible.
The following two sections discuss our algorithms in greater detail.

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

344 • D. Kim and D. Yeung

Fig. 6. Algorithm for selecting thread initiation schemes. (a) Computation of the set of pre-execu-
tion regions, P . (b) Selection of the thread initiation scheme for each pre-execution region.8 denotes
the empty set.

4.2.1 Selecting Pre-Execution Regions. The first step in our scheme se-
lection algorithm is to select the pre-execution regions. As discussed in
Section 2.1.2, a pre-execution region is a loop defining the scope of pre-execution
for problematic load instructions. Our compilers identify the innermost and
next-outer loops containing one or more problematic load(s), and select one
of these loops to serve as a pre-execution region based on two criteria. On the
one hand, the likelihood of loop-carried dependences increases as pre-execution
threads execute more distant code, reducing the effectiveness of speculative
loop parallelization. This favors selecting innermost loops. On the other hand,
loops should contain enough work to amortize pre-execution startup costs. This
favors selecting next-outer loops.

To identify the innermost and next-outer loops, we construct a global loop
nest graph, GL. GL is a Directed Acyclic Graph (DAG), with nodes representing
loops and edges denoting loop nesting. The DAG specifies the nesting relation-
ship between all loops in the entire program, taking into consideration nesting
across procedure calls as well as within procedures (we use the program’s pro-
cedure call graph to capture inter-procedure loop nesting, though we do not
account for nesting across indirect calls). Once constructed, GL is used to iden-
tify the innermost and next-outer loops for all problematic load instructions. To
decide which loops will serve as pre-execution regions, we estimate the amount
of work performed inside innermost loops and select the innermost loop when
sufficient work exists to amortize pre-execution startup costs. If the innermost
loop contains insufficient work, we instead select the next-outer loop. Our ag-
gressive compiler uses loop-trip counts acquired via profiling to approximate
the work in innermost loops.4

4In cases where the loop termination condition is known statically, the compiler can determine the
loop-trip count at compile time. Unfortunately, none of the pre-execution regions in our benchmarks
have static loop termination conditions, so we did not implement loop termination analysis in our
aggressive compiler and instead rely on profiles.

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

A Study of Source-Level Compiler Algorithms for Pre-Execution • 345

Figure 6(a) presents our algorithm for computing the set of pre-execution
regions, P , given the graph GL and loop-trip count profiles. This algorithm
visits all loops in GL in innermost to outermost order (line 2), and consid-
ers 3 cases. First, whenever we visit an innermost loop containing problem-
atic loads (line 3), we add it to the set of pre-execution regions, P , if it iter-
ates more than some minimum count (lines 4 and 5). We use a threshold of
25 iterations, which works well for most loops we’ve encountered. Such large
innermost loops contain sufficient work to amortize pre-execution startup costs,
so they make good pre-execution region candidates. Second, whenever we visit
a next-outer loop containing problematic loads (line 6), we add it to P as long
as it does not contain any innermost loops already selected as pre-execution
regions (lines 7 and 8)—i.e., we do not permit nesting of pre-execution regions.
Such next-outer loops contain inner loops with insufficient work to amortize
pre-execution startup costs, so pre-execution should occur from the next-outer
level. Finally, after all loops have been visited, it is possible for some innermost
loops that iterate fewer than 25 times to be excluded from all pre-execution
regions because a “sibling loop” in graph GL was added to P , thus preventing
their common next-outer loop from becoming a pre-execution region. We revisit
all innermost loops, and add to P those loops that have been excluded from all
pre-execution regions (lines 11–13). This ensures all problematic loads get pre-
executed, even if some loads reside in loops with insufficient work to amortize
pre-execution startup costs.

4.2.2 Selecting Thread Initiation Schemes. After selecting the pre-
execution regions, we choose a thread initiation scheme for each pre-execution
region using the algorithm in Figure 6(b). This algorithm chooses SERIAL for pre-
execution regions where program slicing and prefetch conversion have removed
all blocking loads (lines 3 and 4). SERIAL performs well in this case, and it has the
lowest overhead of all schemes since only one pre-execution thread is initiated.
If blocking loads remain after optimization, however, our algorithm specula-
tively parallelizes the loop at the top of the pre-execution region to tolerate the
long-latency memory stalls. We use the DOALL (lines 6 and 7) and DOACROSS

(lines 8 and 9) parallelization schemes for pre-execution regions consisting of
affine and pointer-chasing loops, respectively. As described in Section 4.1, DOALL

performs well for affine loops because they permit local update of the loop induc-
tion variable, thus saving on communication and reducing overhead. DOACROSS

works best for pointer-chasing loops even though communication is required to
pass the induction variable value because it exposes the parallelism between
per-iteration loop bodies.

4.3 Generating Code

Once the thread initiation schemes have been selected, our compilers generate
pre-execution code. Figures 7 and 8 illustrate the steps involved in generating
code for each thread initiation scheme, showing output produced by our aggres-
sive compiler. In Figure 7(a), we apply the SERIAL scheme to a pre-execution
region containing a single innermost loop from the AMMP benchmark, and
in Figure 7(b), we apply the DOALL scheme to the outer loop of the VPR code

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

346 • D. Kim and D. Yeung

Fig. 7. Code generated by the aggressive compiler to implement the (a) SERIAL scheme for the
AMMP benchmark, and (b) DOALL scheme for the VPR benchmark. Code for initiating pre-execution
and synchronizing pre-execution threads appears in bold-face.

example from Figure 3 (several lines in the VPR code example have been re-
moved to conserve space). Code generation for these two schemes is similar
and follows five steps, as indicated by the numeric labels in Figure 7. First,
we clone the pre-execution region consisting of a loop header and loop body,
and place the code in a single procedure (labeled “1”). Store removal, program
slicing, and prefetch conversion are applied to the loop body of the cloned code.
We also generate code to fork the pre-execution thread(s) and pass parame-
ters for all local variables in the pre-execution region (labeled “2”). Then, for
the DOALL scheme only, we adjust the loop induction variable update code to

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

A Study of Source-Level Compiler Algorithms for Pre-Execution • 347

Fig. 8. Code generated by the aggressive compiler to implement the DOACROSS scheme for the
TWOLF benchmark. Code for initiating pre-execution and synchronizing pre-execution threads
appears in boldface.

distribute iterations to threads in round-robin fashion (labeled “3”). Next, we
insert a counting semaphore (labeled “4”). This semaphore, called “T,” is initial-
ized to the value “PD.” Semaphore T blocks pre-execution threads that reach
a prefetch distance number of iterations ahead of the main thread, preventing
them from getting too far ahead. Finally, we add a kill directive to halt any ac-
tive pre-execution threads after the main thread leaves the pre-execution region
(labeled “5”).

In Figure 8, we apply the DOACROSS scheme to the outer loop of a pre-
execution region consisting of two nested pointer-chasing loops from the
TWOLF benchmark. Our implementation of DOACROSS performs the serial-
ized loop induction variable updates in a separate “backbone” thread which
in turn initiates additional “rib” threads to perform the loop body computations

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

348 • D. Kim and D. Yeung

Fig. 9. Major components in our most aggressive prototype compiler. This compiler uses Unravel
for program slicing and profiling to drive optimizations. Arrows denote interactions between com-
piler modules.

in parallel, as described in Section 4.1. Generating code for the backbone and
rib threads follows six steps. First, we clone the loop header and loop body, and
place them in separate backbone and rib procedures, respectively (labeled “1”),
applying the same store removal and code optimizations from Figures 7(a) and
7(b) on the loop body code. We also generate code to fork a single backbone thread
(labeled “2”) and multiple rib threads in round-robin order (labeled “3”), pass-
ing parameters as needed. As in Figures 7(a) and 7(b), we must insert counting
semaphores to synchronize the threads. We insert a single semaphore, called
“T0,” to keep the backbone thread from getting more than “PD” iterations ahead
of the main thread (labeled “4”), and multiple semaphores, one per rib thread,
to synchronize each rib thread with the backbone thread during communication
of the induction variable value (labeled “5”). Finally, we insert a kill directive
(labeled “6”).

In addition to cloning the loop headers and loop bodies as shown in Fig-
ures 7 and 8, we must also clone any procedure(s) called from within loop bodies
(not shown in the figures). Once cloned, these procedures should also undergo
store removal and code optimizations since they are part of the pre-execution
regions as well. For example, the net cost and get non updateable bb rou-
tines from Figure 3 should be cloned and optimized along with the loop from
try swap.

5. IMPLEMENTATION

This section discusses implementation issues. First, Section 5.1 describes a
prototype compiler that implements our most aggressive compiler algorithms
presented in Sections 2 through 4. Then, Sections 5.2 and 5.3 discuss the ISA
and thread-level support, respectively, assumed by our aggressive compiler.

5.1 Aggressive Prototype Compiler

Figure 9 illustrates our most aggressive prototype compiler. This compiler em-
ploys cache-miss and loop-trip count profiles to drive optimizations, and pro-
gram slicing to remove unnecessary code. We modified the cache simulator
provided by the SimpleScalar toolset [Burger and Austin 1997] to acquire the

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

A Study of Source-Level Compiler Algorithms for Pre-Execution • 349

summary cache-miss profiles described in Section 2.1.1,5 and the loop-trip count
profiles described in Section 4.2.1. We also modified Unravel to implement the
program slicing algorithms presented in Section 3.2 and the prefetch conver-
sion analysis described in Section 3.3. Finally, we implemented the remaining
algorithms in SUIF. We use SUIF to select the pre-execution regions and thread
initiation schemes according to the algorithms in Section 4.2. When selecting
pre-execution regions, we discard all regions contributing less than 3% of the
application’s total cache misses. Filtering out unimportant pre-execution re-
gions helps minimize the runtime overhead incurred by pre-execution threads.
We also use SUIF to perform all necessary code transformations. This includes
generating code to initiate pre-execution threads as discussed in Section 4.3, as
well as removing stores and sliced code, pinning code, and converting blocking
loads to prefetches.

5.2 ISA Support

Our compilers assume an SMT processor with the following ISA support. First,
we assume a fork instruction that specifies a hardware context ID and a PC.
The fork initializes the program counter of the specified hardware context to
the PC value, and activates the context. Second, we assume suspend and resume
instructions. These instructions are used to “recycle” threads for low overhead
thread initiation, which we describe in the next section. Both instructions spec-
ify a hardware context ID to suspend or resume. In addition, suspend causes
a pipeline flush of all instructions belonging to the suspended context. While
the processor state of a suspended context remains in the processor, the asso-
ciated thread discontinues fetching and issuing instructions after the suspend
and pipeline flush. Third, we assume a kill instruction that halts all currently
active pre-execution threads. Only the main thread can execute kill instruc-
tions. Finally, we assume a prefetch instruction, which is a nonblocking load
instruction.

5.3 Thread-Level Support

Thread initiation can be expensive due to context initialization (our context ini-
tialization code contains 25 instructions). To minimize overhead, we “recycle”
threads. We create a pre-execution thread for each idle hardware context once
during program startup. Each pre-execution thread enters a dispatch loop and
suspends itself. To perform a “fork,” the forking context communicates a PC
value through memory, and executes a resume instruction to unblock one of the
suspended threads. The “forked” thread then jumps indirect through the PC ar-
gument. If the forked thread completes normally, it returns to the dispatch loop
and suspends itself until the next fork, thus recycling the thread. If, however,
the forked thread is halted by the main thread via a kill instruction, then it can-
not simply be resumed. Instead, to prevent the thread from resuming its path

5Although we use cache simulation to acquire the summary cache-miss profiles, these can also be
acquired using profiling tools such as DCPI [Anderson et al. 1997] and Shade [Cmelik and Keppel
1993]. We did not explore these other approaches since profiling efficiency was not a concern in our
work.

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

350 • D. Kim and D. Yeung

Table I. Benchmark Characteristics

Suite Name Input FastFwd Sim IPC
256.bzip2 reference 186,166,461 123,005,773 1.3849
175.vpr reference 364,172,593 130,044,367 1.4039

SPEC 300.twolf reference 124,205,135 112,809,146 1.1595
CINT2000 254.gap reference 147,923,793 127,932,004 3.3558

197.parser reference 245,277,302 126,593,730 1.9844
181.mcf reference 12,149,459,578 137,280,363 0.7914
164.gzip reference 162,442,542 135,592,391 1.9840
183.equake reference 2,570,651,646 21,850,552 0.7586

SPEC 188.ammp reference 2,439,723,993 129,357,604 1.3600
CFP2000 179.art reference 12,899,865,395 113,811,999 1.0900

177.mesa reference 262,597,404 54,117,618 2.8605
Olden mst 1024 nodes 183,274,940 24,361,256 0.1153

Benchmarks em3d 20K nodes 53,331,921 108,341,604 0.5929

of execution prior to the kill, we assume the kill instruction sets the thread’s
PC to point to the instruction immediately following the suspend instruction in
the dispatch loop. Consequently, a fork performed on a killed thread resumes
the thread as if it had returned to the dispatch loop normally.

Interthread communication occurs during thread initiation to pass argu-
ments, and during synchronization. In both cases, we perform communication
through memory. To pass arguments, we use a memory buffer and communicate
values via loads and stores to the buffer. For synchronization, we implement the
semaphore primitive from Section 4.3 in software. We allocate a global counter
in memory, and during each iteration, the main thread performs a “V” by in-
crementing the counter. Since our parallelization schemes use the semaphore
only for producer-consumer synchronization, we exploit this pattern by main-
taining a private counter for each pre-execution thread. When the pre-execution
thread performs a “P,” it increments its private counter, and compares the count
to the global counter. The pre-execution thread continues only if the difference
between the counters does not exceed PD, the prefetch distance. Otherwise,
the pre-execution thread busy waits. Since busy waiting consumes processor
resources and degrades the performance of non-waiting threads, we insert a
sequence of long-latency inter-dependent instructions into the busy-wait loop
to throttle the fetch rate of busy-waiting threads.

6. AGGRESSIVE COMPILER EVALUATION

This section reports our experimental results for the aggressive prototype com-
piler described in Section 5.1. First, Section 6.1 describes the benchmarks and
architectural simulator used to obtain the results. Next, Section 6.2 presents
the performance achieved by our aggressive compiler. Then, Section 6.3 stud-
ies the contributions of individual compiler algorithms to overall performance
gain. Finally, Section 6.4 examines the impact of architectural support for pre-
execution threads.

6.1 Methodology

Table I lists the 13 benchmarks used in our study. These benchmarks have
been chosen from the SPEC CINT2000 and CFP2000 suites [SPEC 2000], and

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

A Study of Source-Level Compiler Algorithms for Pre-Execution • 351

Table II. SMT Simulator Settings

Processor Pipeline
Issue width 8-way # hardware contexts 4
RUU size 128 entries Instruction fetch queue 32 entries
Load-store queue 64 entries Functional units 8 Int, 4 FP units
Int add/ mult/ div 1/ 3/ 20 cycles FP add/ mult/ div 2/ 4/ 12 cycles

Branch Predictor
Gshare predictor 2K entries Return of stack 8 entries
Branch target buffer 2K entries, 4-way set-associative

Memory Hierarchy
Level 1 cache Split I & D, 32KB, 2-way set-associative, 32B block, 1 cycle latency
Level 2 cache Unified, 1MB, 4-way set-associative, 64B block, 10 cycle latency
Main memory access time 122 cycles

the Olden suite [Rogers et al. 1995]. Unfortunately, there are 5 CINT2000, 10
CFP2000, and 8 Olden benchmarks that we could not study. One CINT2000
and all 10 remaining CFP2000 benchmarks are not written in C. Of the other
CINT2000 benchmarks, two could not be processed by the original Unravel
tool, one could not be processed by SUIF, and one performs system calls not
supported by SimpleScalar. All 8 remaining Olden benchmarks perform recur-
sive tree traversals which our compiler does not analyze. In Table I, the column
labeled “Input” reports the inputs used to run each benchmark. The next two
columns, labeled “FastFwd” and “Sim,” specify the number of skipped and sim-
ulated instructions, respectively, in our simulation regions. The column labeled
“IPC” provides the instructions per cycle for each benchmark on our simulator,
described below. Finally, when acquiring profiles, both profile and data collec-
tion runs use the same simulation regions; hence, our results do not account
for discrepancies between profile and actual program inputs.

Using our aggressive prototype compiler described in Section 5.1, we pro-
cess each benchmark in Table I to extract its pre-execution code. All pro-
file runs and pre-execution code extraction steps are performed automati-
cally by our compiler, without any manual intervention. Then, we run our
benchmarks and their associated pre-execution threads on the SMT simula-
tor from Madon et al. [1999], which is derived from SimpleScalar’s out-of-order
processor model [Burger and Austin 1997]. Our simulator uses the same func-
tional unit, register renaming, branch predictor, and cache models provided
by SimpleScalar. In addition, it has been augmented to model SMT’s multiple
hardware contexts. The program counter, register map, and branch predictor
tables have been replicated; all other structures are shared between contexts.
Also, the issue logic selects instructions from one or more threads per cycle,
using the ICOUNT fetch policy from Tullsen et al. [1996]. Finally, the ISA sup-
port described in Section 5.2 has been provided. Table II reports the simulator
settings used for our experiments.

It is important to note our compiler does not perform traditional software
prefetching of simple array references, nor does our SMT simulator model hard-
ware stride prefetching. For some benchmarks, our compiler may provide less
benefit if traditional stride-based prefetching techniques are applied in concert
with pre-execution.

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

352 • D. Kim and D. Yeung

Table III. Characterization of Pre-Execution Code Generated by the Aggressive Compiler

Benchmark Load Lines Slice Store Pref SE DA DX Back Span

256.bzip2 28 62 0 6 9 2 1 0 — 0
175.vpr 32 318 130 14 21 1 2 0 — 1
300.twolf 55 132 23 35 25 1 0 5 0.24 0
254.gap 8 14 8 1 4 1 0 0 — 0
197.parser 5 51 0 11 0 1 0 1 8.58 2
181.mcf 26 69 0 30 10 0 0 1 41.8 1
164.gzip 3 23 0 1 0 0 0 1 57.7 0
183.equake 67 21 0 6 24 0 1 0 — 0
188.ammp 41 67 19 24 35 3 0 0 — 0
179.art 13 40 11 7 12 5 2 0 — 0
177.mesa 1 11 0 2 1 1 0 0 — 0
mst 4 34 16 1 0 0 0 1 0.00 1
em3d 13 12 2 0 7 0 1 0 — 0
TOTAL: 296 854 209 138 148 15 7 9 — 5

Table IV. Characterization of Pre-Execution Threads Generated
by the Aggressive Compiler

Benchmark Forks Inst-Fork Inst-Pre Inst-Miss

256.bzip2 252003 488 238.6 20.7
175.vpr 275816 1103 228.7 15.0
300.twolf 591343 460 45.6 6.6
254.gap 32739 3908 940.9 110.5
197.parser 4093 27.6K 511.5 13.6
181.mcf 3997152 68.6K 25.7 4.1
164.gzip 1478363 513 53.9 30.3
183.equake 3 21.9M 4.123M 3.2
188.ammp 15951 8110 3.2K 9.5
179.art 612 243K 128.9K 8.3
177.mesa 23750 2218 33.6 26.4
mst 393471 47.6K 53.0 4.9
em3d 300 1.08M 324.2K 2.6
AVG: 16.03K 1038 10.9

6.2 Basic Evaluation

We present the basic performance evaluation of our aggressive compiler in three
parts. First, we characterize the pre-execution code and threads generated by
the compiler in Section 6.2.1. Then, we present the actual performance results
in Section 6.2.2. Finally, in Section 6.2.3, we analyze the correctness of the
generated pre-execution code.

6.2.1 Characterization. Before presenting the performance achieved by
our aggressive compiler, we first characterize what the compiler did. For each
benchmark, we report 10 measurements from the pre-execution code generated
by the compiler, and 4 measurements from the pre-execution threads spawned
at runtime by the pre-execution code. These measurements appear in Tables III
and IV.

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

A Study of Source-Level Compiler Algorithms for Pre-Execution • 353

The 10 code measurements we report in Table III are: the number of prob-
lematic loads identified by summary cache-miss profiles (“Load”), the number
of code lines in the pre-execution regions prior to program slicing (“Lines”),
the number of code lines removed by Unravel (“Slice”), the number of code
lines removed as a consequence of store removal (“Store”), the number of loads
converted into prefetches (“Pref”), the number of pre-execution regions broken
down into different thread initiation schemes (“SE” for SERIAL, “DA” for DOALL,
and “DX” for DOACROSS), the percent cache misses incurred in the backbone (as
opposed to ribs) for DOACROSS pre-execution regions (“Back”), and the number
of pre-execution regions that span multiple procedures (“Span”). These mea-
surements show 4 important characteristics of our pre-execution code. First,
as indicated by the “Load” column, each benchmark contains a relatively small
number of problematic loads. Since our compiler ignores all pre-execution re-
gions contributing fewer than 3% of the total cache misses (see Section 5.1),
most cache-missing loads are not considered for pre-execution, allowing our
compiler to focus on the most important loads. Second, our compiler removes
a significant number of lines of code within pre-execution regions–40% across
all benchmarks on average. Interestingly, a significant fraction of the removed
code is due to store removal. Comparing the “Slice” and “Store” columns, we see
that Unravel is responsible for 60% of the removed code while store removal
accounts for the other 40%. Third, comparing the “Pref” and “Load” columns
shows our compiler converts 50% of problematic loads into prefetches. This en-
ables our compiler to employ the SERIAL scheme aggressively, which requires all
problematic loads in the pre-execution region to be converted into prefetches.
Out of 31 total pre-execution regions, our compiler selects the SERIAL scheme
in 15 cases, using DOALL and DOACROSS for the remaining 16 pre-execution
regions. And finally, the “Span” column shows 5 pre-execution regions span
multiple procedures, indicating that interprocedure analysis is important for a
few of our benchmarks.

The 4 thread measurements we report in Table IV are: the number of pre-
execution threads forked (“Forks”), the number of instructions executed in the
main thread between forks (“Inst-Fork”), the number of instructions executed
by each pre-execution thread (“Inst-Pre”), and the number of pre-execution
thread instructions executed between cache misses (“Inst-Miss”). These mea-
surements show 2 important characteristics of our pre-execution threads. First,
pre-execution threads are coarse-grained. As indicated by columns “Inst-Fork”
and “Inst-Pre,” the frequency of forks is low and the number of instructions exe-
cuted by each pre-execution thread is high (usually in the thousands or higher).
Even though we use a recycled threading model (see Section 5.3), thread spawn-
ing is still expensive in our system since thread dispatch and communication
of arguments occurs in software. A coarse thread granularity minimizes the
impact of these software startup costs. In comparison, previous pre-execution
techniques that initiate pre-execution threads in hardware [Annavaram et al.
2001; Collins et al. 2001a, 2001b; Liao et al. 2002; Moshovos et al. 2001; Roth
and Sohi 2001, 2002; Sundaramoorthy et al. 2000; Zilles and Sohi 2001] can
tolerate finer-grained threads. Finally, pre-execution threads are efficient at
triggering cache misses. Column “Inst-Miss” shows a cache miss is triggered

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

354 • D. Kim and D. Yeung

Fig. 10. Normalized execution time broken down into busy, overhead, and memory stall compo-
nents. The “Baseline” and “Pre-exec” bars show performance for no pre-execution and with pre-
execution, respectively.

every 10.9 pre-execution thread instructions on average. This measurement
suggests Unravel is successful at streamlining pre-execution code.

6.2.2 Performance Results. Figure 10 presents the performance achieved
by our aggressive compiler. We report execution time without pre-execution,
labeled “Baseline,” and with pre-execution, labeled “Pre-exec,” broken down
into three components. “Busy” is the execution time without pre-execution as-
suming a perfect data memory system (e.g., all D-cache accesses complete in 1
cycle whereas I-cache accesses work normally). “Overhead” is the incremental
increase in execution time over “Busy” due to pre-execution, again on a per-
fect data memory system. “Mem Stall” is the incremental increase in execution
time over “Busy” + “Overhead” assuming a real memory system. All bars are
normalized against the “Baseline” bars.

Our aggressive compiler reduces execution time for 10 out of 13 applications.
Execution time is reduced between 1% and 47%, providing a 20.9% reduction
on average for all 10 applications. The remaining 3 applications experience a
degradation in performance by 4.7% on average. Overall, our technique delivers
a harmonic average speedup of 17.6% across all 13 applications. Notice with
the exception of MESA, the last 6 applications (which are the SPEC CFP2000
and Olden benchmarks) achieve a larger speedup than the first 7 applications
(which are the SPEC CINT2000 benchmarks). This is mainly due to the fact
that the CFP2000 and Olden benchmarks exhibit greater memory stall than
the CINT2000 benchmarks, thus providing more opportunity for performance
improvement.

To provide more insight, Figure 11 reports cache-miss coverage. The “Base-
line” bars in Figure 11 break down the L1 cache misses without pre-execution

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

A Study of Source-Level Compiler Algorithms for Pre-Execution • 355

Fig. 11. Cache-miss coverage broken down into uncovered misses occurring outside of pre-
execution regions, and misses fully or partially covered by pre-execution, labeled “Non Region,”
“Full,” and “Partial,” respectively. Remaining misses either hit in the L2, or are satisfied from main
memory, labeled “L2-Hit” and “Mem,” respectively.

into misses incurred outside of pre-execution regions, labeled “Non-Region,”
misses satisfied from the L2 cache, labeled “L2-Hit,” and misses to main mem-
ory, labeled “Mem.” The “Pre-exec” bars show the same three components, but
in addition show those cache misses that are fully or partially covered by pre-
execution, labeled “Full” and “Partial,” respectively.

Figure 11 shows our aggressive compiler effectively covers cache misses for
VPR, GAP, MCF, EQUAKE, AMMP, ART, MST, and EM3D, converting 84.9% of
the main thread’s misses on average across the 13 benchmarks into fully or par-
tially covered misses. For BZIP2, TWOLF, and GZIP, coverage is lower, 36.5%,
and for PARSER and MESA, coverage is only 6.9%. Upon closer examination, we
found three factors that contribute to reduced cache-miss coverage. First, as de-
scribed in Section 5.1, our compiler ignores pre-execution regions contributing
fewer than 3% of the total cache misses. This is responsible for the “Non-Region”
components in Figure 11, which are particularly severe in PARSER and MESA.
Second, some memory references are pre-executed late, issuing after the main
thread has already suffered the cache miss. Pre-execution threads require a
few loop iterations to get ahead of the main thread, so loops with small itera-
tion counts are vulnerable to such late pre-execution. This factor accounts for
some uncovered misses in BZIP2, VPR, and TWOLF. Finally, the third factor
contributing to reduced cache-miss coverage is inaccurate pre-execution code
generated by our compiler. This factor accounts for some uncovered misses in
BZIP2, VPR, MCF, and GZIP, and is the focus of the next section.

6.2.3 Pre-Execution Code Accuracy. As discussed in Section 2.1.2, our
compiler performs cloning within pre-execution regions to ensure pre-
execution code faithfully mimics the main thread’s memory reference stream.

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

356 • D. Kim and D. Yeung

Unfortunately, two of the transformations we perform on pre-execution code,
store removal and speculative loop parallelization, can potentially compromise
the accuracy afforded by cloning. Store removal may remove code along the
data or control flow path leading to problematic load instructions, as discussed
in Section 3.2. Speculative loop parallelization may parallelize serial loops. As
described in Section 4.1, we do not analyze dependences exactly to enable more
aggressive parallelization. In particular, we analyze dependences for loop induc-
tion variables only; hence, we may mistakenly select a loop for parallelization
that contains loop-carried dependences through other variables. Whenever de-
pendences are violated as a consequence of either store removal or speculative
loop parallelization, pre-execution threads can potentially generate incorrect
memory addresses, leading to reduced cache-miss coverage.

To provide a deeper understanding, we carefully studied those pre-execution
regions where store removal or speculative loop parallelization compromise cor-
rectness. Out of the 31 pre-execution regions selected by our aggressive com-
piler, we found 3 cases where store removal causes a problem. One of these
cases occurs in VPR, and was discussed in detail in Section 3.2, and the other
two cases occur in MCF and BZIP2. For the remaining 28 pre-execution regions,
store removal does not affect the correctness of pre-execution code. Why is store
removal harmless most of the time? We find control and data flow leading to
problematic load instructions frequently involve loop induction variables. (For
example, the memory addresses for references “1” and “4” in Figure 3 are com-
puted via complex control and data flow rooted at the induction variables from
loops “7” and “8”). Hence, preserving the integrity of induction variables is a
necessary (though not sufficient) condition for high cache-miss coverage. Fortu-
nately, the update of an induction variable rarely depends on a global or heap
variable modified within the pre-execution region. Since store removal affects
global and heap variables only, it rarely destroys data values that can reach
induction variables.

Compared to store removal, speculative loop parallelization has an even
smaller impact on the correctness of pre-execution code, causing a problem
in only 1 pre-execution region from GZIP. Figure 12 sheds more light on this
finding. The three bars in Figure 12 report the number of pre-execution regions
that can be correctly parallelized using either the DOALL or DOACROSS schemes
presented in Section 4.1. Interestingly, Figure 12 shows only 5 out of the 31
pre-execution regions are parallelizable in their original form; however, after
program slicing and store removal, an additional 18 pre-execution regions be-
come parallelizable because code containing the loop-carried dependences are
removed. In other words, even though most of the loops in our pre-execution re-
gions contain loop-carried dependences, the “traversal kernel” required to trig-
ger cache-missing loads contains significant parallelism. Of the 8 pre-execution
regions that remain serial after program slicing and store removal, 4 employ the
SERIAL thread initiation scheme, and hence are not parallelized, because our ag-
gressive compiler is able to convert all their blocking loads into prefetches. And
finally, 3 of the serial pre-execution regions, when parallelized, execute for an in-
correct number of iterations due to compromised code controlling continue and
break statements, but still execute the problematic load instructions properly.

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

A Study of Source-Level Compiler Algorithms for Pre-Execution • 357

Fig. 12. Breakdown of pre-execution regions into three major categories: originally parallel, par-
allel after program slicing and store removal, and serial. The serial category is further broken down
into regions using the SERIAL scheme, regions speculatively parallelized affecting control flow only,
and regions that are incorrectly parallelized.

6.3 Contributions of Algorithms

This section studies the relative importance of individual algorithms employed
by our aggressive compiler to its overall performance gain. More specifically,
Section 6.3.1 compares the relative importance of the algorithms for pre-
execution effectiveness—program slicing, prefetch conversion, and speculative
loop parallelization. Then, Section 6.3.2 studies the importance of selecting the
best thread initiation schemes.

6.3.1 Comparing Algorithms for Pre-Execution Effectiveness. Figure 13
quantifies the relative importance of program slicing, prefetch conversion, and
speculative loop parallelization in our aggressive compiler for the 10 applica-
tions from Figure 10 that our compiler speeds up. We apply each optimization
incrementally to all the applications, and measure the change in performance
provided by each optimization. In Figure 13, the “Parallel” bars report execu-
tion time when we apply speculative loop parallelization only, without program
slicing and prefetch conversion. Next, in the “Slicing” bars, we report execu-
tion time when applying speculative loop parallelization together with program
slicing, but still without prefetch conversion. Finally, the “Pre-exec” bars report
execution time with all optimizations applied. Each bar is normalized against
the execution time of the corresponding application without pre-execution, re-
ported in the “Baseline” bars. Note, store removal is applied in all experiments
except for “Baseline;” otherwise, pre-execution threads would crash the main
thread. Also, the SERIAL scheme is never used in the “Parallel” and “Slicing” bars
since pre-execution regions always contain blocking loads for these experiments
(DOALL and DOACROSS schemes are selected instead).

The results in Figure 13 show speculative loop parallelization provides a
performance gain for all the applications except for EM3D, demonstrating that

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

358 • D. Kim and D. Yeung

Fig. 13. Impact of individual algorithms on overall performance in the aggressive compiler. The
“Parallel” bars show pre-execution with speculative loop parallelization only; the “Slicing” bars
show pre-execution with program slicing and speculative loop parallelization, but without prefetch
conversion; and the “Pre-exec” bars show pre-execution with all optimizations.

it is an important optimization. In fact, for BZIP2, PARSER, and MCF, the
entire speedup provided by our compiler is achieved when going from “Baseline”
to “Parallel;” no additional performance gain is achieved by program slicing or
prefetch conversion. Surprisingly, program slicing provides a measurable gain
for only 1 application, VPR. In all other cases, going from “Parallel” to “Slicing”
does not provide any measurable performance boost. This is due to redundancy
between program slicing and back-end code optimizations performed during
C compilation, as discussed in Section 2.2.1, and will be explored further in
Section 7.

Finally, performance gain due to prefetch conversion, as measured by the
difference between the “Slicing” and “Pre-exec” bars, occurs in 7 applica-
tions, with particularly large gains visible for AMMP, ART, MST, and EM3D.
Prefetch conversion reduces the number of cache-missing loads that stall,
allowing pre-execution threads to move more rapidly through the reorder
buffer and trigger cache misses early. Even though our reorder buffer is large
enough to accommodate multiple cache-missing loads simultaneously, it is not
large enough to fully tolerate long-latency memory stalls. Hence, increasing
the speed of pre-execution threads via prefetch conversion provides a per-
formance boost. Note, since prefetch conversion is an important optimiza-
tion, program slicing becomes important as well. Although Figure 13 sug-
gests program slicing does not increase overall performance, it still makes
an important contribution indirectly: program slicing enables prefetch conver-
sion in our aggressive compiler which does provide significant performance
gains.

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

A Study of Source-Level Compiler Algorithms for Pre-Execution • 359

Fig. 14. Comparing pre-execution thread initiation schemes. “Baseline” bars report execution
time for no pre-execution. The remaining bars report the execution time when the SERIAL, DOALL,
and DOACROSS schemes are applied, respectively. The schemes selected by our compiler appear in
boldface.

6.3.2 Comparing Pre-Execution Initiation Schemes. This section evaluates
the impact of selecting pre-execution initiation schemes on performance in our
aggressive compiler. In Figure 14, we study four pre-execution regions from
AMMP, EQUAKE, EM3D, and MST, each with different blocking load attributes
and induction variable types. In AMMP, our aggressive compiler removes all
blocking loads, while in EQUAKE, EM3D, and MST, blocking loads remain after
program slicing. Furthermore, AMMP, EQUAKE, and EM3D have affine induc-
tion variables, while MST has a pointer-chasing induction variable. For each
pre-execution region, we apply the SERIAL, DOALL, and DOACROSS schemes, as
labeled along the X-axis, and compare their performance. The schemes selected
by our compiler appear in boldface.

Figure 14 shows three results. First, choosing the right thread initiation
scheme has a first-order impact on pre-execution performance. In Figure 14,
the best scheme for each pre-execution region outperforms the worst scheme
by 25.9%, 39.8%, 51.3%, and 44.6% for AMMP, EQUAKE, EM3D, and MST,
respectively.

Second, Figure 14 confirms the best scheme depends on pre-execution re-
gion type, as discussed in Sections 4.1 and 4.2. For AMMP, SERIAL is the best.
Since there are no blocking loads, SERIAL has the same ability to get ahead
of the main thread as the other schemes, but has lower overhead because it
initiates fewer threads. For EQUAKE and EM3D, DOALL is the best. SERIAL is
ineffective because the blocking loads prevent a lone pre-execution thread from
getting ahead of the main thread. Furthermore, DOALL outperforms DOACROSS

since DOALL has no inter-thread communication once threads are initiated. In
DOACROSS, communication (and synchronization) must occur each loop itera-
tion to pass the induction variable, limiting the speed of pre-execution threads.
Finally, for MST, DOACROSS is the best. Since the induction variable is pointer
chasing, the DOALL scheme cannot be applied. And SERIAL is ineffective due to
the blocking loads.

The third and final result is that our compiler picks the best scheme for
all cases in Figure 14, thus validating the accuracy of the selection algorithm
presented in Section 4.2.

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

360 • D. Kim and D. Yeung

Fig. 15. Impact of architectural support for synchronization. “SW Semaphore” and “HW
Semaphore” bars report execution time with software and hardware counting semaphores, re-
spectively. All bars are normalized to the “Baseline” bars from Figure 10.

6.4 Architectural Support for Synchronization

Thus far, we have evaluated our aggressive compiler assuming only conven-
tional SMT hardware. This section studies the impact of special hardware sup-
port for pre-execution threads. In particular, we provide counting semaphores
in hardware by implementing special registers for storing semaphore values (in
our simulations, we assume 32 semaphore registers). Our counting semaphores
are similar to the hardware locking mechanism proposed in Tullsen et al. [1999].
Special Sem P and Sem V instructions are added to allow “P” and “V” opera-
tions on the semaphore registers. A Sem P instruction decrements a specified
semaphore register if its value is greater than zero; otherwise, it blocks the
thread until the value becomes non-zero. Similar to the suspend instruction
described in Section 5.2, a blocking Sem P causes a pipeline flush of all instruc-
tions belonging to the blocked context. A Sem V instruction increments a spec-
ified semaphore register and resumes a blocked thread if one or more threads
are waiting on the register value (waiting threads are resumed in FIFO order).
To reduce the latency of semaphore operations, we allow both Sem P and Sem V
to perform speculatively in the execute stage. This approach is similar to the
speculative restart mechanism proposed in Tullsen et al. [1999].

As described in Section 5.3, our compiler uses counting semaphores to syn-
chronize pre-execution threads with the main thread, and in the DOACROSS

scheme, also to synchronize between pre-execution threads. Our baseline im-
plementation of counting semaphores, described in Section 5.3, is inefficient
because semaphore operations are implemented purely in software, and per-
haps more importantly, use busy-waiting. Since semaphore operations occur
frequently, our hardware counting semaphores have the potential to increase
performance. Figure 15 compares pre-execution with software and hardware
counting semaphores, labeled “SW Semaphore” and “HW Semaphore” respec-
tively, for 7 applications (for the remaining 6 applications, there is no differ-
ence). All bars are normalized to the “Baseline” bars from Figure 10. Figure 15
shows hardware support improves performance by 3.7%. Across all 13 appli-
cations, we find hardware semaphores increase the overall speedup of pre-
execution from 17.6% to 20.5%. These performance gains arise because hard-
ware semaphores enable pre-execution threads to run farther ahead of the main

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

A Study of Source-Level Compiler Algorithms for Pre-Execution • 361

thread. But in two cases, this degrades performance. In GZIP, pre-execution
threads execute instructions along the wrong path due to incorrect loop paral-
lelization, a situation that is aggravated by faster pre-execution threads. Also,
in EQUAKE, pre-execution threads fetch data cache blocks faster with hard-
ware semaphores, and incur more L1 cache misses due to cache thrashing.

7. REDUCED COMPILERS

Thus far, we have presented and evaluated our most aggressive compiler
for generating pre-execution code. We now study several reduced algorithms
designed to simplify compiler implementation with (hopefully) minimal im-
pact on performance. Section 7.1 describes our reduced algorithms. Then,
Section 7.2 presents several reduced prototype compilers that implement these
algorithms. Finally, Section 7.3 evaluates the reduced compilers, and compares
them against our aggressive compiler.

7.1 Reduced Compiler Algorithms

We propose to simplify compiler implementation by eliminating two major steps
in the compilation process of our aggressive compiler, program slicing and pro-
filing, and replacing them with simpler algorithms. We begin by discussing
alternatives to program slicing in Section 7.1.1 and their impact on prefetch
conversion in Section 7.1.2. Then, we discuss replacing cache-miss profiles
and loop-trip count profiles with static analysis techniques in Sections 7.1.3
and 7.1.4, respectively.

7.1.1 Eliminating Program Slicing. Our program slicing analysis, de-
scribed in Section 3.2, essentially consists of 3 steps: store removal, slicing, and
code pinning. Of these, the slicing step can be redundant in some cases. Be-
cause store removal eliminates all side effects inside pre-execution regions, the
code removed by program slicing is dead code and can potentially be removed
during C compilation. Furthermore, while program slicing identifies exactly
the critical computations leading up to problematic load instructions to ensure
they are not removed, code pinning achieves a similar goal by introducing side
effects for problematic loads and their associated code, thus pinning them down
and preventing their removal. Due to this redundancy, we propose a simpler
approach in which store removal and code pinning are performed alone, omit-
ting the program slicing step. This approach permits us to eliminate Unravel
and its integration with other compiler passes, thereby simplifying compiler
implementation.

As an example, Figure 16 shows the pre-execution code generated by our
simplified algorithm for the get non updateable bb function from Figure 3. The
code in Figure 16 is identical to the original code from Figure 3 except for the
removal of side effects (underlined code labeled “5” in Figure 3) and the insertion
of an asm macro (labeled “1” in Figure 16). In particular, the conditional tests in
the loop body which are unnecessary for computing the problematic load remain
in the pre-execution code since program slicing has been omitted. However,
these extraneous statements do not have side effects due to store removal.

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

362 • D. Kim and D. Yeung

Fig. 16. Code generated by our compiler for the get non updateable bb function from Figure 3
without program slicing with asm macro added for code pinning (labeled “1”).

Hence, even though the code in Figure 16 appears to be less efficient than its
sliced counterpart from Figure 4(a), we have observed that the unnecessary
code is removed by gcc. As long as dead code elimination performed during C
compilation removes the unnecessary code, the machine code generated from
Figure 16 will be as efficient as the machine code generated from Figure 4(a).

7.1.2 Prefetch Conversion without Program Slicing. Our baseline prefetch
converter from Section 3.3 is coupled with program slicing, so eliminating Un-
ravel also requires new algorithms to drive prefetch conversion. Without pro-
gram slicing, prefetch conversion becomes harder for the following reason. The
simplified algorithm presented in Section 7.1.1 does not remove noncritical code
at the source level, as illustrated in Figure 16. Thus, given the pre-execution
source code, the conversion of problematic load instructions into prefetches can
potentially be limited whenever noncritical code consumes data accessed by the
problematic loads. To ensure all candidates for prefetch conversion are accu-
rately identified in the absence of program slicing, it is necessary to disregard
the dependences that problematic load instructions may have with noncritical
code in anticipation of its removal during C compilation.

We compute the set of active variables necessary for pre-executing the prob-
lematic load instructions contained inside a pre-execution region, and convert
any problematic load that does not assign one of these active variables into a
prefetch. Since noncritical code that will be removed during C compilation do not
contain such active variables, their presence in the pre-execution source code
generated by our simplified algorithms will not limit opportunities for prefetch
conversion. Eqs. (3) and (4) below compute the active variables set, V<m,v>,
for a memory variable, v, corresponding to a problematic load instruction at

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

A Study of Source-Level Compiler Algorithms for Pre-Execution • 363

statement, m:

V<m,v> =
{

V<n,v> if v /∈ defs(n)
Vdef<n,v> otherwise

(3)

Vdef<n,v> =
(⋃

x∈refs(n)

{x}
)⋃(⋃

x∈refs(n)

V<n,x>

)
⋃(⋃

y∈refs(k)

⋃
k∈control(n)

V<k, y>

)
. (4)

These equations are almost identical to Eqs. (1) and (2) from Section 2.2.1. In
particular, the first two terms in Eq. (4) account for dataflow within the critical
code for computing variable v similar to the first two terms in Eq. (2), while
the last term in Eq. (4) accounts for control flow similar to the last term in
Eq. (2). This similarity is not accidental; rather, it reflects the fact that prefetch
conversion is fundamentally enabled by program slicing. Even if we do not use
program slicers and rely on C compilers to remove unnecessary code, we must
still perform slicing-like analysis to identify prefetch conversion candidates.
Note, however, our standalone prefetch converter only performs basic data and
control flow analysis similar to what was described in Section 2.2.1, and is thus
far less complex than Unravel which performs several sophisticated analyses
(see Section 3.1).

Equations (3) and (4) compute the active variables set for a single mem-
ory reference, v. We compute V<m,v> for all problematic memory references
in the pre-execution region and take their union to form the set of all active
variables. Using this merged active variables set, we identify candidates for
prefetch conversion as mentioned above. If the data from a problematic load
instruction does not assign a variable belonging to the merged active variables
set, then the load instruction does not contribute to the critical data or control
flow within the pre-execution region; hence, we convert the load instruction
into a non-blocking prefetch. Otherwise, we do not apply prefetch conversion.

7.1.3 Eliminating Cache-Miss Profiles. Our default approach for identify-
ing problematic load instructions is to gather cache-miss profiles, thus directly
measuring the cache-miss rate of the application’s static loads. Cache-miss pro-
files provide an extremely accurate picture of memory behavior for a particular
run of an application. On the other hand, cache-miss profiles are cumbersome to
gather, requiring one or more profiling runs before compiler optimizations can
occur. Hence, eliminating the need to gather profiles would simplify compiler
implementation. Another drawback of cache-miss profiles is that they may not
accurately reflect program behavior across a wide range of program inputs.

We propose replacing cache-miss profiles with static analysis techniques to
identify problematic loads. Unfortunately, predicting memory behavior exactly
using compile-time techniques is nearly impossible. Our approach uses heuris-
tics to identify those static loads which are likely to cache-miss frequently. In
particular, we have found the following heuristic to be extremely useful: load
instructions whose load addresses are computed as a function of loop induction

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

364 • D. Kim and D. Yeung

Fig. 17. Algorithm for computing the set of pre-execution regions, P , without loop-trip count
profiles. 8 denotes the empty set.

variables have a high likelihood to exhibit poor memory performance. To elim-
inate cache-miss profiles, our compiler performs loop-level analysis to identify
all loads satisfying this heuristic (a fairly straightforward task), and assumes
all such loads are problematic loads. This simple approach successfully iden-
tifies 88% of the cache misses that occur in 10 of our most memory-intensive
benchmarks.6

While our compile-time heuristic identifies most of the problematic loads
correctly, it has a tendency to identify too many loads as problematic. This
causes pre-execution to occur where it isn’t needed, increasing runtime over-
head. To minimize performance degradation due to overhead, we modify the
pre-execution region selection algorithm presented in Figure 6(a) to omit the
second pass through the innermost loops (lines 11–13). This pass includes in-
nermost loops with fewer than 25 iterations in the set of pre-execution regions.
Although it is difficult to pre-execute such short loops effectively, it is worth-
while trying as long as they contain problematic loads. Without cache-miss
profiles, however, it is likely that such loops contain falsely identified problem-
atic loads. Hence, we refrain from pre-executing any short loops in the absence
of cache-miss profiles.

7.1.4 Eliminating Loop Profiles. In addition to cache-miss profiles, our al-
gorithm for computing pre-execution regions, presented in Section 4.2.1, re-
quires loop-trip count profiles as well to estimate the amount of work in inner-
most loops. Since this approach also requires separate profiling runs, it shares
the same drawbacks discussed in Section 7.1.3 for cache-miss profiles.

Figure 17 presents a reduced algorithm for computing the set of pre-
execution regions, P , that avoids loop-trip count profiles. This algorithm is
identical to the original algorithm from Figure 6(a) except it naively assumes
all innermost loops contain fewer than 25 iterations (this simple assumption is
correct for 83% of the innermost loops in our benchmarks). Hence, on the first

6We obtained this result via manual inspection of our benchmarks. Unfortunately, for 3 bench-
marks, the majority of cache misses occur either in libraries for which we do not have source code
or in too many loops, making it infeasible to analyze by hand. However, we expect our heuristic is
effective for these 3 benchmarks as well.

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

A Study of Source-Level Compiler Algorithms for Pre-Execution • 365

Table V. Compilers Used to Generate Pre-Execution Code for the Experiments. The
Compilers Differ in How They Remove Unnecessary Code, Select Prefetch Conversion

Candidates, Identify Problematic Load Instructions, and Estimate Innermost Loop Work

Code Prefetch Problematic Loop
Removal Conversion Load Identification Work

A Program Slicing Slicing-Based Profile Profile
B Dead Code Elimination Slicing-Based Profile Profile
C Dead Code Elimination Standalone Profile Profile
D Dead Code Elimination Standalone Static Analysis Profile
E Dead Code Elimination Standalone Static Analysis Static Analysis

pass of the algorithm, none of the innermost loops are selected as pre-execution
regions (lines 3 and 4); instead, the algorithm picks next-outer loops as pre-
execution regions as long as nested pre-execution regions are not created (lines
5–7). Also, notice this algorithm performs a second pass through the innermost
loops to pick up any remaining loops that are not pre-executed (lines 9–11)
as is done in Figure 6(a), a step that was eliminated in the algorithm from
Section 7.1.3 to reduce overhead. Because the algorithm in Figure 17 assumes
all innermost loops iterate fewer than 25 times, several important innermost
loops may not get pre-executed after the first pass of the algorithm. Although
the second pass can add loops containing falsely identified problematic loads,
we find it is worthwhile since it ensures all important innermost loops are
pre-executed.

7.2 Reduced Prototype Compilers

We created variations on our aggressive compiler by substituting the alterna-
tives to program slicing and profiling presented in Section 7.1, thus forming
several reduced compilers. Table V lists these compilers, lettered “A” through
“E,” along with the algorithms that distinguish them. The first (Compiler A) is
the aggressive compiler which we have already studied—we include this for the
sake of comparison. The remaining entries in Table V represent the reduced
compilers. First, we eliminate program slicing and rely on the C compiler’s dead
code elimination pass to remove unnecessary code (Compiler B), though this
compiler still uses Unravel to identify prefetch conversion candidates. Next,
we use the standalone prefetch conversion algorithm described in Section 7.1.2
to extract prefetch conversion information (Compiler C), thus eliminating the
need for Unravel completely. Then, we substitute summary cache-miss profiles
with static analysis to identify problematic loads (Compiler D). Finally, we use
the compile-time heuristics described in Section 7.1.4 to select pre-execution
regions (Compiler E), thus removing loop-trip count profiles and eliminating
the need for profiling completely.

Figure 18 illustrates the major modules in our simplest reduced prototype
compiler, Compiler E. This block diagram is similar to the corresponding block
diagram from Figure 9 for the aggressive compiler, except many of the aggres-
sive algorithms have been replaced by the reduced algorithms described above.
In particular, this compiler does not incorporate Unravel nor the SimpleScalar
simulators. Instead, it relies on C compilation to remove unnecessary code,

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

366 • D. Kim and D. Yeung

Fig. 18. Major components in our least aggressive prototype compiler. This compiler uses dead
code elimination to remove unnecessary code and static analysis to identify problematic loads and
select pre-execution regions. Arrows denote interactions between compiler modules.

and it implements the prefetch conversion, problematic load identification, and
pre-execution region selection algorithms in SUIF. Note, while Figure 18 shows
the implementation of Compiler E only, we also implemented the remaining
reduced compilers from Table V by substituting the reduced algorithms incre-
mentally.

7.3 Reduced Compilers Evaluation

In this section, we evaluate our reduced compilers. First, Sections 7.3.1
and 7.3.2 evaluate eliminating program slicing. Then, Sections 7.3.3 and 7.3.4
evaluate eliminating profiling. Results for all these evaluations appear in
Figure 19, which shows the performance of each of the 5 compilers from Table V
across the 13 benchmarks. Note, all the pre-execution code in these experiments
use the baseline software counting semaphores, not the hardware semaphores
presented in Section 6.4.

7.3.1 Impact of C Compiler Code Removal. Comparing Compiler A and
Compiler B in Figure 19, we see eliminating Unravel and relying on back-end
code optimizations during C compilation to remove unnecessary code impacts
performance minimally, increasing the execution time of only 1 benchmark,
VPR. The remaining 12 benchmarks experience no performance degradation
when using Compiler B despite the fact this compiler does not perform pro-
gram slicing. On average, Compiler B achieves a speedup of 17.3%, almost
matching the speedup of Compiler A (17.6%). This result suggests Unravel is
redundant, removing code that would have been removed by the C compiler any-
ways. (The same reasoning explains the lack of performance gain when going
from the “Parallel” to “Slicing” bars in Figure 13—most of the code removed by
Unravel in the “Slicing” bars is removed during C compilation in the “Parallel”
bars).

To provide more insight, we compare the number of dynamic instructions
executed by each benchmark under Compilers A and B. Figure 20 reports
normalized dynamic instruction count in the main thread and pre-execution
threads using pre-execution code generated by Compiler A and Compiler B.
Each bar has been broken down into compute and overhead components, with

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

A Study of Source-Level Compiler Algorithms for Pre-Execution • 367

Fig. 19. Normalized execution time broken down into busy, overhead, and memory stall compo-
nents. Groups of bars labeled “Compiler A” to “Compiler E” report performance for the 5 compilers
from Table V.

the latter accounting for parameter passing, thread initiation, and synchro-
nization instructions. Only instructions executed within pre-execution regions
are counted, and busy-wait instructions executed by pre-execution threads are
omitted. Figure 20 shows Compilers A and B both effectively reduce computa-
tion performed in pre-execution threads. Comparing the compute components
in the “Compiler A” and “Compiler B” bars against the compute components
in the “Main Thread” bars, we see pre-execution threads under both compil-
ers execute fewer instructions than the main thread across 12 applications.
In one case (GZIP), pre-execution threads perform more computation than the
main thread. This is due to incorrect pre-execution code generated by specula-
tive loop parallelization (see Section 6.2.3). If we include overhead instructions,
we see pre-execution threads under both compilers execute fewer instructions
than the main thread across 10 applications. In MCF and MST, pre-execution
threads execute more instructions than the main thread due to high overhead
associated with passing arguments and forking threads.

Comparing the “Compiler A” bars against the “Compiler B” bars in Figure 20,
we see pre-execution threads execute an equal number of instructions in

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

368 • D. Kim and D. Yeung

Fig. 20. Number of dynamic instructions removed by Compilers A and B. The “Main Thread”
bars report instruction counts for the main thread. The “Compiler A” and “Compiler B” bars report
instruction counts for pre-execution threads using pre-execution code generated by Compiler A and
B, respectively. Each bar is broken down into compute and overhead components.

9 benchmarks, indicating Unravel is redundant in these cases. For these
benchmarks, the code removed by program slicing in Compiler A is dead code
because store removal eliminates their side effects. Although Compiler B does
not remove this code at the source level, the C compiler removes it as a con-
sequence of dead code elimination. For VPR, TWOLF, AMMP, and MST, how-
ever, Unravel is not completely redundant, and succeeds in further reducing
the dynamic instruction count on top of the C compiler. After closer exami-
nation, we found two factors that permit Unravel to further streamline pre-
execution code in these benchmarks. First, the dead code elimination pass
in our C compiler, gcc, is not perfect. In some cases, it fails to remove dead
code which Unravel successfully removes. Second, Unravel propagates depen-
dence information across procedure boundaries. Code sliced inside one pro-
cedure can enable slicing in its caller procedures by removing dependences
communicated through arguments. Since gcc only performs local analysis, it
conservatively assumes code associated with all procedure calls is live. Hence,
Compiler B misses opportunities to remove code anytime slices span multiple
procedures.

From Figure 20, we conclude there exists a potential for program slicing to
improve performance even when the C compiler performs dead code elimina-
tion. However, it still remains to be seen whether this potential can be realized.
For our benchmarks, the additional reduction in dynamic instruction count
provided by Unravel is modest, and as the “Compiler A” and “Compiler B” bars
from Figure 19 indicate, there is a performance improvement in only 1 out of 4
cases where Unravel is not redundant.

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

A Study of Source-Level Compiler Algorithms for Pre-Execution • 369

7.3.2 Impact of SUIF Prefetch Converter. Compiler B does not perform
program slicing, but it still uses Unravel to identify candidates for prefetch
conversion. If we eliminate Unravel completely, we must offload the prefetch
conversion analysis from Unravel to SUIF, as is done in Compiler C. Com-
paring the “Compiler B” and “Compiler C” bars in Figure 19, we see our
SUIF-based algorithm for identifying prefetch conversion candidates presented
in Section 7.1.2 performs essentially as well as Unravel’s prefetch converter,
achieving a speedup of 17.1% (versus 17.3% for Compiler B). This data sug-
gests our simple algorithm (e.g., Eqs. 3 and 4 from Section 7.1.2) is sufficient
to identify the same prefetch conversion candidates as Unravel in almost all
cases, and the sophisticated analyses that Unravel performs does not improve
prefetch conversion appreciably.

7.3.3 Impact of Eliminating Cache-Miss Profiles. Comparing the “Com-
piler C” and “Compiler D” bars in Figure 19, we see eliminating cache-miss
profiles has a negative impact on performance, reducing the overall speedup
across our benchmarks from 17.1% to 15.0%. Two factors are responsible for
this performance degradation. First, without cache-miss profiles, a significant
number of problematic loads are falsely identified, causing our pre-execution
region selection algorithm to pick significantly more loops for pre-execution. We
found Compiler D selects 62 pre-execution regions across our 13 benchmarks,
or double the number of pre-execution regions selected by Compilers A, B, or C
which use cache-miss profiles. This occurs despite the modification to throttle
pre-execution region selection described in Section 7.1.3. Unfortunately, many
of these additional pre-execution regions contain falsely identified problematic
loads that infrequently miss in the cache, increasing runtime overhead without
improving cache-miss coverage.

Second, not only does the number of pre-execution regions grow with the
number of falsely identified problematic loads, but the number of problematic
loads within each pre-execution region also increases. Even though these addi-
tional loads infrequently miss in the cache, our compiler assumes they are prob-
lematic and tries to convert them into prefetches. However, due to the increased
number of problematic loads, it becomes less likely the compiler will success-
fully convert all of them into prefetches. Consequently, several pre-execution
regions that are pre-executed using the SERIAL scheme under Compilers A, B,
and C are instead pre-executed using the DOALL or DOACROSS schemes due to
incomplete prefetch conversion, increasing runtime overhead without improv-
ing pre-execution effectiveness. This phenomenon is responsible for much of
the performance degradation in AMMP and ART.

While an increased number of falsely identified problematic loads gener-
ally leads to performance degradation, in some cases, performance can actually
improve. For example, Figure 19 shows BZIP2 experiences a 4% performance
boost under Compiler D compared to Compilers A, B, and C. BZIP2 contains
several loads that suffer a small number of cache misses. Because these loads
do not meet our 3% threshold, they are not identified as problematic loads by
our profiler. However, Compiler D picks them for pre-execution. Unlike the ma-
jority of cases in Figure 19, for BZIP2, the increased coverage benefit achieved

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

370 • D. Kim and D. Yeung

by pre-executing loads with small cache-miss counts outweighs the overhead
incurred, resulting in performance gain.

7.3.4 Impact of Eliminating Loop Profiles. Comparing the “Compiler D”
and “Compiler E” bars in Figure 19, we see eliminating loop-trip count profiles
degrades performance in most benchmarks, reducing the overall speedup from
15.0% to 7.7%. The impact is most pronounced in ART where execution time
increases by 36%, resulting in a 7% degradation compared to no pre-execution.
In ART, there is an innermost loop containing several problematic loads that
executes 1000s of iterations. Since our alternate algorithm assumes all inner-
most loops iterate fewer than 25 times (see Section 7.1.4), it pre-executes this
loop from its next-outer loop. Unfortunately, this initiates pre-execution threads
much earlier than necessary, triggering cache misses far too early and causing
thrashing in the data cache. For all other benchmarks, innermost loops execute
a modest number of iterations, so pre-executing them from the next-outer loop
works well. Hence, our simple heuristic for estimating loop work is correct for
the majority of cases, but can cause pathologic behavior in some instances.

In BZIP2, VPR, TWOLF, PARSER, AMMP, and MESA, Compiler E degrades
performance compared to Compiler D due to increased overhead. As described
in Section 7.1.4, Compiler E performs a second pass to pick up any innermost
loops that are not pre-executed after the first pass. While this ensures all impor-
tant innermost loops get pre-executed, it selects several pre-execution regions
containing falsely identified problematic loads. We found Compiler E selects 115
pre-execution regions across our 13 benchmarks, roughly another doubling of
selected pre-execution regions compared to Compiler D. These additional pre-
execution regions increase runtime overhead without improving cache-miss
coverage.

8. MULTIPROGRAMMING RESULTS

Sections 6 and 7 study compiler-based pre-execution assuming single programs
only. In this section, we evaluate compiler-based pre-execution in the context
of multiprogramming. When performing pre-execution for multiprogrammed
workloads, the main computation threads and the pre-execution threads can
effectively share the resources of the SMT processor, thus increasing overall
processor throughput. On the other hand, it is also possible that supporting pre-
execution for multiple programs simultaneously places a large enough pressure
on processor resources that throughput degrades. The goal of this section is
to understand the tradeoffs that arise when combining compiler-based pre-
execution with simultaneous execution in SMT processors.

8.1 Multiprogramming Simulation Methodology

In our study, we generate pre-execution code using our most aggressive com-
piler (Compiler A). Furthermore, we model an SMT processor with 5 hardware
contexts–2 to support main computation threads, and only 3 to support pre-
execution threads. (Except for the number of hardware contexts, the same
machine configuration from Table II is used for all our multiprogramming

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

A Study of Source-Level Compiler Algorithms for Pre-Execution • 371

Table VI. Benchmarks for Multiprogramming Experiments

Group 1 Group 2 Group 3
em3d mst 181.mcf 179.art 175.vpr 256.bzip2 188.ammp

99.98% 99.64% 86.18% 63.14% 23.12% 22.22% 18.14%
DA DX DX DA & SE DA & SE DA & SE SE

TDF values for each benchmark are listed in the 3rd row, and pre-execution initiation schemes used
by each benchmark are listed in the last row. Benchmark groupings are indicated in the first row:
Group 1 benchmarks have high TDF values, Group 2 benchmarks have medium TDF values, and
Group 3 benchmarks have low TDF values.

experiments). Rather than provide enough contexts to support the maximum
number of pre-execution threads (8 total contexts would be necessary for 2
main threads), we assume the contexts used for pre-execution are dynamically
shared between the 2 main threads. We believe this is a realistic model since
it reduces the total number of hardware contexts needed, and it leads to better
utilization of the contexts reserved for pre-execution threads.

Because there are a limited number of contexts available for pre-execution,
the main threads must arbitrate for hardware contexts before initiating pre-
execution. We implement arbitration in software, using a software queue to
keep track of the idle hardware contexts available for pre-execution threads.
Before entering a pre-execution region, each main thread must acquire a lock to
gain exclusive access to the idle context queue, and reserve the necessary num-
ber of hardware contexts depending on the thread initiation scheme. The SERIAL

scheme attempts to reserve 1 context, while the DOALL and DOACROSS schemes
attempt to reserve 3 contexts. Due to contention, reservation requests may fail
to acquire the requisite number of contexts. We modified the pre-execution code
generated by our compiler to enable each thread initiation scheme to accommo-
date a variable number of pre-execution threads. To improve throughput, we
use a hardware semaphore for the idle context queue lock; pre-execution code
uses software semaphores.

The degree of contention for hardware contexts, an important determiner of
multiprogramming performance, depends on how actively individual programs
employ pre-execution threads. We introduce a metric, called the Threading Duty
Factor (TDF), to quantify pre-execution thread activity. We define an applica-
tion’s TDF as the percentage of time pre-execution threads remain active when
the application runs on a dedicated 4-context SMT machine, computed as fol-
lows:

TDF(%) =
∑3

i=1 Execution time of pre-execution thread i
Total simulation time

∗ 1
3
∗ 100. (5)

In Table VI, we report the TDF values and thread initiation schemes for 7
benchmarks which we use in our experiments. We divide these 7 benchmarks
into three groups according to their TDF values: Group 1 benchmarks have high
TDF values (EM3D, MST, and MCF), Group 2 benchmarks have medium TDF
values (ART), and Group 3 benchmarks have low TDF values (VPR, BZIP2, and
AMMP).

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

372 • D. Kim and D. Yeung

Fig. 21. Weighted speedup of multiprogrammed workloads. “Baseline Simul” denotes simultane-
ous execution without pre-execution. “Pre-exec Simul” and “Pre-exec Time” denote pre-execution
with simultaneous execution and time sharing, respectively. The TDF group that each application
belongs to, and the baseline IPC for each application are shown in parentheses.

8.2 Multiprogramming Evaluation

Figure 21 reports our multiprogramming results. We study 10 multipro-
grammed workloads, each consisting of two applications selected from Table VI.
For each workload, we perform three experiments. All experiments run for a
fixed number of cycles, corresponding to a scheduling interval. The first two
experiments, labeled “Baseline Simul” and “Pre-exec Simul,” run the two appli-
cations simultaneously without and with pre-execution, respectively. In these
experiments, both applications are active during the entire scheduling inter-
val. For the experiment labeled “Pre-exec Time,” we run the two applications
with pre-execution in a time-sliced manner, so that each application is ac-
tive for exactly half the scheduling interval. Figure 21 shows the weighted
speedup [Snavely and Tullsen 2000] achieved across the entire scheduling in-
terval for each experiment and workload, computed as follows:

Weighted Speedup = 1
2

[
IPCApp1

IPCBaseApp1
+ IPCApp2

IPCBaseApp2

]
, (6)

where I PCBaseApp1 and I PCBaseApp2 are the IPCs achieved by each applica-
tion in the “Baseline Simul” experiment. Individual bars are broken down into
two components to show each application’s contribution to overall weighted
speedup. For all experiments, we use a scheduling interval of 100M cycles.

First, comparing the “Pre-exec Simul” bars against the “Baseline Simul” bars,
we see pre-execution improves weighted speedup for all 10 multiprogrammed
workloads in Figure 21. On average, the workloads receive a 45.0% boost in
weighted speedup when using pre-execution compared to no pre-execution. This
demonstrates pre-execution can be gainfully employed for multiple simulta-
neously executing applications, even when applications must share a limited
number of hardware contexts for pre-execution threads.

Although pre-execution seems to be better than no pre-execution, we would
also like to study whether combining pre-execution with simultaneous exe-
cution is the best choice. Simultaneous execution in an SMT processor tends
to boost throughput because multiple applications more effectively exploit

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

A Study of Source-Level Compiler Algorithms for Pre-Execution • 373

processor pipeline resources. However, it also tends to reduce pre-execution
effectiveness because simultaneously executing applications must compete for
hardware contexts. We quantify this tradeoff by comparing the “Pre-exec Simul”
and “Pre-exec Time” bars in Figure 21. Workloads in the “Pre-exec Simul” exper-
iments exploit pipeline sharing because applications execute simultaneously,
while workloads in the “Pre-exec Time” experiments exploit contentionless ac-
cess to hardware contexts because applications execute one at a time.

Figure 21 shows the tradeoff between pre-execution and simultaneous execu-
tion depends on the workload. When both applications have either medium- or
low-TDF values, as in the ART-ART, AMMP-ART, and AMMP-BZIP2 work-
loads, then “Pre-exec Simul” always performs better than “Pre-exec Time.”
For these workloads, contention for hardware contexts is low in the “Pre-exec
Simul” experiments due to the modest TDF values of individual applications.
Consequently, applications can exploit pipeline sharing when run simultane-
ously without paying a performance penalty for context contention, resulting in
higher throughput compared to time-slicing. In contrast, when one of the appli-
cations in the workload has a high-TDF value, pre-execution and simultaneous
execution do not always combine symbiotically. High-TDF applications tend to
monopolize hardware contexts, limiting the other application’s ability to per-
form pre-execution. Time-slicing can relieve this contention, but at the expense
of sacrificing simultaneous execution. If boosting the pre-execution performance
of the lower-TDF application outweighs the benefit of pipeline sharing, then
“Pre-exec Time” outperforms “Pre-exec Simul.” This happens in the EM3D-
MCF, ART-MST, and VPR-EM3D workloads. If, however, the benefit of pipeline
sharing outweighs boosting the pre-execution performance of the lower-TDF
application, then “Pre-exec Simul” outperforms “Pre-exec Time.” This happens
in the MST-MCF, VPR-MST, BZIP2-EM3D, and BZIP2-MST workloads.

Across all 10 multiprogrammed workloads, “Pre-exec Simul” outperforms
“Pre-exec Time” by 9.9% on average. So, for our workload mixes, simultaneous
execution is generally more profitable than time-slicing. We also note “Pre-exec
Time” outperforms “Baseline Simul” in all workloads except one, providing a
boost in weighted speedup of 29.7% on average. This reinforces our earlier
claim that pre-execution is better than no pre-execution for the workloads in
Figure 21, even when pre-execution applications do not exploit simultaneous
execution.

9. RELATED WORK

Previous work has explored automating pre-execution using either com-
piler [Kim and Yeung 2002], linker [Liao et al. 2002; Roth and Sohi 2002], or
hardware [Annavaram et al. 2001; Collins et al. 2001a; Sundaramoorthy et al.
2000] approaches. This article is closest to our own earlier paper on compile-
time extraction of pre-execution code [Kim and Yeung 2002]. To the best of
our knowledge, the work in Kim and Yeung [2002] is the first to automate
pre-execution using a compiler; this article extends our earlier work, providing
a more comprehensive study of the compiler approach. More specifically, this
article proposes several reduced algorithms for extracting pre-execution code

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

374 • D. Kim and D. Yeung

that are less aggressive, and hence simpler to implement, than our original
compiler algorithms. These reduced algorithms also eliminate the cumbersome
profiling step required by our more aggressive algorithms. Furthermore, com-
pared to Kim and Yeung [2002], this article provides a more extensive exper-
imental evaluation, including a detailed comparison between our aggressive
and reduced algorithms, as well as a study of our algorithms in the context of
multiprogramming.

Contemporaneously with our compiler work, Liao et al. [2002] propose
automating pre-execution using a post-pass binary tool to instrument pre-
execution code directly into program binaries. More recently, Roth and Sohi
[2002] propose a framework for automatically extracting data-driven threads
(also known as p-threads) from simulator instruction traces. Compared to the
compiler approach, the advantage of such binary-level approaches is that they
do not require source code, so they are more transparent. On the other hand,
the compiler approach generates source-level pre-execution code that can be
compiled onto multiple target ISAs, so it is a more portable approach. Binary-
level extraction produces platform-dependent pre-execution code, so a different
binary analyzer is needed for each target ISA.

The techniques in Kim and Yeung [2002], Liao et al. [2002], and Roth and
Sohi [2002] are software techniques; several researchers have also investigated
hardware techniques for extracting pre-execution code. Dynamic Speculative
Precomputation [Collins et al. 2001a] proposes the Retired Instruction Buffer
(RIB). Similar to a trace cache fill unit, the RIB stores traces of committed in-
structions from which pre-execution traces are extracted. Dependence Graph
Precomputation [Annavaram et al. 2001] performs similar analyses to extract
pre-execution traces, but only considers instructions in the Instruction Fetch
Queue (IFQ). Slipstream Processors [Sundaramoorthy et al. 2000] use a spec-
ulative compute engine to automatically get ahead of the main processor, not
only for pre-execution, but also for fault tolerance purposes as well. The ad-
vantage of these hardware approaches is that they are fully transparent to
the user. However, they are more complex than software approaches since code
extraction analysis is performed in hardware.

Like the techniques for automating pre-execution code extraction described
above, several others have studied how to create effective pre-execution code
as well [Collins et al. 2001b; Luk 2001; Roth and Sohi 2001; Zilles and Sohi
2001]. However, these studies are not concerned with automation, but instead
construct the pre-execution code by hand. Of these, our work is closest to Luk’s
Software-Controlled Pre-Execution [Luk 2001]. Luk is the first to propose in-
strumenting pre-execution at the source-code level, which is the basis for our
work since we use a source-to-source compiler. One major difference between
our two approaches is that Luk’s pre-execution threads and main thread exe-
cute the same code. In contrast, we generate separate code for pre-execution
threads via cloning; hence, our pre-execution code optimizations cannot affect
main thread correctness, permitting more aggressive optimizations.

In contrast to Luk’s source-level approach, several techniques have explored
the binary-level approach (again, through manual code extraction). Three
such examples are Speculative Precomputation (SP) [Collins et al. 2001b],

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

A Study of Source-Level Compiler Algorithms for Pre-Execution • 375

Data-Driven Multithreading (DDMT) [Roth and Sohi 2001], and Execution-
Based Prediction (EBP) [Zilles and Sohi 2001]. SP and DDMT extract pre-
execution code by analyzing instruction traces acquired on a simulator using
a technique called backward slicing [Zilles and Sohi 2000], whereas EBP ex-
tracts pre-execution code directly from program binaries. Our algorithms are
analogous to SP’s and DDMT’s algorithms. For example, our program slicer
performs the source-level equivalent of backward slicing, and our DOACROSS

parallelization scheme is similar to SP’s chaining triggers. Furthermore, EBP’s
optimizations, like ours, are not strictly correct, and rely on speculation hard-
ware support to preserve integrity of the main computation. However, because
the SP, DDMT, and EBP pre-execution models involve instruction-level analy-
sis, they are better suited for binary analyzers (in fact, Liao’s approach [Liao
et al. 2002] is based on the SP model), whereas our approach targets source-to-
source compilers.

While tolerating memory latency has been the focus of most previous work
on pre-execution, several researchers have proposed using pre-execution for
other purposes as well. Master/Slave Speculative Parallelization [Zilles and
Sohi 2002] proposes pre-executing data values as a replacement for hardware
value predictors to enable more accurate speculative parallelization. Chang
and Gibson [1999] propose using pre-execution to provide hints to the operat-
ing system for I/O prefetching. In addition, several researchers have studied
pre-executing hard-to-predict branches. Both EBP and DDMT investigate such
branch-based pre-execution, as do Chappell et al. [2002] and Farcy et al. [1998].
In a similar spirit, Roth et al. [1999] propose pre-executing virtual function call
target addresses. Our work considers pre-executing cache misses only; how-
ever, it may be possible to adapt our compiler algorithms to these other uses of
pre-execution.

In addition, there are several other related techniques and studies. Most
recently, Wang et al. [2002] compare out-of-order execution with Speculative
Precomputation on an Itanium processor, and show these techniques are com-
plementary. Dependence-Based Prefetching [Roth et al. 1998] proposes an early
form of pre-execution for pointer-chasing memory references. To our knowl-
edge, however, the earliest group of work which can be credited with provid-
ing the enabling mechanisms for pre-execution includes Simultaneous Sub-
ordinate Microthreading (SSMT) [Chappell et al. 1999], Assisted Execution
(AE) [Dubois and Song 1998], and Runahead processing [Dundas and Mudge
1997]. SSMT and AE are the first to introduce the notion of helper threads,
and Runahead processing is the first to demonstrate execution-based data
prefetching.

Finally, our work leverages several previous compiler techniques. Significant
work exists in the area of program slicing—a good survey of this area appears
in Binkley and Gallagher [1996]. Previous work has investigated slicing in the
context of software debugging, testing, parallelization, and maintenance. We
apply program slicing to optimize pre-execution code. In addition, conventional
parallelizing compilers have traditionally exploited two forms of loop-level par-
allelism: doall and doacross [Cytron 1986; Padua et al. 1980]. Using exist-
ing analyses [Padua and Wolfe 1986], our compiler also parallelizes these loop

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

376 • D. Kim and D. Yeung

types; however, compared to conventional parallelizing compilers, we can ap-
ply parallelization more aggressively since the code our compiler generates is
executed only speculatively.

10. CONCLUSION

This article presents several algorithms for creating pre-execution thread code
automatically in a source-to-source compiler, and prototypes them using Un-
ravel, SimpleScalar, and the SUIF framework. Using a detailed architectural
simulator of an SMT processor, the article measures the performance gains
achieved by the different prototype compilers, thus quantifying the effective-
ness of the compiler approach for pre-execution, as well as providing insight
into the performance tradeoffs between different compiler algorithms.

We draw several conclusions based on our experimental results. First, we
find that compiler-based pre-execution achieves significant performance gains.
Our most aggressive compiler reduces execution time by 20.9% for 10 out of
13 applications, and delivers an average speedup of 17.6% across all 13 ap-
plications. To achieve this performance gain, we employ several speculative
optimizations (e.g., store removal and speculative loop parallelization). Fortu-
nately, these optimizations do not frequently compromise the correctness of the
cache-miss “traversal kernel;” hence, our pre-execution code correctly generates
addresses for a large number of cache misses.

Second, most of the algorithms in our aggressive compiler make significant
contributions to overall performance, and thus are all important for achiev-
ing performance. Speculative loop parallelization by itself improves the perfor-
mance of 9 out of 10 applications, and is responsible for all of the performance
gain in 3 applications. Surprisingly, program slicing improves performance in
only 1 application on top of speculative loop parallelization, but enables prefetch
conversion which improves performance additionally for 7 applications. Care-
ful selection of the pre-execution thread initiation scheme also impacts perfor-
mance significantly. Our results show a 25.9–51.3% performance differential
between the best and worst schemes. Fortunately, our compiler chooses the
best scheme in the cases we examined.

Third, our aggressive compiler can be simplified, in some cases with only
minimal impact on performance. For the benchmarks we study, program slicing
can be eliminated with virtually no performance degradation. Program slicing
often removes dead code that would have been removed during C compilation
anyways; hence, it is frequently redundant. However, our results suggest pro-
gram slicing may provide more significant gains for other benchmarks, but
further work is needed. In addition, eliminating cache-miss profiling degrades
performance only modestly, reducing overall speedup from 17.1% to 15.0%. Our
compile-time heuristic successfully identifies most of the problematic loads, re-
sulting in good coverage. However, our heuristic can be overly conservative,
causing some problematic loads to be falsely identified and increasing pre-
execution overhead. Unfortunately, eliminating loop-trip count profiles reduces
overall speedup from 15.0% to 7.7%. We conclude loop-trip count profiles are
necessary for good performance in our compilers.

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

A Study of Source-Level Compiler Algorithms for Pre-Execution • 377

Finally, compiler-based pre-execution can benefit multiprogramming as well
as single applications. Across 10 multiprogrammed workloads, a 42.9% boost in
IPC is achieved when simultaneously executing applications use pre-execution
compared to no pre-execution. Whether or not the combination of pre-execution
and simultaneous execution outperforms pre-execution and time-slicing de-
pends on how heavily individual programs use pre-execution threads. We
introduce a new metric, called the Threading Duty Factor (TDF), to quan-
tify pre-execution thread activity. For workloads containing high-TDF appli-
cations, our results show time-slicing can outperform simultaneous execu-
tion in some cases. However, overall, pre-execution with simultaneous ex-
ecution outperforms pre-execution with time-slicing for the workloads we
study.

In the future, we plan to improve our compiler algorithms for constructing
pre-execution threads. First, we plan to more precisely determine the prof-
itability of pre-execution, so that our compilers can apply pre-execution only
when its gain outweighs its cost. We believe using execution time profiles in
addition to cache-miss profiles is a promising way for enabling compilers to
better evaluate the cost and benefits of pre-execution. Another promising di-
rection is to determine the profitability of pre-execution at runtime. In this
approach, the compiler would still construct pre-execution thread code stati-
cally, but deciding which pre-execution regions to activate would happen dy-
namically. This approach is potentially superior to a fully static approach since
it can exploit phased behavior. Second, we also plan to develop better algo-
rithms for pre-execution effectiveness. In this article, we proposed using mul-
tiple pre-execution threads to tolerate long-latency memory instructions that
block. An interesting alternative would be to employ miss clustering techniques,
such as unroll-and-jam [Pai and Adve 1999], to increase the number of cache-
missing load instructions simultaneously resident in the processor’s instruction
window from a single pre-execution thread. This approach could enable one
pre-execution thread to achieve performance similar to multiple pre-execution
threads, but with a significantly lower demand on hardware contexts. Finally,
in addition to improving our compiler algorithms, we would also like to exper-
iment with more applications to better understand the types of programs that
can benefit from pre-execution.

REFERENCES

ABRAHAM, S. G., SUGUMAR, R. A., RAU, B. R., AND GUPTA, R. 1993. Predictability of load/store instruc-
tion latencies. In Proceedings of the 26th Annual International Symposium on Microarchitecture
(Austin, Tex.). ACM, New York, 139–152.

ANDERSON, J. M., BERC, L. M., DEAN, J., GHEMAWAT, S., HENZINGER, M. R., LEUNG, S.-T. A., SITES, R. L.,
VANDEVOORDE, M. T., WALDSPURGER, C. A., AND WEIHL, W. E. 1997. Continuous profiling: Where
have all the cycles gone? SRC Technical Note 1997-016a, Digital. July.

ANNAVARAM, M., PATEL, J. M., AND DAVIDSON, E. S. 2001. Data prefetching by dependence graph
precomputation. In Proceedings of the 28th Annual International Symposium on Computer Ar-
chitecture (Goteborg, Sweden). ACM, New York, 52–61.

BINKLEY, D. AND GALLAGHER, K. 1996. A Survey of Program Slicing. Academic Press, Orlando, Fla.
BURGER, D. AND AUSTIN, T. M. 1997. The SimpleScalar Tool Set, Version 2.0. CS TR 1342, Univer-

sity of Wisconsin-Madison, Madison, Wisc., June.

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

378 • D. Kim and D. Yeung

CHANG, F. AND GIBSON, G. A. 1999. Automatic I/O hint generation through speculative execution.
In Proceedings of the 3rd Symposium on Operating Systems Design and Implementation (New
Orleans, La.). ACM, New York, 1–14.

CHAPPELL, R. S., KIM, S. P., REINHARDT, S. K., AND PATT, Y. N. 1999. Simultaneous subordinate
microthreading (SSMT). In Proceedings of the 26th International Symposium on Computer Ar-
chitecture (Atlanta, Ga.). ACM, New York, 186–195.

CHAPPELL, R. S., TSENG, F., YOAZ, A., AND PATT, Y. N. 2002. Difficult-path branch prediction us-
ing subordinate microthreads. In Proceedings of the 29th Annual International Symposium on
Computer Architecture (Anchorage, Ak.). ACM, New York, 307–317.

CHEN, T.-F. AND BAER, J.-L. 1995. Effective hardware-based data prefetching for high-performance
processors. Trans. Comput. 44, 5 (May), 609–623.

CMELIK, R. F. AND KEPPEL, D. 1993. Shade: A fast instruction set simulator for execution profiling.
TR 93-12, Sun Microsystems. July.

COLLINS, J. D., TULLSEN, D. M., WANG, H., AND SHEN, J. P. 2001. Dynamic speculative precompu-
tation. In Proceedings of the 34th International Symposium on Microarchitecture (Austin, Tex.).
ACM, New York, 306–317.

COLLINS, J. D., WANG, H., TULLSEN, D. M., HUGHES, C., LEE, Y.-F., LAVERY, D., AND SHEN, J. P. 2001b.
Speculative precomputation: Long-range prefetching of delinquent loads. In Proceedings of the
28th Annual International Symposium on Computer Architecture (Goteborg, Sweden). ACM, New
York, 14–25.

CYTRON, R. 1986. Doacross: Beyond vectorization for multiprocessors. In Proceedings of the 1986
International Conference on Parallel Processing. (University Park, PA). IEEE Computer Society
Press, Los Alamitos, Calif., 836–844.

DUBOIS, M. AND SONG, Y. H. 1998. Assisted execution. CENG Technical Report 98-25, Department
of EE-Systems, University of Southern California. October.

DUNDAS, J. AND MUDGE, T. 1997. Improving data cache performance by pre-executing instructions
under a cache miss. In Proceedings of the 1997 ACM International Conference on Supercomputing
(Vienna, Austria). ACM, New York, 68–75.

FARCY, A., TEMAM, O., ESPASA, R., AND JUAN, T. 1998. Dataflow analysis of branch mispredictions
and its application to early resolution of branch outcomes. In Proceedings of the 31st International
Symposium on Microarchitecture (Dallas, Tex.). ACM, New York, 59–68.

FERRANTE, J., OTTENSTEIN, K., AND WARREN, J. 1987. The program dependence graph and its use
in optimization. ACM Trans. Prog. Lang. 9, 3 (July), 319–349.

KIM, D. AND YEUNG, D. 2002. Design and evaluation of compiler algorithms for pre-execution.
In Proceedings of the 10th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (San Jose, Calif.). ACM, New York, 159–
170.

LIAO, S. S. W., WANG, P. H., WANG, H., HOFLEHNER, G., LAVERY, D., AND SHEN, J. P. 2002. Post-pass
binary adaptation for software-based speculative precomputation. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation (Berlin, Germany).
ACM, New York, 117–128.

LUK, C.-K. 2001. Tolerating Memory Latency through software-controlled pre-execution in simul-
taneous multithreading processors. In Proceedings of the 28th Annual International Symposium
on Computer Architecture (Goteborg, Sweden). ACM, New York, 40–51.

LYLE, J. R. AND WALLACE, D. R. May 1997. Using the unravel program slicing tool to evaluate high
integrity software. In Proceedings of 10th International Software Quality Week (San Francisco,
Calif.).

LYLE, J. R., WALLACE, D. R., GRAHAM, J. R., GALLAGHER, K. B., POOLE, J. P., AND BINKLEY, D. W. 1995.
Unravel: A CASE tool to assist evaluation of high integrity software. NISTIR 5691, National
Institute of Standards and Technology. August.

MADON, D., SANCHEZ, E., AND MONNIER, S. 1999. A study of a simultaneous multithreaded processor
implementation. In Proceedings of EuroPar ’99. (Toulouse, France). Springer-Verlag, New York,
716–726.

MOSHOVOS, A., PNEVMATIKATOS, D. N., AND BANIASADI, A. 2001. Slice-processors: An implementation
of operation-based prediction. In Proceedings of the International Conference on Supercomputing
(Sorrento, Italy). ACM, New York, 321–334.

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

A Study of Source-Level Compiler Algorithms for Pre-Execution • 379

MOWRY, T. 1998. Tolerating latency in multiprocessors through compiler-inserted prefetching.
Trans. Comput. Syst. 16, 1 (Feb.), 55–92.

PADUA, D. A., KUCK, D. J., AND LAWRIE, D. H. 1980. High-speed multiprocessors and compilation
techniques. IEEE Trans. Comput. C-29, 9 (Sept.), 763–776.

PADUA, D. A. AND WOLFE, M. J. 1986. Advanced compiler optimizations for supercomputers. Com-
muni. ACM 29, 12 (Dec.), 1184–1201.

PAI, V. S. AND ADVE, S. 1999. Code transformations to improve memory parallelism. In Proceedings
of the International Symposium on Microarchitecture (Haifa, Israel). ACM, New York, 147–155.

ROGERS, A., CARLISLE, M., REPPY, J., AND HENDREN, L. 1995. Supporting dynamic data structures
on distributed memory machines. ACM Trans. Prog. Lang. Syst. 17, 2 (Mar.).

ROTH, A., MOSHOVOS, A., AND SOHI, G. S. 1998. Dependence based prefetching for linked data
structures. In Proceedings of the 8th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (San Jose, Calif.). ACM, New York, 115–126.

ROTH, A., MOSHOVOS, A., AND SOHI, G. S. 1999. Improving virtual function call target prediction via
dependence-based pre-computation. In Proceedings of the 13th Annual International Conference
on Supercomputing (Rhodes, Greece). ACM, New York, 356–364.

ROTH, A. AND SOHI, G. S. 2001. Speculative data-driven multithreading. In Proceedings of the
7th International Conference on High Performance Computer Architecture (Monterrey, Mexico).
IEEE Computer Society Press, Los Alamitos, Calif., 191–202.

ROTH, A. AND SOHI, G. S. 2002. A quantitative framework for automated pre-execution thread
selection. In Proceedings of the 35th Annual International Symposium on Microarchitecture (Is-
tanbul, Turkey). ACM, New York, 430–441.

SNAVELY, A. AND TULLSEN, D. M. 2000. Symbiotic Jobscheduling for a simutaneous multithreading
processor. In Proceedings of the 9th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (Cambridge, Mass.). ACM, New York, 234–244.

SPEC. 2000. SPEC CPU2000 V1.2 (http://www.specbench.org/osg/cpu2000/).
SUNDARAMOORTHY, K., PURSER, Z., AND ROTENBERG, E. 2000. Slipstream processors: Improving both

performance and fault tolerance. In Proceedings of the 9th International Conference on Architec-
tural Support for Programming Languages and Operating Systems (Cambridge, Mass.). ACM,
New York, 191–202.

TULLSEN, D. M., EGGERS, S. J., EMER, J. S., LEVY, H. M., LO, J. L., AND STAMM, R. L. 1996. Exploiting
choice: Instruction fetch and issue on an implementable simultaneous multithreading processor.
In Proceedings of the 1996 International Symposium on Computer Architecture (Philadelphia,
Pa.). ACM, New York, 191–202.

TULLSEN, D. M., LO, J. L., EGGERS, S. J., AND LEVY, H. M. 1999. Supporting fine-grained synchro-
nization on a simultaneous multithreading processor. In Proceedings of the 5th International
Symposium on High-Performance Computer Architecture. (Orlando, Fla.). IEEE Computer Soci-
ety Press, Los Alamitos, Calif., 54–58.

WANG, P. H., WANG, H., COLLINS, J. D., GROCHOWSKI, E., KLING, R. M., AND SHEN, J. P. 2002. Memory
latency-tolerance approaches for itanium processors: Out-of-order execution vs. speculative pre-
computation. In Proceedings of the 8th International Symposium on High-Performance Computer
Architecture (Boston, Mass.). ACM, New York, 187–196.

WEISER, M. 1984. Program slicing. IEEE Trans. Softw. Eng. SE-10, 4 (July).
ZILLES, C. B. AND SOHI, G. S. 2000. Understanding the backward slices of performance degrading

instructions. In Proceedings of the 27th Annual International Symposium on Computer Architec-
ture (Vancouver, Canada). ACM, New York, 172–181.

ZILLES, C. B. AND SOHI, G. 2001. Execution-based prediction using speculative slices. In Proceed-
ings of the 28th Annual International Symposium on Computer Architecture (Goteborg, Sweden).
ACM, New York, 2–13.

ZILLES, C. B. AND SOHI, G. 2002. Master/slave speculative parallelization. In Proceedings of the
35th International Symposium on Microarchitecture (Istanbul, Turkey). ACM, New York, 85–96.

Received January 2003; revised December 2003; accepted January 2004

ACM Transactions on Computer Systems, Vol. 22, No. 3, August 2004.

