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ABSTRACT
This paper introduces a compiler-orchestrated prefetching system
as a unified framework geared toward ameliorating the gap be-
tween processing speeds and memory access latencies. We fo-
cus the scope of the optimization on specific subsets of the pro-
gram dependence graph that succinctly characterize the memory
access pattern of both regular array-based applications and irregu-
lar pointer-intensive programs. We illustrate howprogram embed-
ded precomputation via speculative executioncan accurately pre-
dict and effectively prefetch future memory references with negli-
gible overhead. The proposed techniques reduce the total running
time of seven SPEC benchmarks and two OLDEN benchmarks by
27% on an Itanium 2 processor. The improvements are in addition
to several state-of-the-art optimizations including software pipelin-
ing and data prefetching. In addition, we use cycle-accurate simu-
lations to identify important and lightweight architectural innova-
tions that further mitigate the memory system bottleneck. In par-
ticular, we focus on the notoriously challenging class of pointer-
chasing applications, and demonstrate how they may benefit from
a novel scheme ofsentineled prefetching. Our results for twelve
SPEC benchmarks demonstrate that 45% of the processor stalls that
are caused by the memory system are avoidable. The techniques in
this paper can effectively mask long memory latencies with little
instruction overhead, and can readily contribute to the performance
of processors today.

Categories and Subject Descriptors
B.1.4 [CONTROL STRUCTURES AND MICROPROGRAM-
MING ]: Microprogram Design Aids—Languages and compilers,
Optimization; B.3 [MEMORY STRUCTURES ]: Design Styles;
C.0 [COMPUTER SYSTEMS ORGANIZATION ]: General—
Instruction set design
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1. INTRODUCTION
Modern trends in the design of high-performance microproces-

sors continue to widen the gap between the rate of data consump-
tion in the processor and the rate of data delivery from the memory
system. This rate disparity implies a system must effectively tol-
erate (or mask) potentially long memory latencies, lest it suffer se-
vere performance degradation as the processor stalls and awaits the
delivery of data from memory. The performance implications are
exacerbated when applications make extensive use of dynamically
allocated objects which complicate the analysis of the application
reference pattern and often inhibit the development of static tech-
niques for masking long memory access latencies.

In this paper, we propose and evaluate a compiler technique to
orchestrate the prefetching of data ahead of eventual processor ref-
erences. The prefetching is driven by the precomputation of future
memory addresses via speculative execution of load dependence
chains. Eachload dependence chain(LDC) represents a subset
of the program dependence graph that is pertinent to the address
calculation of a specificdelinquent(i.e., long latency) memory op-
eration. The compiler identifies the LDCs and statically embeds
the precomputation within the program instruction stream, along
with prefetch operations to mask potentially long memory access
latencies.

This strategy ofprogram embedded precomputation via specula-
tive execution(PEPSE) relies on the compiler’s ability to inject the
precomputation into the host program without lengthening the crit-
ical path of the application. The key enabler for PEPSE is the lim-
ited ability of compilers to extract sufficient ILP (instruction level
parallelism) to fully utilize the parallelism afforded by some archi-
tectures such as the Itanium Processor Family (IPF). Thus, once an
application is optimized and scheduled, our compiler-orchestrated
prefetching system is allowed to “steal” any remaining resources to
embed speculative address precomputation within program regions
that are likely to benefit from prefetching.

We have incorporated our ideas into the Open Research Com-
piler (ORC) for the IPF, and using our prototype, we have mea-
sured speedups up to 65% for nine benchmarks (seven of which
are from the SPEC CFP suite) running on a 900 MHz Itanium 2
workstation. The performance gains are in addition to prefetch-
ing technology [28] available in ORC. Furthermore, we measured
a 45% reduction in data-induced processor stall cycles for twelve
SPEC benchmarks, seven of which are SPEC CINT applications.
In contrast to the array-based SPEC CFP applications which are
amenable to prefetching, the SPEC CINT benchmarks are pointer-
heavy and often defeat prefetching strategies.

In this paper, we also introducesentineled prefetching for EPIC
architectures(SPEAR) as a technique to address a major chal-
lenge when prefetching in pointer-based programs. When point-
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ers are involved, the instruction overhead for generating prefetch
addresses is non-trivial because the load dependence chains will
contain memory instructions that may miss in the data cache. In
SPEAR, the speculative precomputation instructions are predicated
such that if any load in the chain suffers a cache miss, a special
predicate is set so that subsequent precomputation instructions are
ignored. Thus, SPEAR allows for greater synergy between static
prefetch orchestration and run-time adaptation in response to in-
formation propagated from the memory system. The ideas in this
context draw from the early work oninforming loads[17] and may
lead to other interesting optimizations in the future. Our results
show that sentineled prefetching affords a clear advantage in sev-
eral scenarios and warrants further research.

We begin in Section 2 with a description of program embed-
ded precomputation via speculative execution (PEPSE), and in Sec-
tion 3 we introduce SPEAR as a mechanism for sentineled prefetch-
ing. In Section 4 we evaluate PEPSE using the Open Research
Compiler for the Itanium Processor Family, and we demonstrate
that our methodology complements traditional prefetching strate-
gies that are considered quite effective in the context of Fortran and
scientific applications. In Section 5 we look at the role of compiler-
orchestrated prefetching in the context of pointer-intensive appli-
cations. Specifically, we look at how program embedded precom-
putation and prefetching impact performance. Section 6 discusses
related work, and Section 7 concludes the paper with directions for
future work.

2. SPECULATIVE PRECOMPUTATION
The strategy for program embedded precomputation via specu-

lative execution (PEPSE) consists of four steps. First, certain pro-
gram memory operations are identified as delinquent loads. Next,
for each delinquent load, a specific subset of the program depen-
dence graph (PDG)—consisting exclusively of the instructions nec-
essary to compute the target address of that load—is isolated. Each
PDG subset represents a load dependence chain (LDC) that is in-
dependently transformed to provide an adequate level of foresight.
The transformations are especially important in cyclic program re-
gions where prefetch instructions must issue several iterations ahead
of the eventual load. In the final step, each LDC is embedded within
the original application such that as the program executes, the op-
erations in the LDC execute speculatively and trigger prefetch in-
structions ahead of their corresponding delinquent loads. The pro-
cess of embedding the LDCs occurs just before code generation and
subsequent to other compiler optimizations, and thus, the prefetch-
orchestration system can exploit any available machine resources
(e.g., registers and functional units) to schedule the precomputa-
tion viz. the load dependence chains. It is worthy to note that the
PEPSE strategy outlined in this paper may be applied in continuous
optimization scenarios such as Dynamo [6] and DELI [11], or even
in JAVA Just-In-Time compilers.

2.1 Delinquent Load Selection
We narrow the scope of our optimization to a tractable subset

of thedelinquentload instructions in a program, and by doing so,
we can devise simple and effective algorithms for extracting the
precomputation chains and their injection into the program. Our
prefetch-orchestration system identifies delinquent load instructions
via profiling. It collects the requisite information by running an
instrumented version of the original application alongside a cycle-
accurate extension of the Dinero IV cache simulator [13]. The out-
put of the profiling stage is a detailed record of the cache hits and
misses, as well as the total number of cycles spent servicing each
static load in the application. Empirically, we have observed that

Table 1: Number of static load instructions accounting for more
than 90% of the data stalls (assuming an Itanium 2 memory
hierarchy configuration.

Benchmark Total Number of Number of
Static Loads Delinquent Loads

132.ijpeg 5079 43
164.gzip 1226 9
175.vpr 5289 30
181.mcf 515 14
183.equake 945 30
188.ammp 776 3
197.parser 4368 6
255.vortex 21298 361
256.bzip2 1064 28
300.twolf 10695 99

a small number of load instructions account for more than 90% of
the total data stalls that a program suffers (see Table 1). Our results
are in accord with prior work [2, 31] that also observed the number
of delinquent loads in a program is small when compared to the
total number of loads in the same program. This characteristic al-
lows the prefetching system to focus the memory optimizations to
a manageable set of instructions, and indeed, we exploit this char-
acteristic in our work.

Because our methodology is profile driven, we recognize the im-
portance of addressing the issue of profile sensitivity to different
input workloads. That is, does the set of delinquent loads for an
application remain relatively constant across different inputs? In
our work, we focus largely on the SPEC benchmarks and we use
one set of input workloads for profiling, and another distinct set of
workloads for performance measurements. Furthermore, we have
performed some empirical analysis to show that the set delinquent
loads remains substantially constant for the majority of the SPEC
benchmarks and input workloads.

2.2 Extraction and Scheduling
In this section we outline a simple algorithm for identifying a

program slice[5] of the set of operations that contribute to the
address calculation of a particular load instruction. Each slice is
called a load dependence chain (LDC), or equivalently, a precom-
putation chain. Our algorithm assumes a model of computation
(e.g., VLIW) where the compiler explicitly schedules operations
and manages the architecture resources. The input to the algorithm
is an already optimized and scheduled program expressed in a low-
level IR (i.e., assembly or similar intermediate representation). The
algorithm also inputs the memory profiling information to identify
delinquent loads. The output is a program with embedded precom-
putation and prefetching instructions. The algorithm avoids some
of the complexities attributed to slicing by leveraging the following
program properties:

• Each function consists of a set of blocks or regions. Each
block has singleentry instruction, and it is the first operation
in the block.

• Each operationo in a block is a member of a unique instruc-
tion word or bundlewo. The bundles are issued in order to the
processor, and the operations within a bundle are processed
in parallel when the program executes. Without loss of gen-
erality, we assume that instructions within the same bundle
do not have any dataflow dependencies.

190



 
    R1 = &list 
    R5 = 0 
loop: 

w1: R2 = R1 + 4 
w2: R3 = *[R2] 
w3: R4 = R1 + 8 
w4: R1 = *[R4]        # delinquent load 
w5: R5 = R5 + R3 
w6: br loop (R1 != NULL) 

    R1 = &list 
    R5 = 0 
    R6 = R1 + 8 
loop: 

w1: R2 = R1 + 4;        p2: R7 = *[R6] 
w2: R3 = *[R2] 
w3: R4 = R1 + 8 
w4: R1 = *[R4]      
w5: R5 = R5 + R3;    p1: R6 = R1 + 8 
w6: br loop (R1 != NULL) 
 

 
The load in w4 is delinquent. Its LDC is: 
 

p2: R1 = *[R4] # second LDC operation 
p1: R4 = R1 + 8 # first LDC operation 
 
 

 
 

(a) Original code 

 
The LDC operations are scheduled and the destination 
registers renamed. Note in this example we do not propagate 
the original cyclic dependence in the LDC (i.e., R7 is not 
used in p1). Hence we can convert p2 to a normal prefetch 
instruction. 
 

(b) Orignial code with an embedded LDC 

    R1 = &list 
    R5 = 0 
    R6 = R1 + 8 
loop: 

w1: R2 = R1 + 4; p2: R7 = *[R6] 
w2: R3 = *[R2]; p3: R8 = R7 + 8 
w3: R4 = R1 + 8; p4: R9 = *[R8] 
w4: R1 = *[R4]      
w5: R5 = R5 + R3;    p1: R6 = R9 + 8 
w6: br loop (R1 != NULL) 

    R1 = &list 
    R5 = 0 
    R6 = R1 + 8 
loop: 

w1: R2 = R1 + 4; p2: R7 = *[R6] 
w2: R3 = *[R2]; p3: R8 = R7 + 8 
w3: R4 = R1 + 8; p4: prefetch *[R8] 
w4: R1 = *[R4]      
w5: R5 = R5 + R3;    p1: R6 = R1 + 8 
w6: br loop (R1 != NULL) 

 
The LDC is unrolled twice (i.e., a new LDC is formed by 
chaining together two copies of the original LDC) and 
scheduled with register renaming. In this example we 
propagate the original cyclic dependence in the LDC 
 (i.e., R9 is used in p1).  
 
 (c) Unrolled precomputation with cyclic dependence 

 
In this example we do not propagate the original cyclic 
dependence and instead we convert the last LDC operation 
to a normal prefetch instruction. 
 
 
 

(d) Unrolled precomputation without a cyclic dependence 
 Figure 1: Example pointer-chasing code and various PEPSE scenarios.

• The schedule time of a bundlew is t(w), and hence the sched-
ule time of an operationo is t(wo). Within a block, each
bundle has a unique schedule time.

To identify delinquent loads, the algorithm identifies the set of
memory operations that are responsible for 90% or more of the total
program data stall cycles. For every loadl in the set, the algorithm
considers each operationp occurring in the bundles precedingwl ,
and if there exists a dataflow edge fromp to l , a speculative version
of p is added to the LDC ofl . The LDC is maintained as a queue
with operations inserted at the head to preserve data dependencies.
When the algorithm encounters a block’s entry instruction, it may
cross the region boundary to continue building the LDC. If a block
has multiple (control) predecessors, the LDC is replicated, and for
each predecessor, a path-specific LDC is built. For each LDC, the
algorithm uses branch profiling to restrict the extraction to the two
most frequently traversed paths. This threshold was selected empir-
ically after numerous experiments, and it serves to limit the number
of LDCs that may otherwise arise. The path that is traversed dur-
ing the LDC construction defines the set ofhostswithin which the
precomputation chain is later scheduled.

The algorithm terminates a precomputation chain according to
several heuristics. One of the stopping conditions is triggered when
there are no remaining dataflow edges to process. Another termi-
nating condition is triggered when the length of the LDC reaches a
predefined limit. The length constraint throttles the amount of pre-

computation. In this paper, we use an experimentally determined
threshold of seven instructions; in later stages, we may expand the
LDC subject to the desired prefetching distance and the availability
of resources in the machine. A third stopping condition is trig-
gered when a dataflow cycle is detected within the LDC. Cycles
occur when the result of a delinquent load impacts its future address
computation. This is a common occurrence in pointer-chasing ap-
plications and Figure 1(a) presents a common code fragment. In
the figure, a loop iterates over a linked data structure, and in every
iteration, it accesses some field in the current object (bundlew2)
and then dereferences a pointer (bundlew4) to retrieve the next ob-
ject in the list. In the figure, the delinquent load isw4 and the LDC
consists of the operations shown in bold.

When the algorithm stops building a precomputation chain, a
scheduler begins the process of assigning the LDC instructions to
available resource slots within the appropriate host regions. Schedul-
ing begins in the block that was visited last, following the last pro-
cessed bundle in the block. When all of the scheduling slots in
that block are exhausted, the scheduler searches for additional re-
sources in neighboring hosts—this is to avoid lengthening the pro-
gram schedule. Note that in loop regions, a visit to neighboring
blocks may result in traversing the loopbackedge. It is therefore
possible that scheduling begins in the tail end of a block, and con-
tinues at the head of the loop (or even the same block as shown in
Figure 1(b)).
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The scheduler begins with the first instruction in the LDC. When
the LDC is cyclic, the chain is reversed and then scheduled. As
each LDC operation is assigned to a resource slot, its destination
operand is renamed and register allocated. The scheduler main-
tains a mapping of the old operand names to the new names, and
propagates the new operands throughout the precomputation chain.
In Figure 1(b), the scheduler assigns the first LDC instruction to
bundlew5 and the second LDC instruction is assigned to bundlew1
at the top of the loop; note that if the backedge is not traversed, the
loop length would have increased by one bundle. In the example,
we assume that the processor can issue two instructions per bundle,
and we use a semicolon to separate instructions within the same
bundle. Note that when the first LDC instruction is scheduled, it is
assigned a new destination register (R6), and the source operand of
the second LDC instruction is updated to reflect the change. The
renaming step assures that the registers that are updated by the pre-
computation do not affect the host program.

Finally, in the case of acyclic LDCs, when the last LDC in-
struction is scheduled, an appropriate prefetch operation is added.
In cyclic LDCs, the last scheduled operation is a load instruction
whose result is normally required by the first LDC instruction. And
herein lies the challenge with prefetching pointer-codes: if the cyclic
LDC dependence is preserved, then the result of the last LDC oper-
ation (a load) is committed to a register that is subsequently read by
the first LDC operation. If the load suffers a cache miss that is not
serviced by the time the dependent precomputation instruction is is-
sued, the precomputation forces the processor to stall—an adverse
outcome. In effect, the precomputation simply shifts the pattern of
processor stalls to occur earlier in time. Hence what is needed is a
mechanism for dynamically changing the behavior of the loads in
the precomputation chains, and this is the topic of the next section
where we describe an architectural mechanism for mitigating the
challenges imposed by pointer-programs.

For the example shown in Figure 1(b), however, there is a sim-
ple solution. We can convert the load inw1 to a normal prefetch
operation. In general, we can always break cyclic LDC depen-
dences in this manner. Unfortunately if the precomputation chain
has two or more loads, we can not avoid the problem of stalling
the processor since the result of some LDC-issued loads are nec-
essary for the precomputation to proceed. In our experiments, we
found that LDCs rarely have only one load instruction. And in
many cases, LDCs will have several load operations as a result of
LDC “unrolling”, a transformation that our compiler will apply to
better tailor the prefetching distance to the host program region.
Specifically, in loop regions, the compiler must schedule a prefetch
to issue in iterationk of a loop such that the data arrives in time for
processing in a future iterationm. LDC unrolling is a lightweight
transformation, and it simply entails creatingγ copies of the LDC
and chaining them all together as shown in Figure 1(c) forγ = 2.
The unroll factorγ is ideally equal todLl /Ke whereLl represents
the average miss latency of a delinquent loadl , andK represents
the length of the longest path in the loop region.

Referring to the example in Figure 1(c), observe that if the cyclic
LDC dependence is preserved, and hence the result of the last LDC
instruction (R9) is consumed by the first operation in the chain (in
bundle w5), then iterationk of the loop will access thekth ob-
ject in the linked list while the precomputation accesses objects
(2×k)+1 and(2×k)+2. By contrast, if the last LDC operation
is converted to a prefetch operation—thereby removing the cyclic
dependence—the precomputation will prefetch objectk andk+ 1
with every iteration of the loop. Thus the prefetching patterns are
different. In the former case where the cyclic dependences are pre-
served, the precomputation can “run ahead” quite significantly. In

the latter case where cyclic dependences are broken, the precompu-
tation maintains a fixed “lookahead” distance (at the cost of some
prefetching redundancy). Furthermore, in the latter scenario, the
compiler does not need to properly initialize the live-in values to
the LDC because the precomputationsynchronizeswith the appro-
priate values calculated in the original loop at every iteration (Fig-
ure 1(d)).

Note that the constant synchronizing of values between the main
program and the precomputation serves to maintain a constant looka-
head. In contrast, if a cyclic LDC dependence is preserved (as in
Figure 1(c)), the precomputation risks running too far ahead of the
program. Furthermore, in the context of the the sentineled prefetch-
ing scheme (next section), the precomputation may end up lagging
behind its host.

Lastly, we note that it is possible to reuse values generated by the
precomputation to avoid redundant calculation of the same values
by the host region. We do not consider such an optimization at
this time, although some recent work [12] has shown the idea is
beneficial in the context of speculative helper threads.

3. SENTINELED PREFETCHING
In PEPSE, the precomputation chains consist of operations that

are “binding”, and therefore the operations are semantically equiva-
lent to the normal instructions in the program. In pointer-heavy ap-
plications, instructions within the precomputation chain may stall
the processor as they await the delivery of outstanding data. In this
section we introduce the concept of sentineled prefetching for EPIC
architectures (SPEAR) as an innovative approach to mitigating the
challenges that arise in pointer-codes.

SPEAR instructions allow the program to adapt in response to
dynamic memory events. Specifically, the execution of the precom-
putation chain is predicated on special-purposebits of information
that signal the program when certain memory requests are outstand-
ing. The special-purpose bits are akin to event registers that might
indicate a cache miss, or the “operand not ready bit” in conven-
tional processors. In sentineled prefetching, the precomputation is
canceledwhen any of the operations in the chain suffer a cache
miss. In this scheme, the “guarding predicate” is controlled by the
memory system which can distinguish normal program loads from
speculative prefetch instructions. The latter are viewed asinform-
ing memory operations and require an extension to the instruction
set architecture (ISA).

3.1 Informing Memory Operations
The assembly language syntax for an informing load is the same

as a standard predicated Itanium load instruction:

(p) iLD rd = [rs]

Semantically, an informing memory operation clears a designated
predicate register—called thespearing bit(sb)—when it suffers a
cache miss. More specifically, the operation is described as fol-
lows:

• The execution of the operation is guarded by a predicate (p).
When the predicate is cleared (p = 0) the operation is nullified
(i.e., the state of the machine does not change). Otherwise,
the informing load executes as follows when the predicate is
affirmed (p = 1).

• If the address inrs hits in the TLBand in the primary data
cache, theniLD behaves as a standard load instruction; a
value is read from the address specified by registerrs and
placed in registerrd.
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• Otherwise, theiLD behaves as a non-binding prefetch in-
struction; the line containing the address specified by the
value in registerrs is moved to the highest level of the data
memory hierarchy. In addition the spearing bit is cleared
(i.e., set toFALSE as insb = 0).

The following example illustrates the use of theiLD instruction.
Suppose the LDC chain consists of the following instruction pat-
tern:

LD r1 = [r0] # cache miss
...
ADD r1 = r1, 4 # processor stalls
LD r2 = [r1]
...

In this first scenario, when the first load suffers a cache miss, an in-
order EPIC processor will stall if the memory request is outstanding
when theADD operation is issued. However, with informing mem-
ory operations, the processor can ignore the operations that are no
longer profitable (i.e., they may unduly stall the pipeline):

iLD r1 = [r0] # cache miss, sb = 0
...
(sb) ADD r1 = r1, 4 # operation ignored
(sb) iLD r2 = [r1] # operation ignored
...

In the above sequence, the processor ignores the embedded pre-
computation when the spearing bit is not affirmed. Thus when the
first informing load results in a miss, the spearing bit is cleared and
subsequent operations in the LDC are canceled. This scheme al-
lows the precomputation to greedily proceed along, and affords a
mechanism for prefetching data for any one of multiple loads in the
LDC.

3.2 Architecture Implementation
The addition of a new predicate register in the form of the spear-

ing bit is straightforward. The spearing bit may be implemented
as global predicate registers, or as an implicit argument to SPEAR
instructions. Either approach conserves the address space of predi-
cate registers, although in each case, an explicit clearing instruction
is necessary to reaffirm the spearing bit. Naturally, aliasing effects
can occur if there are overlapping LDCs in the same program re-
gion. That is, the precomputation of one LDC may cancel the pre-
computation of another even though the two LDCs are distinct and
do not share data. Our empirical analysis indicates that two pre-
computation chains often overlap, whereas three or more LDCs in
the same program region rarely occur. Hence using two distinct
spearing bits (that are exposed to the compiler) can reduce aliasing
effects.

An alternate approach for sentineled prefetching employs a spear-
ing bit per register, and in order to reduce the associated architec-
tural complexity, an ISA may dedicate a subset of its register file for
sentineled prefetching. In this approach, the mechanism to set and
clear the spearing bits is similar to the propagation of exceptions
flags with NaT bits in EPIC architectures. When an informing load
is issued, the spearing bit associated with its destination operand is
cleared. The bit is later set when the memory request is serviced,
and in general, the bit is reaffirmed whenever a value is written to
a register. A SPEAR instruction is canceled if any of the its source
operands have a cleared spearing bits. When a SPEAR instruction
is suppressed, the spearing bit of the destination register is cleared
to propagate the cancellation of the precomputation chain.

Table 2: Benchmarks and input workloads used for profiling
and evaluation.

Benchmark Profile Evaluate Delinquents
101.tomcatv train ref 70
168.wupwise train ref 10
171.swim train ref 120
172.mgrid train ref 70
179.art train ref 100

183.equake train ref 60
189.lucas train ref 70

em3d 2000 2 50 30000 2 200 8
tsp 8000 0 8000000 0 10

Table 3: Measureduser CPU times.

Time (in secs)
Benchmark ORC PEPSE Speedup
101.tomcatv 45.6 29.3 1.56
168.wupwise 622 591 1.05
171.swim 317 230 1.38
172.mgrid 369 257 1.44
179.art 489 297 1.65

183.equake 471 220 2.14
189.lucas 366 307 1.19

em3d 6.39 5.29 1.21
tsp 80.7 75.9 1.06
total 2766.7 2012.5 1.37

4. PEPSE EVALUATION
This section evaluates our compiler-orchestrated prefetching sys-

tem using the Open Research Compiler (ORC) [29]. ORC is an
open source infrastructure for the Itanium Processor Family, and
it includes a comprehensive set of components including a large
suite of loop transformations, inter-procedural analysis and opti-
mizations, region-based compilation, global instruction scheduling,
software pipelining, data prefetching, and several other state-of-
the-art technologies.

For our experiments, we used a 900 MHz Itanium 2 processor,
with 16 Kb primary data and instruction caches, a 256 Kb sec-
ondary cache, and a 1.5 Mb tertiary cache. The first level caches
have access latencies of of 1 cycle, and the second and third level
caches have minimum access latencies of 5 cycles and 12 cycles re-
spectively. The processor can issue up to six instructions at a time,
and has an 8-stage pipeline with a minimum branch misprediction
penalty of 6 cycles.

Our evaluation benchmark set (Table 2) consists of all of the
SPEC benchmarks that we managed to successfully compile us-
ing our prototype compilation infrastructure. In all there were nine
benchmarks: seven are from SPEC CFP and two from OLDEN.
Two of the SPEC benchmarks—179.art and183.equake—are C
programs while the others are implemented in Fortran. In Section 5
we include results for SPEC CINT benchmarks.

4.1 Results
Table 3 reports the running time (in seconds) for each bench-

mark from the evaluation suite. For our baseline in column two,
we used ORC to compile the benchmarks. The compiler applied
several optimizations, including its most aggressive form of data
prefetching. Column three reports the running time of the bench-
marks when PEPSE was also enabled; note that because the soft-
ware pipeliner interferes with our memory instrumentation rou-
tines, we disable software pipelining when enabling PEPSE. Our
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Table 4: Number of static prefetch instructions for different
prefetching strategies.

Benchmark pft-1 pft-2 pepse

101.tomcatv 36 68 70
168.wupwise 101 101 10
171.swim 91 153 120
172.mgrid 71 79 70
179.art 36 40 100

183.equake 8 35 60
189.lucas 112 122 70

em3d 1 1 8
tsp 0 0 10

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

171.swim 172.mgrid 179.art 183.equake 189.lucas em3d tsp total

pft-0 pft-1 pft-2 pepse

h

Figure 2: Measured speedup for different prefetching strate-
gies.

results show a 27% reduction to the cummulative running time of
the benchmarks (from 46 minutes to just under 34 minutes) when
using our prefetching approach.

The prefetching technology in ORC is based on Mowry’s doc-
toral thesis [28] and it is well suited for prefetching array refer-
ences. The technique analyzes loop nests to determine which ar-
ray references are likely to suffer a cache miss, and based on the
discovered miss pattern, the algorithm decides what to prefetch
and in which iteration of a loop to trigger the appropriate prefetch.
We generated four compiled versions of each application:pft-0,
pft-1, pft-2 and pepse. The first applies all of the ORC op-
timizations (including software pipelining) with the exception of
data prefetching. The second and third versions enable increasingly
aggressive ORC prefetching optimizations (via-LNO:prefetch=1
and-LNO:prefetch=2 respectively, in addition to software pipelin-
ing). The last version is compiled with PEPSE enabled (and no
software pipelining). For the SPEC benchmarks, ORC statically
scheduled an average of 65 prefetch operations in thepft-1 ver-
sions, and in the case ofpft-2, there were 86 prefetch instruc-
tions on average. In thepepse version of the benchmarks, there
were 74 static prefetch instructions on average, with a total of 18
prefetch instructions in the OLDEN kernels. The kernels use re-
cursive (pointer) data structures and are not amenable to ORC’s
prefetching. Table 4 details the extent of the prefetching that is
achieved by each prefetching strategy.

Next we ran all benchmarks and used PAPI [32] to monitor the
performance counters in the Itanium. For each benchmark, we
record the total number of cycles elapsed from the start of the ap-
plication until it exits, along with the number of cache accesses and
misses at every level of the hierarchy. Figure 2 reports the speedups

achieved by each strategy (compared topft-0). The data used to
generate the figure was derived from the cycle counts reported by
PAPI1. The last bar in the figure corresponds to the cumulative run-
ning time of the benchmarks. Note that the figure does not include
data for101.tomcatv and168.wupwise because of infrastructure
difficulties beyond our control.

Interestingly, both179.art and 183.equake are array-heavy
but the ORC prefetching strategy is not as effective as with the other
SPEC CFP benchmarks. As we noted earlier, these two bench-
marks are implemented in C and dynamically allocate their arrays.
As a result, ORC may have made pessimistic assumptions dur-
ing its reference-analysis stage. For example, of the top twenty
five delinquent loads in183.equake, only eighty are targeted for
prefetching inpft-2, whereas PEPSE targets all twenty five. Con-
sequently, the PEPSE versions of the two benchmarks run 30 - 60%
faster than the baseline (pft-0). In 179.art, PEPSE reduces the
tertiary cache misses nearly 10%.

It is also worth noting that the number of PEPSE-issued prefetch
instructions greatly exceeds the number of ORC-issued prefetch
requests: for183.equake and 189.lucas there are 43× more
prefetch requests, and for the other SPEC benchmarks, the num-
ber of requests vary by a factor of five on average. Surprisingly,
less than one percent of the total prefetch instructions request data
that are never used (or are evicted from the cache before they are
referenced by the program). Two exceptions are179.art (6.3%)
and183.equake (2.6%). In contrast, the fraction of the prefetch
requests that hit in the primary cache can be much higher. In
183.equake for example, 61% of the prefetch requests are redun-
dant (i.e., they request data already in the cache) compared to only
13% for pft-2—note however thatpepse issues 47× more dy-
namic prefetch requests in this case. In172.mgrid, PEPSE results
in 2.3× more prefetch requests thanpft-2 and only 25% of the
requests are redundant, compared to 37% forpft-2.

With the exception of171.swim, PEPSE delivers better perfor-
mance than ORC’s prefetching strategies. In171.swim, the impact
of the software pipeliner is quite significant. Turning off software
pipelining inpft-0 slows171.swim down by 48%. A similar ex-
periment withpft-2 slows the application down 21%, and at that
point pepse is 6% better in terms of running time. Hence we ex-
pect that as our compiler matures to simultaneously enable PEPSE
and software pipelining, the overall speedups will increase.

Our ORC-based prefetching system remains under development,
and we plan on more evaluations with a greater emphasis on SPEC
CINT benchmarks. The current Itanium results are encouraging
and provide concrete evidence that PEPSE is a viable optimiza-
tion strategy. It does not rely on complex analysis of reference
patterns and it is more robust in complex loops. In addition, the
technique benefits from memory profiling and can issue a large
number of prefetch requests with very low instruction-overheads.
Furthermore, PEPSE is complementary to any existing prefetch-
ing scheme. For example the combination of PEPSE and ORC’s
prefetching results in a 10% gain in performance for172.mgrid
compared to using either strategy exclusively.

5. PEPSE VERSUS SPEAR
Pointer-chasing programs pose a major challenge to prefetching

systems. In the context of our work, precomputation chains with
multiple load instructions can stall the processor if the result of a
load is necessary to further propagate the precomputation. For ex-
ample, if a load within the LDC suffers a cache miss that is not ser-

1We ran each benchmark version a total of three times and recorded
the minimum cycle count that was reported.
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Table 5: Benchmarks and input workloads used for profiling
and evaluation.

Benchmark Profile Evaluate
101.tomcatv train lgred
168.wupwise train lgred
171.swim test train
172.mgrid train lgred
188.ammp train lgred

130.li train au, boyer, puzzle0
132.ijpeg vigo.ppm penguin.ppm
164.gzip input.random lgred.graphic
181.mcf train lgred
197.parser train lgred
256.bzip2 input.random lgred.graphic
300.twolf train lgred

Table 6: HPL-PD processor model.

Functional 4 INT units, 2FP units,
Units 3 BRANCH units, 2MEMORY units
Register 128 INT registers, 128FP registers,
Files 64 PREDICATEregisters, 8BRANCH registers
Caches TLB (split) : 8 Kb I and D

fully-associative, 32 bytes per line
8 cycles miss latency
L1 (split) : 32 Kb I and D caches
4-way, 32 bytes per line
2 cycles hit latency (D cache)
L2 (unified) : 1 Mb cache
4-way, 64 bytes per line
10 cycles hit latency, 200 cycles miss latency

viced in time for a subsequent LDC operation, the processor stalls
and awaits data delivery. With sentineled prefetching, the precom-
putation chain abandons the prefetching process when it might oth-
erwise stall the processor. In this section we compare the PEPSE
and SPEAR strategies.

Our evaluation benchmark set consists of array-based and pointer-
based benchmarks. In Table 5, we group the benchmarks into two
categories. The first represents the array-heavy benchmarks drawn
from SPEC CFP, and the second represents pointer-chasing bench-
marks drawn from SPEC CINT. We used as many benchmarks as
possible, limited only by what the Trimaran [38] infrastructure can
successfully compile.

Trimaran is a publicly available compilation and simulation frame-
work for EPIC research based on the HPL-PD [20] architecture
(a precursor to the IPF). The compiler only provides a C front-
end2, and includes a number of classic and high level optimizations
such as loop unrolling, copy propagation, common subexpression
elimination, dead code elimination, aggressive register allocation,
and software pipelining [33]. For our results, we do not use su-
perblock [18] and hyperblock [27] optimizations; the former ap-
plies control speculation, the latter also adds predication to removes
branches. During our experiments, we found that PEPSE provides
better latency masking compared to these ILP optimizations which
have a negligible impact on the memory system performance.

Our simulation environment consists of a cycle accurate HPL-
PD simulator coupled with the Dinero IV [13] cache simulator. The
in-order HPL-PD processor is configured as shown in Table 6. In
addition, there is a BTB, and a two-level gshare branch predictor.

2We convert the Fortran SPEC CFP benchmark to C usingf2c.
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Figure 3: Percent reduction in processor data-stall cycles.

We have substantially modified the HPL-PD and Dinero simulators
to model contention in the memory system and to perform cycle-
accurate accounting of processor stalls. We used astall-on-use
model, meaning the processor pipeline only stalls when an instruc-
tion is ready to issue but its source operands are not yet available
(due to an outstanding memory request). Additional instructions
are not issued when the processor is stalled. Processing eventually
resumes when the outstanding data items reach their destination.
The caches in our simulated model are non-blocking, and we as-
sume the memory units are pipelined such that they can each pro-
cess a new memory request every cycle.

For some of the benchmarks in our evaluation suite, we use the
MinneSPEC [23] reduced input workloads to reduce simulation
time. The MinneSPEC workloads are recognized by SPEC and
are distributed with Version 1.2 and higher of the SPEC CPU 2000
benchmark suite. The results that follow were obtained byfully
simulating each of the benchmarks.

5.1 Precomputation Overhead
We quantify the runtime overhead associated with our methodol-

ogy by measuring the total number of dynamic instruction bundles
that are issued before and after prefetch orchestration. Each instruc-
tion bundle consists of a set of operations that issue simultaneously
and execute in parallel. The extent to which the prefetch orches-
tration lengthens the program is reflected in the number of bundles
that are processed. When the compiler embeds the LDCs in regions
with an adequate number of available resources, the dynamic bun-
dle count will not change relative to the baseline (where no prefetch
orchestration is performed). Please note that SPEAR differs from
PEPSE only in the semantics of the operations within the LDC.
Therefore, both PEPSE and SPEAR employ the same LDC extrac-
tion, transformation, and scheduling algorithms, and thus they in-
cur the same instruction overhead.

In our experiments, the average increase in the number of dy-
namic bundles was 3.66%. If we do not consider the static sched-
ule length of host regions during LDC scheduling, we observe as
much as a 32% increase in dynamic bundles. Our current schedul-
ing algorithm uses a simple heuristic to avoid increasing the static
length of a region. The scheduler compares the length of the pre-
computation chain to the number of available resource slots in the
host regions, and it discards a load dependence chain if its com-
putational requirements exceed the number of scheduling slots that
are available.
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5.2 Memory System Performance
Figure 3 reports the impact of PEPSE and SPEAR on the num-

ber of cycles that the processor stalled awaiting data delivery. The
striped bars represent the percent reduction in stall cycles when
PEPSE is used (compared to the number of stall cycles incurred
by the processor in the absence of precomputation and prefetching;
greater percentages are better). The solid bars represent the per-
cent reduction in stall cycles when sentineled prefetching is used
(compared to the same baseline). We aggregate the data into three
categories. The first group (i.e., five sets of bars on the left side of
the graph) consists of the array-heavy SPEC CFP benchmarks. The
second group (i.e., the middle seven bars) consists of the pointer-
heavy SPEC CINT benchmarks. The last three sets of bars rep-
resent the percent reduction in total stall cycles for the array-based
(array-total) and the pointer-based (pointer-total) categories,
as well as the overall reduction in stall cycles for all of the bench-
marks (total).

As might be expected, SPEAR does not have an edge in array-
based codes, but does have a slight advantage (4.17% on average
and 13.75% in the best case) in the pointer-heavy benchmarks. In
the case of197.parser, PEPSE results in a small performance
degradation (0.19% more data stall cycles), and SPEAR shows vir-
tually no improvement (0.37% fewer stall cycles). The degradation
is caused by processor stalls induced by the precomputation chain,
and worse, they are due to spilling and restoring registers used by
the precomputation—particularly along function boundaries. We
suspect that better inter-procedural cooperation of the precomputa-
tion chains can help in this case. In SPEAR, the precomputation
induced spill and restore operations are nullified.

The performance benefit of PEPSE is quite significant, even in
pointer-codes: nearly 30% fewer data stall cycles. Thus, when the
precomputation stalls the processor—and as long as the correct ad-
dresses are calculated—it shifts the pattern of stalls to occur ear-
lier. The performance benefit of SPEAR is interesting in a few
cases (132.ijpeg, 256.bzip2, and300.twolf) and negligible in
others. As we investigated, we found two interesting issues.

First, when SPEAR does not outperform PEPSE, it is due to
the behavior of load operation within the computation chain. If
the LDC contains a load operationq whose average miss latency
Lq is less than the miss latencyLl of the target delinquent load,
PEPSE wins almost exclusively. This is because if the precom-
putation waits for the results of loadq, the potential reward isLl ,
for a total positive gain ofLl − Lq. If on the other hand, the av-
erage miss latency of the delinquent load is less than some other
load within the LDC, SPEAR holds the advantage since it will not
wait for the result and cancels the remaining precomputation; con-
comitantly, the outstanding memory transaction becomes a prefetch
request. This phenomenon arises when the load dependence chain
has more than one load operation, and suggests there are opportuni-
ties for selectively using informing loads and normal binding loads
within the same precomputation chain. We refer to LDCs with both
PEPSE and SPEAR operations ashybrid LDCs. Our initial results
which experiment with various heuristics show some promise. The
simplest approach calculates an estimated wait-time for an LDC-
initiated memory request, and when the wait-time exceeds the po-
tential for latency masking, the remaining LDC operations are con-
verted to SPEAR instructions. This strategy results in better per-
formance in some benchmarks. For example, in256.bzip2, hy-
brid LDCs deliver 15% fewer stalls compared to PEPSE, and that
is 5.5% better then SPEAR.

The second noteworthy observation involves cooperative prefetch-
ing when LDCs that are not mutually exclusive end up in the same
program region. When LDCs overlap (in terms of the precomputa-

tion they carry out), they are often nested in pointer-chasing loops
with complex control flow. We found that SPEAR performs bet-
ter in regions where overlapping and cooperative LDCs occur. We
have found that the interactions can be quite complex, and further
investigation is needed.

6. RELATED WORK
Due to the volume of research in the field, we briefly mention

some of the most recent and relevant work. However, many of
the related studies fall short of our proposed methodology which
(i) combines an existing framework of speculative execution with
prefetching to(ii) ensure accurate and timely precomputation of
load addresses with(iii ) little resource overhead.

6.1 Predictive Prefetching Schema
Data prefetching is the early delivery of data to the processor or

nearby storage. The strategy is effective as long as accurate infor-
mation is available about future memory references (e.g., location
in memory and time of access), and many techniques are designed
to either statically [7, 22, 28, 30, 40] or dynamically [8, 14, 19, 35]
predict future memory references and drive the optimization. Static
prediction generally requires little architecture investments beyond
an instruction set architecture (ISA) that supports data prefetch-
ing. By contrast, dynamic prediction mechanisms often require
non-trivial architecture modifications [8, 14, 19, 35]. While the
strategies are sometimes effective, they are vulnerable to the irreg-
ular memory access patterns that are common to pointer-heavy ap-
plications where the lack of interaction between the application,
the operating system and the architecture, leads to complex mem-
ory reference patterns that are not amenable to prediction. Conse-
quently, the wrong data is prefetched and resources are wasted.

6.2 Prefetching via Precomputation
Some attractive alternatives to prediction-based prefetching in-

clude precomputation-based strategies [4, 9, 10, 21, 24, 25, 39,
41], where subsets of an application are redundantly executed by
specialized hardware components to provide the information nec-
essary to perform data prefetching. Such precomputation is often
effective in the timely discovery of future memory references, but
at a substantial cost in architectural investments which can include
dedicated micro-engines, threads, or even co-processors. Further-
more, an actual implementation of helper-threads for prefetching
(using a hyperthreaded Pentium 4), has shown that synchronization
costs between the helper-threads and the main program are non-
deterministic, ranging from ten thousand to thirty thousand CPU
cycles, and that it is only with special hardware support that the
overhead can be reduced to a few thousand cycles [21]. This casts
serious challenges on achieving the claims of various helper-thread
techniques. Hence, it is desirable to implement a prefetching strat-
egy capable of acquiring substantial foresight about future memory
reference patterns, but with the architectural complexity of static
prediction techniques. Toward this end, program embedded pre-
computation and sentineled prefetching are two important contri-
butions. The ideas proposed in this paper are applicable in high-end
EPIC architectures as well as in embedded VLIW processors.

6.3 Speculative Execution and Scheduling
Speculative execution was present in some of the earliest dy-

namically scheduled processors [37], and subsequent research [36]
demonstrated that exposing speculative execution to a compiler can
boost the performance of superscalar architectures. Others later
proposed a different scheme for speculative execution that requires
the scheduling of sentinels to guard against exceptions [26]. A
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variant of this scheme was incorporated into the HPL-PD architec-
ture [20] from which the IPF borrowed heavily. The primary aim
of speculative execution as envisioned by previous research was to
improve instruction level parallelism.

Some other related techniques include speculative load instruc-
tions [34], advanced loads that perform dynamic memory disam-
biguation [15], modulo scheduling [33], and load sensitive schedul-
ing [1, 3]. Modulo scheduling is the overlapping of loop iterations
to boost ILP and mask memory latencies. Load sensitive schedul-
ing attempts to maximize the distance between load instructions
and their dependents. The scheduler focuses on memory opera-
tions that are not on the critical path, and it may inject prefetch
instructions when possible.

Our methodology differs from the aforementioned optimizations
in that PEPSE is the redundant execution of program operations for
the purpose of early address generation and prefetching. In PEPSE
we can also target operations that are on the critical path. In cyclic
program regions, the embedded precomputation may prefetch data
several iterations ahead of their actual use. Our methodology also
exploits the available scheduling slots in an already optimized pro-
gram to minimize instruction overhead. In addition, we provide
concrete validation of our optimization using an Itanium 2 machine,
and earlier, we compared our results to software pipelining.

As an experiment, we also compared PEPSE to an in-house im-
plementation of load sensitive scheduling within ORC. The schedul-
ing algorithm leverages memory profiling information to annotate
the dataflow edges between a load and its dependents with the
load’s average miss latency. The annotations enable the sched-
uler to make better scheduling decisions as it tries to maximally
separate load operations from their successors. Our implementa-
tion of a load sensitive scheduler did not yield very significant per-
formance improvements compared to the baseline compiler (i.e.,
ORC with-O3 optimizations). In the best case, the running time of
101.tomcatv (a vectorized mesh generator with lots of ILP) was
reduced by 5%. In the worst case,183.equake ran nearly 10%
slower. For the other benchmarks from the evaluation suite (Ta-
ble 2), there was negligible performance impact (i.e., the running
times differed by less than one percent).

Our proposed sentineled prefetching scheme for EPIC architec-
tures is inspired by previous work on informing memory opera-
tions [16, 17]. However, instead of using the informing load in-
structions to invoke special handling routines upon a cache miss,
we use SPEAR instructions as a way to predicate the execution of
the embedded precomputation chains.

7. CLOSING REMARKS
In this paper we advocate the role of a compiler as an orchestra-

tor of prefetching strategies via speculative and predicated execu-
tion. We propose the concept of program embedded precomputa-
tion via speculative execution (PEPSE) as a new methodology for
data prefetching. PEPSE uses simple and lightweight algorithms
to identify the load dependence chains (LDC) of delinquent loads.
LDCs serve as the building blocks for orchestrating address pre-
computation and prefetching, and represent precomputation chains
that are embedded within host regions of the application—such that
as the program executes, the LDC operations also execute and carry
out address generation and prefetching. Using the Open Research
Compiler (ORC) for the Itanium Processor Family, we demon-
strate that PEPSE is a viable optimization strategy, and delivers as
much as a 38% reduction in execution time when compared to the
ORC optimizations that include software pipelining and prefetch-
ing technology.

We also propose an innovative sentineled prefetching strategy

for EPIC architectures to mitigate some of the PEPSE limitations
in pointer-chasing applications. We refer to the strategy as SPEAR,
and using a cycle accurate simulator, we show that it can also serve
as a viable prefetching strategy. Our extensive simulation and ex-
perimental analysis has shown that not only are both strategies ef-
fective, but there are several important research directions worthy
of pursuit. One idea is combine the predicated and informed nature
of SPEAR operations with the PEPSE concepts to better tailor the
prefetch orchestration to the program. Other research can focus on
the orchestration of cooperative LDCs for the sake of better latency
masking.

We believe that compiler-orchestrated prefetching, via specula-
tion and predication, can effectively mask long memory latencies
with little instruction overhead. Furthermore, we believe the tech-
niques presented in this paper can readily contribute to the perfor-
mance of processors today.
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