
Software Prefetching *

David Callahant

Ken Kennedy+

Allan Porterfieldt

Abstract

We present an approach, called software prefetch-

ing, to reducing cache miss latencies. By providing a

nonblocking prefetch instruction that causes data at

a specified memory address to be brought into cache,

the compiler can overlap the memory latency with

other computation. Our simulations show that, even

when generated by a very simple compiler algorithm,

prefetch instructions can eliminate nearly all cache

misses, while causing only modest increases in data

traffic between memory and cache.

1 Introduction

As commodity microprocessors become faster and

memory requirements continue to grow unabated, the

latency for accesses to global memory will increase.

Already, we are seeing latencies as large as 25 cy-

cles for fast microprocessors using the Intel i860, and

some supercomputers exhibit latencies in the range

of 50 to 100 cycles. To ameliorate the effect of long

latencies on machine performance, most systems of-

fer some form of cache memory. Cache memory can

be accessed very rapidly (one to three cycles on most

machines) but has limited storage capacity.

our research ha ii;~;..ated thaL enormous ben-

efits can be achieved by rearranging computations

to maximize the potential for reuse of data in cache

[Por89, CKC90, CK89]. However, these approaches

cannot avoid the cost of loading a datum for the first

time. In essence, any cache-based machine must pay

the overhead of loading each data item, or cache line,

at least once. Furthermore, it may have to pay the

cost many times if accesses to cache lines are noncon-

tiguous and unpredictable at compile time.

In this paper, we present an alternative approach,

called software prefetching, to reducing cache miss la-

tencies. The idea is to provide a nonblocking prefeich

instruction that causes data at a specified memory ad-

dress to be brought into cache. Our simulations show

that, even when generated by a very simple compiler

algorithm, prefetch instructions can eliminate nearly

all cache misses, while causing only modest increases

in data traffic between memory and cache.

The remainder of this paper is divided into 5 sec-

tions. The next section gives background on PFC-

Sim, the simulation tool used in this research, and

on the RiCEPS benchmark suite test programs, used

as input for the studies. In Section 3, we discuss

the properties of traditional methods for reducing

the effects of latency—long cache lines and hardware

prefetching. Section 4 introduces software prefetching

and shows that it outperforms hardware prefetching

in both hit percentage and data traffic. Finally, Sec-

tion 5 discusse, ihe costs of softvi~m ~:;fetcnil,g ~i}d

suggests ways that they might be overcome. Conclu-

sions are drawn in Section 6.

“This research was supported in part by a grant from the

IBM corporation while the authors were at Rice University.
tTera Computer Company, 400 North 34*h Street, Suite

3(N, Seattle WA 98103
fRice University, Department of Computer Science, P.O.

Box 1892 Houston TX 77251-1892

Permission to copy without fee all or part of this material ie

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice ie given

that copying is by permission of the Aeaociation for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

91991 ACM 0-89791 -380-9 /91/0003 -0040 . ..$1 .50

2 Background

The research described in this paper would not

have been possible without two important assets-the

PFC-Sim simulation system, which makes it possible

to study the effect on an arbitrary cache structure

of executing any program, and RICEPS, a suite of

scientific benchmark programs collected expressly for

use in compiler research.

40

DO I= I,IJ

DO J=l, M

CALL STORE(A(I, J),4, HME,1)

A(I,J) = O

DOK=l,N

CALL LOAD(A(I,J),4,TIME,2)

CALL LOAD(B(I,K),4,TIME,3)

CALL LOAD(C(K,J),4,TIME,4)

CALL STORE(A(I,J),4,TIME,5)

A(I,J) = A(I,J) + B(I,K)*C(K,J)

ENDDO

ENDDO

ENDDO

Figure 1: Matrix Multiply- After the PFC-Sim Pre-

processor

2.1 PFC-Sim

PFC-Sim is a program-driven event-tracing facil-

itymade up ofthree parts; apreprocessor, arun time

simulator, and data collection/visualization routines

[Por89, CKP90]. The preprocessor reads the original

program and produces an annotated version of the

program, complete with calls to the simulator. The

annotated program is then compiled and executed.

Duringexecution, thesimulator records important in-

formation, occasionally generating a trace record.

PFC-Sim was designed to eliminate the need for

long trace files. A program with aone hour execu-

tion time can easily access a cache billions of times;

even with very small trace entries this would ex-

ceed the available disk storage. PFC-Sim is able to

write records less often by executing the simulator

in real time—-as the program is executing. Rather

than record information in atracefile, PFC-Sim exe-

cutes a simulation routine at each memory reference.

‘l’he routine is passed the information normaily in the

trace entry, plus information about the original source

location. Figure 1 shows an annotated version of ma-

trix multiplication, in which only references to sub-

scripted variables are being traced. The procedure

parameters specify whether the value is being loaded

or stored, the address being accessed, the length in

bytes of the access, the simulated time (which is also

incremented at basic block boundaries in code not

shown), and a unique id for the call.

We eliminate the need to save any trace entries

by pipelining the creation of the trace entry directly

into the simulator. Since the detection of events is

performed in the source program, relationships be-

tween the actions of the simulator and the source are

easy to maintain.

Note that, since calls to simulation routines are

made at specific points in the source, it is possible to

summarize information about particular references in

a program. For example, it is easy to determine the

percentage of cache hits for any given memory refer-

ence in a program being simulated. In Figure 1, this

might reveal that, for small caches, the reference to

C(K,J) is almost always a miss. To capitalize on this

observation ~ we built a visualizing browser that can

display a program using different colors for references

with different hit percentages [CKP90].

In the research described here, PFC-Sim recorded

information only about subscripted variables. Al-

though this simplification might effect the accuracy of

the results, the effects will not be significant because

good global register allocation, as found in most prod-

uct compilers, allocates most of the scalar variables to

registers between accesses. When we turned on trac-

ing for scalar variables, we discovered that the num-

ber of accesses increased noticeably but the number

of misses waa almost unchanged. The main motiva-

tion for ignoring scalar references is a practical one:

when we do so, the simulated program runs three

times as fast, making it possible to run simulations

for reasonably large programs.

PFC-Sim can simulate a wide variety of caches.

The efficiency of the simulator depends on the pa-

rameters picked. A standard simulation increases the

execution time of the simulated program by a fac-

tor of 10 to 20. This factor is larger for a fully-

associative cache or one that uses an “optimal” re-

placement policy (available as a standard for compar-

ison). Although the increases are significant, they do

not preclude the use of PFC-Sim on long, large pro-

grams. Programs with original execution times up to

several hours have been simulated without problem.

2.2 Rice Compiler Evaluation Program

Suite

PFC-Sim was used to examine the cache perfor-

mance of programs in a new supercomputer bench-

mark set, the Rice Compiler Evaluation Program

Suite (RiCEPS) 1 [Por89, CP90], which is designed

as a benchmark for high performance compilers. Al-

though there is some overlap, It differs from the

well-known Perfect Club benchmark suite [BCK+ 89],

which is aimed at performance evaluation of com-
puter systems, rather than compilers. The programs

in RICEPS represent a broad spectrum of computa-

tional and coding styles. Each program waa selected

I ~lCEPs is currently available (Dec. 90) though anOnY-

mous FTP from titan. rice.edu

41

to be representative of agroupof applications. The

programs are substantial in size and require a sig-

nificant amount of execution time. Each member of

RICEPS includes, in addition to the Fortran source,

a brief description of what the code does (what prob-

lem it solves and what algorithms it uses) and at least

one set of data on which to run the program.

Although RiCEPS will eventually grow to include

over twenty programs, the experiments reported here

are baaed on a preliminary version containing twelve

programs. The programs’ execution times range from

one minute (MATRIX) to several hours (SIMPLE,

BARO, BOAST) on an IBM 3081D. While most pr~

grams are 1 to 3 thousand lines, they range in size

from 15 lines to over 23,000 lines. All of the pro-

grams were compiled with the IBM VS2 FORTRAN

compiler and to run on an IBM 3081D.

The benchmark programs used for this work in-

cluded:

MCMB - microbial biodegradation

MATRIX -100 x 100 matrix multiply

BARO - weather simulation

SIMPLE - hydrodynamics benchmark

from Livermore National Laboratory

EFIE304 - calculation of the current dis-

tribution on an arbitrary body

BOAST - black oil reservoir simulator

EULER1 - solver for one dimensional un-

steady Euler equations

SHEAR - three dimensional turbulent

fluid dynamics simulation

MHD2D - solver for 2D MHD equations

with periodic boundary conditions

ONEDIM - one dimensional

Schroedinger equation solver

LINPACKD - the standard LINPACK

benchmark [Don88]

WANALl - boundary control of wave

equations program

3 Performance of Traditional Cache

Prefetching Schemes

As a preliminary study, we evaluated the effec-

tiveness of hardware prefetching schemes on compu-

tationally intensive programs, In addition to deter-

mining how the hit ratio for the program is affected

by the cache structure, the total data traffic between

the cache and the main memory was computed. Ev-

ery reference in the programs had its individual hit

ratio dynamically measured. Hundreds of possible

cache configurations exist, and testing all possible

configurations is impractical. To test the effect of a

4-byte ❑ 64-byte❑ 128-byte

Figure 2: Effects of Cache Line Lengths on Hit Ratios

particular cache parameter, a base cache was defined

and a single parameter was varied on each simulation.

The selected base cache was a 32K LRU, 4-way set-

associative cache, with a one-word cache line, using a

write-back store policy and performing no prefetch-

ing.

Rather than present all of the cache performance

results here (more complete results can be found else-

where [Por89, CP90]), we will examine the effective

of two different hardware mechanisms that fetch data

into a cache before they are requested: long cache

lines and hardware prefetching.

Long cache lines are the most common means of

prefetching. In this scheme, a cache miss results in

retrieval of every datum in a block of standard size,

at least large enough to contain two data items. Note

that a cache miss must be taken before a line can be

brought to cache.

An alternative scheme, called hardware prefetch-

ing, avoids this miss penalty in many cases by fetching

the next data item sequentially in memory when any

data item is fetched from cache. In effect, if item A(I)

is fetched, the cache will also issue a fetch of A(I+l).

The method implemented is very close to the tagged
prefetch described by Jouppi [Jou90].

3.1 Long Cache Lines

To determine the degree of locality among the ref-

erences and the effects of long cache lines on memory

performance, we examined both the hit ratio and the

data traffic observed for the various line lengths on

the programs in RiCEPS.

Three cache line lengths (4, 64, and 128 bytes)

were simulated. In Figure 2, we see that the longer

cache lines substantially reduced the misses that oc-

42

I ■ 4-u’te ■ 64-bw ❑ 128-byte I
I I

8.0 O

7.00
-M

6.OO

5.00

4.00

3.00

2.00

1.00

0.00

A

Figure3: Effects of Cache Line Lengths on Data Traf-

fic

cur during execution. Several programs, including

BARO, showed almost perfect prefetching, (i.e., the

number of misses for 4 byte cache lines was 16 times

the number of misses for 64 byte lines). Increasing the

line length to 128 bytes produced mixed results. Sev-

eral programs (e.g., BARO) had the number of misses

reduced by almost 50Y0. Others, (e.g., MATRIX),

showed little difference in the number of misses be-

tween 64 and 128 byte lines. A third group, including

EFIE304 and MHD2D, had fewer misses for 64 than

128 byte lines.

The programs fall into two distinct groups upon

examining the total amount of transferred data (Fig-

ure 3). For programs where long-line prefetching was

spectacularly successful, the increase in traffic was

minimal (less than 10% for WANALl and BARO).

The more common case waa for traffic to increase

from 300 to 600% for 64 byte lines and 500 to 800%

for the 128 byte lines.

Overall, prefetching with long cache lines waa suc-

ces~ful for the computationally intensive programs in

the benchmark. The cost of long cache lines showed

up in the increased bandwidth required to support

resulting data traffic. Many architectures hide this

cost by building wide busses and interleaving main

memory so that the wider cache lines can be moved a

single transfer. This allows a higher bandwidth to be

supported for wide cache lines than for single word

lines.

3.2 Hardware Prefetching

A second mechanism for prefetching in the hard-

ware is explicit prefetching. When a cache entry is

accessed the cache can assume that the address of

■ No Prefetchlrq ■ Hardware

100%

80%

60%

40%

20%

o%

Figure 4: Effects of Hardware Prefetching on Hit Ra-

tioe

■ NO Prefetching ■ Hardware

1.60

1.40
I

1.20

1.00

0.80

0.60

0.40

0.20

0.00

.2

Figure 5: Effects of Hardware Prefetching on Data

Traffic

the next datum in the address space will be accessed

in the ne~: f’~?ure. When the last entry in a cache

line is accessed the hardware automatically retrieves

the next cache line and will have it in the cache when

(if) it is accessed. (Tagged prefetch would have per-

formed the prefetch when the first element is used

[Jou90].) This method has the advantage of allowing

sequential array accesses to all be fetched with only

one miss (rather than a miss every 8, 16, or 32 en-

tries). When long cache lines are used, the hardware

prefetching can be initiated only when the entries in a

cache line are accessed sequentially. (i.e. if the cache

line holds four elements: access A, A+l, A+2, A+3

and prefetch line starting at A+4).

When hardware prefetching was enabled, the pro-

grams separated into two approximately equal sized

43

groups. Figure 4 shows one group of programs where

misses were almost completely eliminated. Two of the

programs in this group already had very few misses,

but three programs (SIMPLE, MATRIX, and BARO)

showed significant improvements in hit ratios. BARO

appears to have been modified to allow easy vectoriza-

tion. The accesses to memory are arranged to allow

all vectors to have strides of one. With vector strides

of one, the prefetching accurately predicted the next

required value. The second group showed almost no

improvement using hardware prefetching.

The overhead in data traffic for hardware

prefetching was uniformly very low. Only three pro-

grams (Figure 5) showed more than l% increase in

data traffic. MCMB increased by 3%, SHEAR by

10~o and EULER1 by 50’%0. EULER1’S increase in

traffic occurs because hardware prefetching actually

produced slightly more cache misses than the non-

prefetching version. Whenever a prefetch occurs

that is not used, it pushes some value out of the

cache. Occasionally hardware prefetching pushes out

a value that EULER1 would have otherwise reused.

The small number of extra loads from this effect are

magnified because EULER1 does not otherwise push

items out prematurely. The very small number of

misses and data traffic causes a small absolute in-

crease over time to appear very large on this graph.

Overall, hardware prefetching is a win for pro-

grams with column-wise accesses and produces very

little overhead for any program.

4 Software Prefetching

Not wanting to incur the bandwidth requirements

of long cache lines, but desiring very high hit ra-

tios, we looked for ways to improve the hardware

prefetching technique. When examining, by hand,

the programs for which memory performance was

not improved by hardware prefetching, we discovered

all had patierus of array access that could be pre-

dicted during execution by simple code generated by

the compiler. Every program showed some type of

predictable access pattern in the inner loops. Since

most of these patterns could be determined at com-

pile time, a mechanism that allows a compiler to man-

age prefetching is likely to be effective. The rest of

this paper studies the cost and effectiveness of a very

simple addition to the hardware, a cache load instruc-

tion, to allow software management of prefetching.

Using this instruction, a straightforward heuristic is

used to bring data into the cache before the actual

load occurs. The effectiveness of the algorithm for

eliminating misses, while positioning the prefetches a

substantial distance from actual loads, is studied.

4.1 Cache Load Instruction

For the compiler to assist the processor in

prefetching, the compiler must have a mechanism

to inform the cache that a memory address will be

needed. For the purposes of this paper, we postulate

a cache load instruction, which can be viewed as a

no-wait load to a nonexistent register. A cache load

should have all of the address modes of a machine’s

regular load instruction. The prefetch for an address

looks just like a normal load except no register is spec-

ified as a destination. To the program, a cache load

looks like a NO-OP. The only effect on execution is

that an instruction issue slot is used and the instruc-

tion counter is incremented. On machines that allow

multiple instructions to be issued during a cycle, the

cache load could be overlapped with instructions.

To implement a no-wait load, we must build a

cache that can have multiple outstanding requests.

Even if it is acceptable to queue the prefetches so that

they are serviced sequentially by the main memory,

it will still be necessary to allow multiple requests. If

the prefetching fails to prevent a miss, the hardware

certainly should not wait for a prefetch to complete

before issuing the required load.

Caches that allow more than one outstanding re-

quest are being designed [Kro90, SD88] and imple-

mented [G M87]. Scheurich and Dubois present the

design for a lockup-free cache for hiding the delays in-

volved in accessing remote locations in a distributed

memory multiprocessor. In their paper, one of the

methods described for improving processor perfor-

mance uses a special cache load instruction. RISC

architectures, in their attempt to make every instruc-

tion be one cycle and make that cycle as short as pos-

sible, have already implemented non-blocking load in-

structions (e.g., IBM RT). Since the nearest memory

is more than one machine cycle away, by not block-

ing on memory, other computations not involving the

load caii be executed in cycles that would otherwise

be dead. Thus, the hardware problems involved in the

design and implementation of a no-wait cache load in-

struction seem to be manageable.

A more difficult question for the architect and

compiler designer is how to handle run-time faults on

cache load instructions. The hardware could be con-

structed so that a fault on a cache load would not be

reported and the load aborted. It remains to be seen

how difficult this is to implement. When the hard-

ware cannot prevent faults, the compiler will have to

prevent cache loads from generating either memory

protection faults or page faults that would not oth-

erwise occur. Most of the faults can be prevented

by attempting to guarantee that prefetching does not

44

forall statements S in program

if Sis aDO

then

iv = loop induction variable

s = loop step

end

forall array references R in statement S

if iv appears in subscript of R

then

replace iv with iv + s and prefetch

end

end

Figure 6: Insert Prefetch Instructions

occur for iterations that will not execute. If the last

iterations of every loop that attempted prefetching

were peeled out into an epilogue, most spurious faults

could be eliminated.

As defined, a cache load instruction does not rep-

resent a major addition to the complexity of a proces-

sor. For some processors (like the IBM RT, which al-

ready allows more than one outstanding load), it may

even be possible to add the instruction using func-

tions already present on the silicon. A cache load can

be used in the compiler like a regular load instruction

at any point previous to the actual load. In particu-

lar, VLIW and RISC architectures with non-blocking

loads and delayed branches may have many empty in-

struction issue slots that can be replaced with cache

loads, making the cache prefetching free.

4.2 Software Strategy

We now outline a simple method for identifying

data to prefetch. Most accesses during execution are

from within the inner loops. The references with the

greatest possibility of gene~-atizg a large iium~er of

misses are array references that refer to different ele-

ments on each iteration. For example, any array sub-

script that uses the innermost loop induction variable

will be accessing different values on every iteration of

the inner loop. These are the likely candidates for

prefetching. For prefetching to be effective at reduc-

ing miss delays for the processor, the prefetch must

precede the actual load by enough time to allow the

load from memory to cache to complete, but not so

far that the data might be flushed out or the the cache
before being used.

The algorithm (Figure 6) for software prefetch-

ing is simple—it is based on the observation that a

single loop iteration will usually provide enough exe-

DO 1=1, N

DO J=I, N

CALL STORE(A(I, J),4, TIME, I)

CALL PREFET(A(I, J+I) ,4, TIME,2)

A(I, J) = O

DO K=l, N

CALL LOAD(A(I, J),4, T1ME,3)

CALL LOAD(B(I,K) ,4, TIME,4)

CALL PREFET(B(I, K+l) ,4, TIME,5)

CALL LOAD(C(K, J),4, TIME,6)

CALL PREFET(C(K+l, J) ,4, TIME,7)

CALL STORE(A(I, J),4, TIME,8)

A(I, J) = A(I, J) + B(I, K)* C(K, J)

ENDDO

ENDDO

ENDDO

Figure 7: PFC-Sim with Prefetching — Matrix Mul-

tiplication

cution time to allow a cache load to complete, but it

is unlikely to access enough data to flush items that

have recently been prefetched. The heuristic is: if

the innermost induction variable is present anywhere

in an array subscript, then add the loop step to the

innermost induction variable and issue a cache load

instruction for the resulting expression.

The preprocessor for PFC-Sim waa modified to

perform prefetching, using a cache load instruction

and the described heuristic algorithm. There are two

important details of the implementation. In a sin-

gle pass over the program, any array subscript that

used the explicit induction variable associated with

the textually most recent DO loop is considered to

be an array access that could profit from prefetching.

This causes initialization in an outer loop to generate

prefetches (since there is yet no knowledge of the in-

r,er loops), but cleanup after an inner ic~p daes not

cause prefetches to be generated (since the inner loop

is now the most recently defined). The other detail

is the placement of the cache load in the loop. Every

statement that requires a cache load is immediately

followed by its prefetch. This effectively predicts that

if loop iteration I follows a certain control flow path

through the inner loop, then iteration I + 1 will follow

the same path.

Figure 7 shows PFC-Sim output with prefetches
for matrix multiplication. The only three prefetch

instructions are in the innermost loop for the next

values of the B and C arrays and in the middle loop

for the next element of A (the prefetch of A shows a

situation where PFC-Sim haa yet to detect the inner

45

DO I = 2, NXPI

IF (I .LT. NXP1) THEN

CALL LOAD(E(NVAR,I-I),8,TIME,766)

CALL PREFET(E(NVAR,I+I-I),8,TIME,765)

CALL LOAD(E(NVAR,I+1),8,TIME,764)

CALL PREFET(E(NVAR,I+1+1),8,TIME,763)

EDIFF = E(NVAR,I+l) - E(NVAR,I-1)

ENDIF

IF (I .EQ. NXPI) THEN

EDIFF = O.ODO

ENDIF

ENDDO

Figure 8: PFC-Sim with Prefetching - a portion of

SHEAR

loop). Asecond example, Figure 8(from thesubrou-

tine FFTB in SHEAR), demonstrates the placement

ofprefetches in IF clauses. It also has a redundant

prefetch. Aloopcarried input dependence, with dis-

tanceof two, exists between the accesses ofarray E.

On the third iteration of the loop, the value accessed

bythe first load will be exactly the value fetched dur-

ingthefirst iteration by the second load. Except the

first iteration, cache loads issued toprefetch for the

first instruction will discover thevalue tobe in the

cache already.

A minor modification to the prefetching algo-

rithm allows successful prefetching of data that can-

not be handled byeither long cache lines or hardware

prefetching. In particular, when induction variables

are located in subscripts of nested array accesses, the

correct value to prefetch can be calculated. The cor-

rect increment to add to the induction variablein the

prefetch instruction is the depth of the ~r:ay. This

allows the subscript, which is itself an array refer-

ence, to be prefetched one iteration before it is used.

Nested array indexes occur frequently in programs

that calculate using sparse matrices. The code frag-

ment in Figure 9 demonstrates prefetching of nested

array references.

Examples like the one in Figure 9 would

cause problems for long cache lines and hardware

prefetching—both are likely to bring data into the

cache that will never be accessed (unless the mecha-

nism is lucky) when confronted with programs that

use one array to determine the location in a second

array. As the example shows, software prefetching

works well even in these cases.

DO L=I, N

DO 1=1, M

CALL LOAD(A(INDEX(I), L),8, TIME,364)

CALL PREFET(A(INDEX(1+1), L),8, TIME,363)

CALL PREFET(INDEX(I+2),4,TIME,362)

CALL LOAD(B(I),8,TIME,361)

CALL PREFET(B(I+1),8,TIME,360)

B(I) = A(INDEX(I),L)

ENDDO

ENDDO

Figure9: PFC-Sim with Prefetching —Index Array

4.3 Performance

To be effective, software prefetching must succeed

in two ways. It must eliminate misses, and there must

be enough computation between each prefetch and

the actual load to permit the data to arrive from the

main memory. In addition, a desirable property of

any prefetching scheme is that it not cause enormous

increases in traffic between memory and cache, lest

the savings on cache size be offset by the increased

bandwidth requirements.

4.3.1 Hit Ratio

The effectiveness of software prefetching waa

tested on the programs in RiCEPS. Figure 10 com-

pares the hit ratios of three caches for each pro-

gram: a32K LRU4-way set associative with 4-byte

cache line, the same cache with hardware prefetch-

ing, and the same cache with software prefetching.

10 of the 12programs have hit ratiasof over 98 YOfor

caches with software prefetching. Software prefetch-

ing does at least as well aa hardware prefetching on

every program and successfully prefetches on many

programs with non-sequential array accesses. Soft-

ware prefetching even generates higher hit ratios than

very long cache lines for many of the programs and

is within a small percentage for the other programs.

The two programs that had hit ratios below 98%

both pointed out a limitation in the placement of

prefetches, not inthe mechanism itself, In PFC-Sim,

the memory references are detected in a pass over

the parsed program before any other passes occur.

Because ofthisthe only induction variables that are

prefetched are those explicitly declared in by a DO

loop structure. Both MHD2D and MCMB use aux-

iliary induction variables quite heavily. When the

prefetches are added for all of the induction variables

detected during PFC’S induction variable substitu-

tion phase, the number of remaining misses is below

46

■ . . Prefetching ■ Hardware ❑ Software

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

o%

Figure 10: Effect of Software Prefetching - Hit Ratios

370 for both programs.

To summarize, if the compiler algorithm for soft-

ware prefetching had incorporated “induction vari-

able substitution”, a common capability for vector-

izing compilers, almost all cache misses would have

been eliminated. Even without detecting auxiliary

induction variables, the average miss ratio for a

prefetching cache was 95.6Y0. Excluding the two pr~

grams that used alternative induction variables, the

average hit ratio would be 99.5%. Thus, prefetching

array values one loop before they are needed is very

effective for comput ationally intensive programs, par-

ticularly if loop induction variables are identified.

4.3.2 Time Between Prefetch and Load

If cache loads always immediately precede actual

loads, then the actual loads will never cause a memory

transfer. However, every load would have to wait

for the memory latency of the prefetch. Moving the

prefetches one loop iteration away from the actual

load provides some amount of execution time to hide

the memory latency.

In the run-time routines for PFC-Sim, every

prefetch was marked with the program execution time

at which it was issued. Jf’henever a load used a value

that had a time field, it recorded how much time had

elapsed bet ween the cache load and the actual load.

After recording the difference, the time field was ze-

roed to prevent later accesses from recording their
delays.z

Figures 11 and 12 show the number of cycles by

‘Time was generated assuming a processor where instruc-

tions take different amounts of time to complete: floating point

add — 3 cycles, floating multiply — 5 cycles, integer add, loads

and stores from/to cache — I cycle.

160

m 9 w
I

320
I

640
I >640 I

Figure 11: Software Prefetching - Time Between

Prefetch and Use (Absolute Totals)

do”c’o~ ‘
36.00

32.00

28.00

24.00 I

Figure 12: Software Prefetching - Time Between

Prefetch and Use (Normalized Totals)

which the cache load preceded the register load for all

of the programs in RICEPS. Figure 11 shows the per-

centage of all references in RiCEPS. Several programs

have significantly more references than the other pro-

grams and dominate this graph. Less than 1% of the

prefetches preceded the actual reference by less than

10 cycles. About 19% of the prefetches occured be-

tween 10 and 20 cycles before the actual reference.

Over 80% of the prefetches occured over 20 cycles

before the actual use. These references should easily

return before any use is reached. When longer float-

ing point operation delays were used (such as found

on pipelined supercomputers) the prefetches preceded

the uses by more than enough to hide any current ma-

chines memory delay.

If we normalize each program’s results and weigh

47

Im No Prefetching ❑ Hardware •l Software I
1.60

1.40 II

1.20

1.00

0.80

1

0.60

0.40

0.20

0.00
.

Figure 13: Effect of Software Prefetching -

Data Traffic

every program equally, the distribution of time be-

tween prefetches and loads is different, as shown in

Figure 12. About 3% of the references were less than

10 cycles away from their prefetch. Another 18%

were between 10 and 20 cycles away from the first

use. These prefetches may not complete on some ma-

chines before the actual load is reached. But over 7970

of the prefetches occured 20 cycles ahead of the first

use. Loading values one iteration prior to use success-

fully would hide delays due to cache misses for most

of the array accesses in RiCEPS on current memory

architectures.

4.4 Data Traffic

One of the reasons for examining the effective-

ness of software prefetching was the excellent band-

width behavior of hardware prefetching. Figure 13

compares the data traffic used in software prefetching

with that used normally and that used with hardware

prefetching.

For most of the programs, hardware prefetching

produced between O and 2% more memory traffic

than a cache with no prefetching. For these pr~

grams, software prefetching required slightly more

data (fractions of a percent) than hardware prefetch-

ing. When a program fits into the cache and reuses

each value a large number of times, the unnecessary

data prefetched and the data pushed out (since the

cache is not fully associative) can be a significant frac-

tion of the original data transferred. If one looks at

the amount of data transferred per floating point op-

erat ion (or by some other time metric), both of these

programs move very little data. The small amount

of overhead that is generated looks large because the

original programs required very little data traffic.

Software prefetching maintains the good traffic

behavior of hardware prefetching and eliminates miss

delays. The major cost of software prefetching will

be the amount of time required to issue the requests.

5 Software Prefetching Overhead

Software prefetching would virtually eliminate

miss delays for the computationally intensive pro-

grams in RiCEPS. If prefetching were free, this could

decrease the execution time of programs by up to

50%. For computers with memory approximately

50 cycles away, the average decrease would be over

20’%0. However, on most computer systems, software

prefetching will not be free—it will require that ad-

ditional instructions to calculate the prefetch address

and issue the cache load be executed. In this section

we investigate the size of this overhead and present

several ways to reduce it.

5.1 Run-time Overhead

Most of the run-time overhead of software

prefetching is the additional execution time required

to perform the cache loads. Two kinds of computa-

tions are added by software prefetching: address gen-

eration and the cache loads themselves. Each prefetch

requires a single cache load instruction. For each ar-

ray, there is some amount of address calculation that

must occur. This can range from a single addition to

a complicated arithmetic expression, possibly includ-

ing more than one integer multiplication.

If every prefetch brought data into the cache, de-

termining the profitability of any individual prefetch

would be relatively simple. The prefetch would

be profitable whenever the address generation and

prefetch take less time than accessing memory. The

prefetching mechanism implemented in this work gen-

erates many prefetches for memory locations that

are already present in the cache (or are already on

their way to the cache) or locations that will not

be accessed (at least before the location is bumped

from the cache). The benefits of successful prefetch-

ing must outweigh all the costs for these unnecessary

prefetches.

For the simple prefetching strategy, Table 1 shows

that slightly less than one-third of the prefetches

cause an actual cache miss and force a value into

the cache that is used later. For prefetching to be

profitable, memory latency should be greater than 3

times the cost of address generation. Unless memory

latencies are very high, the address generation over-

head will completely overshadow the overlapping of

48

Prefet ches

Program that cause

Cache Misses

LINPACKD 24.6%

WANALl 58.2%

BOAST 1.7%

MCMB 31.0%

MATRIX 46.4%

SIMPLE 22.2%

EFIE304 32.6%

BARO 32.3%

EULER1 2.3%

SHEAR 26.8%

MHD2D 35.1%

ONEDIM 27.4%
1

Average I 28.4%

Table 1: Cache misses from Prefetches

miss delays with execution. It does not decrease ex-

ecution time to overlap a memory latency with com-

putation that was added to compute the addresses to

be prefetched.

The additional execution time required for ad-
dress computation was estimated with a minor mod-

ification to PFC-Sim. As previously stated, the exe-

cution time of the program was always estimated. By

changing the estimated time per execution to include

an additional statement for every prefetch instruc-

tion, the amount of additional time spent by prefetch-

ing can be measured. Each prefetch instruction was

assumed to require one load (the offset from the pre-

vious load), one integer addition, and the prefetch

instruction itself. For most programs, the offset is

present in registers, reducing the computed overhead

values. This estimate is intended to be a reasonable

upper bound on the required time.

The average overhead incurred from software

prefetching by a program was 28%. MHD2D

had a substantial amount of computation for every

prefetched value, resulting in a very minimal overhead

of 6Y0. Other programs, like LINPACKD, performed

little computation per reference. Adding prefetch-

ing to these programs greatly increased the execution

time (up to 48%).

With overhead of 28%, software prefetching is un-
likely to reduce the execution time of programs. For

software prefetching to be effective, methods to re-

duce the costs will be required. Methods to reduce

the overhead of software prefetching are discussed in

the next section.

5.2 Reduction of Overhead

Basically, there are three ways to reduce soft-

ware prefetching overhead: increasing machine paral-

lelism, predicting unnecessary prefetches and saving

addresses in registers. The first solution is, in the

long run, the best. On a machine that can issue more

than one instruction in each cycle, prefetching over-

head can almost always be hidden under the costs

of the underlying calculation. Since prefetching is so

effective in improving the performance of the mem-

ory hierarchy, future machines should be designed to

take full advantage of it while virtually eliminating

the overhead through use of parallelism.

The two remaining methods can be done entirely

in software. First, the dependence graph can be used

to prevent prefetching of values already present in

the cache. Second, the address in a register can be

saved between the prefetch and actual load, eliminat-

ing the extra address generation. Using these tech-

niques, soft ware prefet thing may be made profitable

for any processor with a cache and a cache load.

5.2,1 Machine Parallelism

Modern attempts to increase processor perfor-

mance has led to designs that expose potential ma-

chine parallelism to the programmer. The Intel i860

has a mode which allows an instruction to be issued

to the floating point and integer unit each cycle. The

IBM RS/6000 allows up to 5 operations to be per-

formed in parallel. The Multiflow Trace completely

exposed the functional unit pipes to the instruction.

On all of these machines, a cache load instruction

could be executed in an otherwise empty instruction

(or operation) slot. Since the cache load would have

no formal dependence on the other code in the loop,

it is very moveable and can probably fill any available

hole in the instruction stream.

Without extensive study of the actual instruction

streams for one (or more) of the architectures, we

can not determine what fraction of the cache load

overhead can be overlapped with other instructions.

The observed performance of the Intel i860 as com-

pared to the peak performance suggests that on many

programs sufficient empty slots may be available to

completely hide the cache loads.

5.2.2 Unnecessary Prefetch Elimination

A large percentage of the overhead for the sim-

ple software prefetch algorithm is due to generat-

ing prefetches for values that are already present

in the cache. A better prefetching strate~ is to

only prefetch references that may be misses (see Fig-

ure 14).

49

forall statements S in program

ifS is a DO Statement

then

iv = loop induction variable

s = loop step

end

forall array references R in statement S

if R is a miss and

iv appears in subscript of R

then

replace iv with iv + s and prefetch

end

end

Figure 14: Insert Prefetch Instructions (Estimated

Misses Only)

By using the dependence graph to estimate how

much memory is accessed by each iteration of a loop,

we can determine whether a dependence will reuse a

value already present in the cache. The overflow iter-

ation [Por89] is the maximum number of iterations of

a loop that access less memory than can be contained

in the cache at one time. Any dependence carried by

a loop with a distance greater than the overflow iter-

ation will result in a cache miss. The following rule

can be used to limit prefetching: only prefetch values

for which every incoming dependence edge exceeds

the overflow iteration.

The overflow iteration was computed by hand for

several of the shorter programs in RiCEPS. Table 2

compares the hit ratio and the amount of overhead

for the two prefetching strategies. For the tested pro-

grams, the overflow iteration did a good job of sepa-

rating the references that should be prefetched from

those that should not.3 The two programs that still

had a high percentage of unuseful prefetches were EU-

LER1 and LHirACKD. When the hit ratio was very

high, very few prefetches occurred. The overflow iter-

ation version of EULER1 performed about one-third

the total number of prefetches, so the total overhead

was low, although the percentage of useful prefetches

fell only slightly. LINPACKD has triangular loop

nests which are hits early and misses after some num-

ber of iterations. Prefetching those array references

kept the hit ratio for the program high (99.9).

Using the overflow iteration to limit the number

3When computing the overflow iteration by hand, we have
assumed good interprocedural information. If information less
exact than regular sections with bounds information is used,
the overtlow iterations would be less accurate and the number
of unnecessary prefetches would be higher.

E
LINPACKD

WANALl

EULER1

BARO

MATRIX

EFIE304

Hit Ratio

No I All I Limited

Prefetch Prefet ched Prefetch

75.7% 99.9% 99.9%

41.4% 99.5% 99.4%

99.1% 99.5% 99.7%

71.3% 99.8% 99.7%

76.790 99.9% 99.7%

72.4% 97.6% 97.1%

Average I 99.4% I 99.3%

Program Useful Prefetches
r

All Limited

Prefetched Prefetch

[LINPACKD I
I 1

24.6% I 36.9% ~
u u

WANALl 58.2% 98.7%

EULER1 2.3% 2.2%

BARO 32.3% 56.2%

MATRIX 46.4% 91.4%

EFIE304 32.6% 70.0%

Average 32.7% 59.2%

Table 2: Useful Prefetches — After Using Overflow

Iteration

of generated prefetches increased the likelihood that

any given prefetch actually caused a useful cache load.

With every possible value being prefetched, less than

one-third of the prefetches caused useful data to be

moved into the cache. When the overflow iteration

was used to reduce the number of prefetches, almost

six out of ten remaining prefetches prevented a later

cache miss.

Use of the overflow iteration eliminated over 54%

of the prefetches from the six test programs. This re-

duced the overhead for the prefetching instructions on

the six programs from over 31% down to about 14%.

If the other programs had shown equivalent reduc-

tions, the overhead of software prefet thing would be

reduced to 12Y0. This reduction in overhead resulted

in a negligible decrease in hit ratio (0.1’%0). At only

1270 overhead, software prefetching is an attractive

alternative on computers with a cache miss penalty

of 20 or more.

By examining several thousand lines of code to

determine which references would be misses, we ar-

rived at several observations about the calculation of

the overflow iteration. In general, it is very easy to

look at a small to medium loop and roughly deter-

mine the overflow iteration by hand, but it is easy

to overlook references. In the first modification of

WANALl, prefetches to two references were incor-

50

rectly eliminated. Those two references lowered the

total program hit ratio by 6Y0.

In summary, by using the overflow iteration in a

compiler algorithm to reduce the number of spuri-

ous prefetches can reduce the overhead of software

prefetching by as much as a factor of three, making

the scheme attractive for a number of machines,

5.2.3 Register Allocation

The overhead of prefetching can be further re-

duced by keeping addresses generated for the prefetch

in registers for later use at the corresponding load. As

defined in the simple prefetching strategy described

above, every prefetch generates its own address, and

then the load also generates an address. When the

right value is being prefetched, these two addresses

will be the same. By keeping the value in a regis-

ter between the cache load and the actual load, the

second address generation can be avoided.

The drawback to this scheme is that saving the

address between the two loads greatly increases the

lifetime of the address temporary, which in turn in-

creases the register pressure in the program. This

will cause more values to be spilled from registers

during execution, When the address temporary is

spilled, the cost of the cache load is a register store,

a register load and the single cache load instruction,

To measure the impact on register allocation, several

programs were modified and ported to the R“ envi-

ronment. The R“ compiler does graph coloring reg-

ister allocation [CAC+81, Cha82] and estimates the

amount of spilling that will occur during execution.

Every program ported to R“ had every prefetch-

able reference subscript replaced by a temporary vari-

able. The temporary for the next iteration was then

calculated in the statement after its use. This caused

the address temporary to have a lifetime of one full

iteration of the loop, the amount of time that oc-

curs during software prefetclii~,~. ‘1’he overflow iterw

tion had already been used to reduce the number of

prefetches that occurred before porting to R“ .

The six programs consisted of a total of 62 rou-

tines. The R“ compiler is still under development,

and attempting to compile actual programs uncov-

ered a number of bugs, In particular, only 38 of the

routines could successfully pass through register allo-

cation. For these, the original versions of the routines

resulted in 223 variables being spilled at an estimated

cost of 221,892 cycles. After prefetcl]ing address vari-

ables were added, the number of spills increased by

58 to 281, and the estimated cost was 708,623 cycles.

When all optimizations were activated in the com-

piler, the number of spills in the original program in-

creased to 387 requiring 353,875 cycles. Prefetching

required an additional 74 register spills and 940,813

cycles.

Prefetching increased the number of spills by less

than 25% for both the optimized and non-optimized

code. The spills tended to occur in more nested loops,

increasing the overall cost of spilling by 320% for

the non-optimized code and 266!Z0 for optimized code.

The tot al cost of spilling is minimal when compared

to the number of accesses that actually occur in the

programs. WANALl alone generates trillions of ref-

erences.

Unfortunately, the longer routines were less likely

pass through the register allocator. For every routine

that did pass through the compiler, the estimated

spill cost was less than the number of prefetches.

Since the cache should maintain any scalar that is

used on every iteration, the cost of software prefetch-

ing is less than three transfers between processor and

cache.

The cost of eliminating duplicate address genera-

tion, by saving addresses in registers across iterations

is unclear from the experiments. Many routines could

not be measured, and the exact correlation between

cycles as estimated by R~ and measured by PFC-Sim

is unknown. However, an estimate of the likely effect

can be derived. The additional spills from software

prefetching are likely to be relatively small (on the

order of 20 to 50’%0 more spill sites), but are likely to

be in more heavily executed sections of the program

(spill costs climbed over 200%).

In summary, using registers to maintain addresses

between the prefetch and the actual load may or

may not substantially reduce the overhead involved

in prefetching. This preliminary study is encourag-

ing, but inconclusive.

6 Conclusions

From the results presented here, it should be clear

that software prefetching is an attractive strategy for

reducing the effects of long memory latencies without

notably increasing the bandwidth required to support

traffic between main memory and cache. Software

prefetching should be particularly useful on high-

performance systems that can issue more than one in-

struction per cycle—if the costs of issuing the prefetch

instruction and computing the prefetch address can

be completely hidden under other instructions, the

reduction in execution time can be substantial.

Even when the cost of software prefetching can-

not be eliminated by hardware, software prefetching

can be made practical for long-latency machines by a

number of optimizations, particularly the elimination

51

of unnecessary prefetches and assignment of addresses

to registers.

Although this study clearly establishes the poten-

tial of software prefetching for reducing apparent la-

tency in a system-or reducing the cost of a system

by making it possible to build a smaller cache—it

remains to be established in practice whether the ad-

vanced design of new high-performance microproces-

sors will reduce the prefetching overhead sufficiently

to realize the large potential gains.

References

[BCK+89]

[CAC+81]

[Cha82]

[CK89]

[CKC90]

[CKP90]

M. Berry, D. Chen, D. Kuck, S. Lo,

Y. Pang, L. Pointer, R. Roloff, A. Samah,

E. Clementi, S. Chin, D. Schneider,

G. Fox, P. Messina, D. Walker, C. Hsi-

ung, J. Schwarzmeier, K. Lue, S. Orszag,

F. Seidl, O. Johnson, R. Goodrum, and

J. Martin. The Perfect Club: Effective

Performance Evaluation of Supercomput-

ers. The International Journal of Super-

cornputer Applications, 3(3), Fall 1989.

Gregory Chaitin, Marc Auslander, Ashok

Chandra, John Cocke, Martin Hopkins,

and Peter Markstein. Register allocation

via coloring. Computing Languages, 6,

1981.

Gregory Chaitin. Register allocation and

spilling via graph coloring. In Proceedings

of the SIGPLAN 82 Symposium on Com-

piler Construction, 1982.

Steve Carr and Ken Kennedy. Block-

ing linear algebra codes for memory hi-

erarchies. In Proceedings of the Fourth

SIAM Conference on Parallel Processing

for Scientific Computing, Chicago, De-

cember 1989.

David Callahan, Ken Kennedy, and Steve

Carr. Improving register allocation for

subscripted variables. In Proceedings oj

the ACM SIGPLAN 90 Conference on

Program Language Design and Implemen-

tation, pages 53–65, \Vhite Plains, NY,

June 1990.

David Callahan, Ken Kennedy, and Al-

lan Porterfield. Analyzing and visualizing

performance of memory heirarchies. In

Margaret Simmons and Rebecca Koskela,

[CP90]

[Don88]

[GM87]

[Jou90]

[Kro90]

[Por89]

[SD88]

editors, Instrumentation for Visualiza-

tion, Frontier Series, pages 1-26. ACM

Press, 1990.

David Callahan and Allan Porterfield.

Data Cache Performance of Supercom-

puter Applications. In Super-computer 90,

1990.

Jack Dongarra. Performance of Vari-

ous Computers Using Standard Linear

Equations Software in a Fortran Envi-

ronment. Computer Architecture Arews,

16(1), March 1988.

C. E. Gimac and V. M. Milutinovic. A

survey of RISC processors and comput-

ers of the mid-1980’s. Computer, 20(9),

September 1987.

Norman Jouppi. Improving direct-

mapped cache performance by the addi-

tion of a small fully-associative cache and

prefetch buffers. In The 14th Annual In-

ternational Symposium on Computer Ar-

chitecture, Seattle, WA, May 1990.

David Kroft. Lockup-free instruction

fetch/prefetch cache organization. In The

8th Annual International Symposium on

Computer Architecture, Minneapolis, MN,

May 1990.

All an Porter field. Sofiware Methods for

Improvement of Cache Performance on

Supercomputer Applications. PhD thesis,

Rice University, 1989. Technical Report

Number Rice COMP TR89-93.

C. Scheurich and M. Dubois. Concurrent

miss resolution in multiprocessor caches.

In 1988 International Conference on Par-

allel Processing, 1988.

52

