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Abstract

Increasingly, file systems for multiprocessors are de-
signed with parallel access to multiple disks, to keep
1/0 from becoming a serious boitleneck for parallel ap-
plications. Although file system software can trans-
parently provide high-performance access to parallel
disks, a new file system interface is needed to facili-
tate parallel access to a file from a parallel application.
We describe the difficulties faced when using the con-
ventional (Uniz-like ) interface in parallel applications,
and then outline ways to extend the conventional inter-
face to provide convenient access to the file for paral-
lel programs, while retaining the traditional interface
for programs that have no need for explicitly paral-
lel file access. Our interface includes a single naming
scheme, a multiopen operation, local and global file
pointers, mapped file pointers, logical records, multi-
files, and logical coercion for backward compatibility.

1 Introduction

Multiprocessors have increased in computational
power to match that of “traditional” vector-processing
supercomputers, and are beginning to be used for pro-
duction supercomputing. Supercomputer applications
often have tremendous file I/O requirements, involving
many megabytes or even gigabytes of data. In some
applications I/O accounts for a significant portion of
the execution time.

The new multiprocessors have renewed interest in
parallel programming methodology. Much attention
has been given to programming languages, environ-
ments, debuggers, operating systems, and support li-
braries, all with the intent of simplifying parallel pro-
gramming and increasing performance. I/O was all
but ignored in many early multiprocessors, with all
I/0O handled by a “host” or “master” processor, cre-
ating a significant bottleneck.! Newer multiprocessors
have disks attached directly to the multiprocessor, and
decluster file data across multiple disks. (Declustering
distributes file data across multiple disks in units of
one bit, byte, or block. Interleaving is a declustering
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1Consider, for example, the earliest BBN Butterfly, Intel
iPSC, Connection Machine, and MasPar computers.

that allocates the bits or blocks in a round-robin or-
dering.) Although this architecture permits parallel
file access, file system software often lacks convenient
parallel access to the parallel disks.

Most existing multiprocessor file systems are based
on the conventional file system interface (which has
operations like open, close, read, write, and seek).
These hide the underlying parallel nature of the file,
providing portability. Although sequential applica-
tions can access parallel file systems with high per-
formance, parallel applications with all processes par-
ticipating in reading or writing the file are more suc-
cessful [19, 18]. To scale without the limitations of
Amdahl’s Law, parallel programs must parallelize file
access.

For concreteness, we use the Unix file system in-
terface [29] as an example of a conventional interface.
Advantages to using the Unix (or similar) interface
for a multiprocessor include application portability,
programmer familiarity, and simplicity. This interface
does not, however, directly support parallel file access.
Thus we propose an extension to the conventional in-
terface, which supports the most common parallel ac-
cess patterns while hiding the details of the underlying
parallel disk structure. It is implementable on both
uniprocessors and multiprocessors, and on single- and
multi-disk systems. Finally, since it is an extension,
it still supports programs ported from other systems,
programmers who do not require the expressive power
of the extended interface, and access via a standard
network file system.

To justify a new interface we argue that the tra-
ditional interface is inadequate, that other attempts
have fallen short, and that our new interface is a bet-
ter solution. First, we give some background.

2 Background

Much of the previous work in I/O hardware paral-
lelism involves disk striping. In this technique, a file is
interleaved across numerous disks and accessed in par-
allel to simultaneously obtain many blocks of the file
with the positioning overhead of one block [30, 16, 24].
All of these schemes rely on a single controller to man-
age all of the disks, and are intended for uniprocessors.

There are two ways to attach multiple disks to a
multiprocessor. The first is to use a striped array of
disks (e.g., a Redundant Array of Inexpensive Disks,
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or RAID [24]), and attach the array’s controller to
a processor or to the interconnection network. The
second 1s to attach independent controllers and disks
to separate processors or ports on the interconnection
network, as shown in Figure 1. In either case files
are declustered over many disks. We call the latter
structure Parallel Independent Disks (PID). Examples
of multiprocessors using a PID architecture include
the Intel [14, 15][, nCUBE [22, 5, 27], and Kendall

Square Research [20] multiprocessors.
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Figure 1: Parallel Independent Disks (PID) in
an MIMD multiprocessor.

3 The workload

Parallel file systems and the applications that use
them are not sufficiently mature for us to know what
access patterns might be typical. Here we define our
expectations for parallel file access patterns in a scien-
tific workload. This is important, since they motivate
many features in our interface. Since we concentrate
on the programmer’s interface to the file system, we
work with file access patterns, rather than disk access
patterns.

In our research we do not investigate read/write file
access patterns, because most files are opened for ei-
ther reading or writing, with few files updated [10, 23].
We expect this to be especially true for the large files
used in scientific applications. Thus, we consider pri-
marily sequential, read-only and write-only patterns
of access to the records of a file.

All sequential patterns consist of a sequence of ac-
cesses to sequential portions. A portion is some num-
ber of contiguous records in the file. Note that the
whole file may be considered one large portion. The
accesses to this portion may be sequential when viewed
from a local perspective, in which a single process ac-
cesses successive records of the portion. We call these
locally sequential access patterns, or just local access
patterns. This is the traditional notion of sequential
access used in uniprocessor file systems.

Alternatively, the pattern of accesses may only look
sequential from a global perspective, in which many
processes share access to the portion, reading disjoint
records of the portion. Typically, these arise from self-
scheduled access to the file [4]. We call these globally
sequential access patterns, or just global access pat-
terns.

Examples of local access patterns include: reading
(or writing) the whole file sequentially; reading large
sequential portions with jumps between portions; di-
viding the file into disjoint segments, with each process
reading (or writing) its own segment sequentially; and
an interleaved pattern where processes access records
in a strictly round-robin ordering. Global access pat-
terns are based on self-scheduled access to records, ei-
ther through the whole file, or within large sequential
portions with jumps between portions.

4 The conventional interface

We use the Unix file system interface as an example
of a conventional interface. The Unix file system inter-
face 1s in increasingly widespread use, even in multi-
processors (e.g., those made by Sequent, Encore, BBN,
Intel, nCUBE, Kendall Square Research, Alliant, Mas-
Par, and Thinking Machines). Note that some of these
implement the Unix file system interface without the
Unix file system or the rest of the Unix operating sys-
tem.

In the Unix file system a file is modeled as an ad-
dressable sequence of bytes (sometimes referred to as
a “seekable stream”). The interface is defined by the
kernel file system calls [29]. The operations provided
are open, create (called creat in Unix), close, read,
write, and seek (called [seek in Unix). The open and
close operations mark the start and end of activity on
a given file. Create creates a file if necessary. Open is
provided a file name and an intention (read, write, ap-
pend, or read-write), and returns a file descriptor that
is used in all of the other operations. Associated with
the file descriptor is an implicit file pointer that main-
tains the current file position. The file pointer is used
and updated by read and write, and reset by scek.
Read and write take a file descriptor, a user buffer,
and a length in bytes, and return the actual number
of bytes read or written (zero at end of file). The data
are transferred from or to the file position indicated by
the file pointer, and the file pointer is updated to point
just after the last byte read or written. Seek requires
a file descriptor, a byte offset, and a mode indicating
that the offset is relative to the beginning of the file, to
the end of the file, or to the current file position. Seek
returns the new file position. Extra features, such as



support for logical records and indexed files, are not
part of the basic Unix file system.

Depending on the particular multiprocessor imple-
mentation of the Unix interface, there are many dif-
ficulties in using the interface to program a parallel
file access pattern. Note that our complaints are not
with Unix specifically, but with the Unix file system
model (which was never intended for a multiproces-
sor environment). We discuss several problems here,
sometimes by considering how one would specify par-
allel file access patterns using the Unix interface.

4.1 Sharing open files

In our model of parallel applications, all processes
that are part of a single parallel program access a com-
mon file. Typically, each process must open the file
independently. This requires all processes to have ac-
cess to the file name and read/write intention. It also
generates many open requests that must be processed
by the file system. Thus, it is both inconvenient and
inefficient to depend on a single-process open opera-
tion. An example is CFS [25].

Note that with Unix process semantics, not neces-
sarily included in a system supporting Unix-like file
semantics, a file open at the time of a fork 1s also
open in the new process created by the fork ([21], page
175). They also share the same file pointer. For sys-
tems supporting this or some other form of open-file
inheritance, the multitude of single-process open op-
erations can be avoided. It is, however, limited to files
open before the fork, and thus to closely related pro-
cess groups. It is not a general-purpose mechanism
for opening files in arbitrary process groups. In Unix
4.3BSD, an open file can be shared with an arbitrary
process by passing it through a Unix-domain socket
([21], page 175), although this mechanism is compli-
cated.

4.2 Self-scheduled access

Global access patterns arise when the processes
read or write the file in a self-scheduled order. The
ideal mechanism for this is a file pointer that is shared
by all processes, and atomically updated by the read
and write operations. Although some versions of
Unix do have shared file pointers, there is not enough
concurrency control in most implementations of this
mechanism to make accesses to the shared file pointer
atomic.? Unix 4.3BSD supports an atomic-append
mode ([21], page 174), which handles one common
case, but not the general case.

A general self-scheduled access order can be imple-
mented using only the Unix file system semantics. A
shared counter is used to indicate the next byte of the
file to be read or written. The counter is atomically in-
cremented by the length of the record a process wishes
to read (write), using a fetch-and-add operator.® The

20mne would expect the individual read and write operations
to be atomic, but we found that this was not always true. File
locking is supported by some Unix versions, and could be used
to enforce atomic access.

3Fetch-and-add is described in [12]. Note that it can, if nec-
essary, be implemented on top of an existing lock primitive.

original value of the counter, obtained from the fetch-
and-add, is used in a seek operation, which 1s fol-
lowed by the read or write. There are three problems
with this implementation. First, it requires shared
memory.* Second, it requires care by the programmer
to properly maintain the atomicity of the overall oper-
ation. Third, the record length must be known in ad-
vance, which is difficult when reading variable-length
records. This case requires either a separate record
index or more serialization. Note that a strictly inter-
leaved pattern, which is (in some sense) a special case
of the self-scheduled pattern, avoids the shared mem-
ory requirement, the fetch-and-add, and some of the
atomicity problems, but still forces the user to com-
pute file positions for seck. It also has the problem
with variable-length records. Finally, if the global pat-
tern has sequential portions, additional synchroniza-
tion is needed to detect the end of a portion, to choose
the next portion, and to reset the shared counter used
above.

4.3 Declustering

We assume that each file is declustered across many
disks in the system. If the file system does not main-
tain the declustering information for each file, forcing
the programmer to specify the set of disks, disk files, or
disk blocks, then transparency is lost and the interface
is much harder to use. An example of this situation
is in [3]. Another example is the nCUBE file system
prior to 1992, which does not distribute a single file
across disks [27]. We believe that it is important to
have a single name (e.g., Unix pathname) that defines
the parallel file, and to leave the rest to the file system.

4.4 Segmented files

Consider programming the read-only segmented ac-
cess pattern. In this pattern, the file is divided into
disjoint segments, one per process. Each process must
open the file, then locate and read its segment. The
process (or some master process) must find the length
of the file, use the length to compute the length of the
segments, determine the segment it is to read, seek to
the beginning of its segment, and read bytes of the file
until the end of its segment is reached. If the division
into segments is a simple matter of dividing the file
length by the number of processes, then little work is
needed. If, however, the file contains logical records,
care must be used to divide the file at record bound-
aries. Another problem is assigning segments to pro-
cesses, which may be facilitated by a shared counter
or by predetermined process identifiers.

Now consider programming the write-only seg-
mented access pattern. Here, each process writes a
separate segment of the file. The assignment of seg-
ments to processes is similar to the read-only case,
but this time it is much more difficult to determine
the starting position and length of each segment. Un-
less the eventual length of each segment is known in
advance, the starting positions of the segments are im-

4 Although a shared counter could be implemented by send-
ing messages to a “master” process, this is not likely to be
efficient.



possible to compute.

4.5 Buffering

User-level buffering, such as that in the Unix stdio
interface, can lead to incorrect results. If the user-level
buffers are allocated on a per-process, per-file basis,
then buffer consistency problems arise. For example,
one process writes some data to a file, but the data
remains in the user-level buffer. Another process then
tries to read that part of the file, and receives outdated
data since it (and the file system) has no knowledge of
the new data in the first process’s buffer. Thus, any
user-level buffering must be carefully integrated with
the file system caching mechanism.

4.6 Summary

Overall, the Unix file system interface and seman-
tics either cannot support our expected parallel /0
access patterns, or can only support them with great
difficulty. Programmers need a higher-level interface
to easily take advantage of parallel 1/0.

5 Existing multiprocessor file system
interfaces

Several researchers have discussed parallel 1/0 in-
terfaces for MIMD multiprocessors. Dibble, in his de-
sign of the Bridge file system [8], defines three inter-
faces: standard, which is essentially our conventional
interface; parallel open, in which a control process is-
sues all the read and write requests, automatically
transferring one record in or out of every process; and
tools. Tools have access to the local file systems of each
disk, allowing the data on each disk to be handled by
the attached processor, minimizing data flow in the
processor interconnection network. The standard in-
terface is there for compatibility, the tools for perfor-
mance, and the parallel-open interface for a compro-
mise.

Intel’s file system for their iPSC/2 and iPSC/860
multiprocessors, CFS [25], also provides three inter-
faces [2]: standard (conventional); random-sequential
access, which uses a self-scheduled shared file pointer
(allowing atomic append); and coordinated, which is
for interleaved access with either a fixed or variable
record size. CFS forces each process to open the file
independently. This is particularly difficult when cre-
ating a file: one process creates the file, all processes
synchronize at a barrier, and then the others open the
file. The file system for the newer Intel Paragon ap-
pears to be a Unix file system, based on the OSF/1
operating system [15], although CFS access modes are
still available.

Another parallel file system is based on ways to lay
out a file on parallel disks [4, 3]. One interface pro-
vides self-scheduled access with a shared file pointer.
Another provides individual file pointers. A unified
access mode provides the standard interface for com-
patibility. One deficiency in this interface is that the
user must supply a list of disks to the open operation.

The original file system for the nCUBE hypercube
multiprocessor [27] is primitive, in the sense that each
disk has a local file system independent of the others,

and no global file system is provided. In a new nCUBE
file system [6, 5, 7], designed around the Unix model,
each process specifies a mapping from the bytes of the
file to the bytes in its own access stream. The file sys-
tem specifies a similar mapping, from the bytes in the
file to positions on the disks. The combination of these
mappings provides routing information for each byte
in the file, and a convenient renumbering of the bytes
from the programmer’s point of view. This mecha-
nism 1s extended to pipes between parallel programs
and to graphics output. Self-scheduled global access
1s not possible.

The CUBIX file system for the CrOS system on
hypercubes [11] connects a sequential file server on a
host processor to a parallel application program on the
hypercube. It has two interfaces: singular, in which
all processes simultaneously write the same data, and
multiple, in which variable-length records are inter-
leaved by process. Variable-length records are buffered
until complete, then atomically written to the file.

To the best of our knowledge, the interface on the
BBN, Sequent, and Encore multiprocessors is simply
the conventional interface.

The Kendall Square Research KSR1 multiproces-
sor [20] uses a PID structure with a RAID attached
to individual processors. Files are mapped into the
shared memory address space and accessed with nor-
mal memory operations. While memory-mapped files
have many advantages, they have many disadvantages
as a general solution. Unless the address space is seg-
mented, writing segmented files may be difficult. Files
typically have different access patterns than virtual
memory, possibly requiring different memory manage-
ment techniques [1]. If files are mapped into a dis-
tributed shared memory (DSM) system, consistency
protocols may need adjustment (since they are nor-
mally designed for virtual memory access patterns).
Indeed, many operating systems for distributed mem-
ory machines do not support DSM, and thus could not
easily support memory-mapped files.

Grimshaw, Loyot, and Prem [13] outline an ex-
tensible object-oriented interface based on a simple
low-level, Unix-like file system interface. The object-
oriented front-end encapsulates access methods,
caching, prefetching, and file layout in application-
specific ways. They focus on providing the mechanism
without specifying particular access methods. This
scheme has a lot of promise, but does not solve all of
the problems we have mentioned (for example, the seg-
mented file problem, which must be supplied by the
low-level file system). Our interface ideas could be
combined with their framework to provide a powerful,
extensible interface.

It is not possible in any of these interfaces to write
segmented files without foreknowledge of the segment
size.

Some of these issues may be addressed with the ca-
pabilities of the Plan 9 system [26, 28], particularly
the support for per-process name spaces. Thus, to
solve the segmented file problem in Plan 9, described
in Section 4.4, each process would bind the name foo
to the file foo/#, where # 1s the process’s unique id
number within the parallel application. Thus, each



segment of the file is actually a separate file, but
the application opening this file (once the names are
bound) sees a single file name. Applications not un-
derstanding this binding, on the other hand, would not
be able to access the file as a whole. This relatively
crude technique could also be done with a library in
traditional Unix.

6 Our proposed interface

We have shown that the conventional interface 1s in-
convenient for parallel programming, and pointed out
some problems with other proposals. Now we out-
line the concepts behind our proposed interface; exact
syntax is language and system dependent and thus is
not considered here. Each concept directly addresses
one or more of the problems outlined in the previous
sections.

6.1 Concepts

Directory Structure. There should be a single file-
naming directory structure for the entire parallel file
system. The user should not have to specify the list
of disks involved [3] or the list of local disk files [27]
when opening a file. The name structure should be the
same for parallel applications as for sequential appli-
cations (such as file-maintenance and directory-listing
tools). For maximum portability and interoperability,
it should appear to be a Unix file system.

Multiopen. For afile to be accessed by all processes
in an application, it must somehow be opened for all
processes in that application. It is inconvenient and
inefficient for every process to open the file indepen-
dently. We should not depend on open-file inheritance
(as part of process creation), which is limited to files
that are open before the processes are created, to pro-
cess groups that are created from one master process,
and to systems that have open-file inheritance.

We propose adding a multiopen operation, which
opens the file for the entire parallel application when
run from any process in the application. This as-
sumes a way to group the processes into an “appli-
cation” | presumably more general than the set of chil-
dren of one parent process. Most significantly, the
multiopen 1s executed after the process group exists,
so the group is not limited to pre-opened files. In
most applications the multiopen would be executed in
the “master” process. Multiopen opens the file only
once, avoiding repeated directory searches and other
overhead, and gives each process in the application
its own file descriptor (through some implementation-
dependent mechanism, e.g., shared memory; Symunix
IT supports a pdup system call [9]). If processes may
join the process group, then they must be able to ac-
cess previously-opened files, and participate in future
multiopens. Multiopen can optionally create a file if it
does not exist.

File pointer. When a file is opened with multiopen,
the programmer specifies whether the file pointer
should be local (providing each process with an in-
dependent, local file pointer), or global (providing a
single shared file pointer for all processes). These two
choices correspond directly to local and global access

patterns. A global file pointer provides the synchro-
nization needed to implement global file access pat-
terns: a read or write operation on a global file pointer
combines the transfer and file pointer update into a
single atomic action, facilitating self-scheduled access
patterns. Either type of file pointer can be changed
with the seek operation.

A process has no control over exactly which record
is read or written when it uses read or write on a
global file pointer. Since it may need to know the
position of the transfer, the original value of the file
pointer should be returned after the transfer is com-
plete, along with the number of bytes transferred. For
compatibility, we do not change the interface of read
and write. We define the readp and writep operations,
which are the same as read and write, respectively,
except that they also return the original file pointer
position.

Mapped File Pointers. One of the advantages of
the nCUBE’s mapping functions [5] is their ability to
remap the address space of the whole file into smaller,
contiguous address spaces for each process. Their
mapping function maps from (process, pointer) to (po-
sition). Fach process then sees a single byte stream,
indexed by its file pointer, whereas the file is indexed
by position.

We propose to specify a mapping function for each
file pointer, mapping from (pointer) to (position).
Thus, a global file pointer has one mapping function,
and local file pointers have one mapping function per
process. The actual file position is computed as a func-
tion of the current file pointer and a parameter:

file position = f(pointer, parameter)

This function, and its parameter, are either provided
as part of the multiopen operation or through a sep-
arate interface. Mapping functions may be changed
while the file is open. The function is called on ev-
ery file access, to perform the mapping. It i1s provided
with the file pointer, the parameter, the file descriptor,
the operation (read or write), and length. It returns
the file position. Built-in functions are also available.
For example, interleaved, which has the record size
as a parameter, defines a round-robin pattern of ac-
cess to records. Each process remaps the appropriate
records into a single byte stream, accessed by its local
file pointer. This is probably the most important use
for mapped file pointers. Another built-in function’s
parameter is a pointer to a table or list. For exam-
ple, sequential portions (if known in advance) could
be specified in a list. The application then appears to
read a single byte stream, although actually reading a
collection of portions. This is most useful for handling
portions in global patterns.

Note that this mechanism simply maps a file pointer
to a file position, and does not directly specify a map-
ping from process to position, as in the nCUBE map-
pings. A given file position may be mapped by any
number of processes (including zero). Also note that
self-scheduled access, through a global file pointer, is
still possible.



Logical Records. Dibble [8] argues for direct sup-
port for logical records in the file system. The Unix
file system does not have any built-in support for log-
ical records, in contrast to some traditional systems
(typlﬁed by commercial mainframes). Such support
increases the complexity of the file system, but there
are good reasons for logical record support in a paral-
lel file system, even when not supported in a similar
uniprocessor file system:

e The record support can be combined with global
file pointer synchronization to provide atomic op-
erations for reading and writing records. This
is particularly useful if the records have variable
length.

e By understanding logical records, the file system
can avoid splitting a record over two blocks. This
increases concurrency in some parallel access pat-
terns [17]. Tt can also increase performance in ran-
dom access patterns (at the cost of wasted space).

In our interface, then, we divide the files into byte
files and record files. The file type is an attribute of
the file. All references to “position” in a record file are
record numbers instead of byte offsets. This affects the
read, readp, write, writep, seek, and file pointer map-
ping operations. Fixed-size logical records are trivial
to support, since the location of any record is eas-
ily calculated from the record number. Variable-sized
records are more difficult, since an implementation
must be able to atomically read the next record and
update the file pointer, with high concurrency. Intel
CFS and CUBIX support interleaved file writing with
variable-sized records, which solves a similar problem.

Multifiles. In most parallel programs, a data set is
divided among the processes in the program. In the
conventional file system, however, a single data set is
usually represented as a single file. For a parallel pro-
gram to use a conventional file system, the individual
process subsets of the data set must either be com-
bined into one file or stored in separate files, one per
process. Neither option is convenient, as we show in
our examples in Section 4.4. We provide a new type
of file called a multifile for these situations. To the file
system a multifile is a single file, with one directory
entry, but it is different from a plain (conventional)
file in that i1t 1s not a single sequence of bytes. In-
stead, 1t is a collection of subfiles, each of which is
a separate sequence of bytes. A multifile is created
by a parallel program with a certain number of sub-
files, usually equal to the number of processes in the
program. Each process writes its own subfile. Later,
when the multifile is opened for reading, each process
reads its own subfile.® Each process has the illusion
of reading an independent small file, since each subfile
is independently addressed with its own first byte and
end-of-file marker. Each subfile can be extended or
truncated without affecting the addressing in any of
the others. Thus, a multifile combines the advantages

5Note that a multifile implies local file pointers. File pointer
mappings apply within subfiles, not across subfiles.

of a single file (single name for a single data set) with
those of multiple files (independently addressable and
extendible, easily located beginning and end).

Note that a multifile cannot be easily simulated on
top of a conventional file system. Storing it as multiple
files clutters up the directories (for example, on the
CM-5 [31]), and storing it as a single file limits the
extensibility of each subfile, due to the linear address
space provided by the conventional file.

When opening an existing multifile, an optional
mapping (unrelated to file pointer mapping) may be
specified that indicates the assignment of subfiles to
processes. With the default mapping, the number of
subfiles must match the number of processes, and a
one-to-one mapping is used. With a user-specified
mapping, there is no requirement on the number of
processes. In fact, the mapping may specify that some
subfiles are not used, or that some processes have
no subfile. For applications that want to manipulate
many subfiles with few processes, we provide an oper-
ation usesubfile(z) that switches the mapping for the
calling process to subfile . When created, the sub-
files are logically numbered according to the logical
ordering of the processes creating them.

Multifiles are most useful between parallel pro-
grams, so data can be written as separate subsets and
later read as separate subsets. They are also useful for
output intended for sequential programs. An example
is a single file that contains debugging output, with a
separate subfile for each process.

Type Coercion. Our file system interface supports

four file types:

byte record
plain | byte plain file | record plain file
multifile [ byte mulfifile | record mulftifile

Note that the “byte plain file” is the same as conven-
tional files. Every file in the file system is stored as
one of these four types. These file types also represent
four access modes that can be specified at the time
the file is opened. For compatibility, all files in the file
system can be read as a byte plain file. In fact, for
convenience we allow any file to be read in any mode,
with the file system coercing the stored file into that
mode. Note that coercion is just a mapping operation;
the stored file does not change. Files may be opened
for writing in the mode corresponding to their type,
or be coerced to plain byte files.

Although most coercions are done transparently,
some applications may want to adjust themselves to
the stored file type. The type operation can be used to
request information about file type (plain or multifile,
byte or record). This operation may be merged with
existing mechanisms that query other file attributes
(stat in Unix).

To coerce a record file into a byte file, we ignore
record boundaries, fragmentation overhead (empty
space in blocks), and any other overhead, such as
length fields or indexes. To coerce a byte file into a
record file, the user provides either a fixed record size
or a record delimiter character (e.g., newline). The



details depend on the particular implementation of
records.

To coerce a multifile into a plain file, the subfiles are
logically concatenated together to form the illusion of
one long file, using the numbering defined on subfiles.®
A plain file can also be coerced into a multifile. This
is a useful way to divide a file’s data into contiguous
chunks for a variable number of processes. The user
specifies the desired number of subfiles (usually the
number of processes), and the file is divided roughly
evenly among the subfiles, with each subfile assigned
a contiguous portion of the original file. If the file
is a byte file, the division is by bytes; if the file is a
record file, or coerced into a record file, the division is
made at record boundaries. In any case, the end of a
coerced subfile appears as an end-of-file to the process
assigned to the subfile.

Coercing writable files is difficult. We allow coer-
cion to byte plain files only, since the semantics of
the other coercions are unclear. This allows normal
programs to write to multifiles and to record files,
although we suspect that such writing would not be
common. If a multifile is coerced to a plain file, the
subfiles are logically concatenated into a single file.
Appends (anything written past the end of file) affect
the last subfile, and overwrites affect the correspond-
ing positions in the corresponding subfiles. If coercing
a record file to a byte file, record boundaries are ig-
nored for overwrites, and each write appending to the
file creates a new record.

Although some of the semantics of coercion appear
stretched, coercion makes multifiles a viable part of a
file system that 1s still compatible with traditional file
systems. It also makes the power of multifiles available
for conventionally stored files.

6.2 Implications

Within the interface, there are many synchroniza-
tion issues. In particular, the support of global file
access patterns requires atomic access to a shared
file pointer. This is particularly complicated if the
file-pointer update involves a user-defined file-pointer
mapping, or finding the length of the next logi-
cal record. The latter may require reading data
from disk, unless there is a separate record index.
Global file pointers are particularly difficult in a
distributed-memory system. By loosening semantics,
self-scheduled access can be provided in parallel by
using an interleaved file pointer until EOF is reached
by some process, then rebalancing the load through
negotiations between file servers.

Unix-like file access remains, with the original open,
read, write, seek, and close calls, using coercion to
provide byte-stream semantics to all files. This also
allows the parallel file system to be accessed remotely.
Network file access (e.g., NFS) is supported through
coercion to byte plain files. Only byte plain files can
be created through NFS. Tools (variants of rcp, for

6 An alternative is to logically interleave records of the sub-
files, but this depends on the subfile being broken into records,
and the semantics of the file so that interleaving makes sense.
Certainly, this could be an option.

example) should be created for receiving a file from
the network and writing multifiles or record files.

Multifiles can be represented on disk much as direc-
tories are now, except that each subfile has a number
rather than a name. Supporting multifilesis thus quite
easy, given support for local file pointers. Coercion is
a little more difficult, but can be done with internal
pointer mapping operations.

7 Summary

A new file system interface is necessary for conve-
nient parallel file access. Our proposed interface al-
lows for parallel open (with multiopen), synchroniza-
tion for global file access patterns, mapped file point-
ers, support for logical records, and a new file organi-
zation (multifiles). All of the new features are com-
patible with the conventional interface, so that a file
can be used by sophisticated, high-performance par-
allel applications, by general-purpose sequential file-
maintenance tools, and by remote systems through a
network file system. This interface makes the task
of programming parallel file applications much easier,
and thus should also increase application performance.

Future work involves implementing and testing
these 1deas, considering SIMD interfaces, and a work-
load study to determine the types of access patterns
actually used by parallel applications.
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