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Multiprocessor File System Interfaces�David KotzDepartment of Math and Computer ScienceDartmouth CollegeHanover, NH 03755-3551David.Kotz@Dartmouth.eduAbstractIncreasingly, �le systems for multiprocessors are de-signed with parallel access to multiple disks, to keepI/O from becoming a serious bottleneck for parallel ap-plications. Although �le system software can trans-parently provide high-performance access to paralleldisks, a new �le system interface is needed to facili-tate parallel access to a �le from a parallel application.We describe the di�culties faced when using the con-ventional (Unix-like) interface in parallel applications,and then outline ways to extend the conventional inter-face to provide convenient access to the �le for paral-lel programs, while retaining the traditional interfacefor programs that have no need for explicitly paral-lel �le access. Our interface includes a single namingscheme, a multiopen operation, local and global �lepointers, mapped �le pointers, logical records, multi-�les, and logical coercion for backward compatibility.1 IntroductionMultiprocessors have increased in computationalpower to match that of \traditional" vector-processingsupercomputers, and are beginning to be used for pro-duction supercomputing. Supercomputer applicationsoften have tremendous �le I/O requirements, involvingmany megabytes or even gigabytes of data. In someapplications I/O accounts for a signi�cant portion ofthe execution time.The new multiprocessors have renewed interest inparallel programming methodology. Much attentionhas been given to programming languages, environ-ments, debuggers, operating systems, and support li-braries, all with the intent of simplifying parallel pro-gramming and increasing performance. I/O was allbut ignored in many early multiprocessors, with allI/O handled by a \host" or \master" processor, cre-ating a signi�cant bottleneck.1 Newer multiprocessorshave disks attached directly to the multiprocessor, anddecluster �le data across multiple disks. (Declusteringdistributes �le data across multiple disks in units ofone bit, byte, or block. Interleaving is a declustering�This research was supported in part by startup researchfunds from Dartmouth College and by DARPA/NASA subcon-tract of NCC2-560.1Consider, for example, the earliest BBN Buttery, InteliPSC, Connection Machine, and MasPar computers.

that allocates the bits or blocks in a round-robin or-dering.) Although this architecture permits parallel�le access, �le system software often lacks convenientparallel access to the parallel disks.Most existing multiprocessor �le systems are basedon the conventional �le system interface (which hasoperations like open, close, read, write, and seek).These hide the underlying parallel nature of the �le,providing portability. Although sequential applica-tions can access parallel �le systems with high per-formance, parallel applications with all processes par-ticipating in reading or writing the �le are more suc-cessful [19, 18]. To scale without the limitations ofAmdahl's Law, parallel programs must parallelize �leaccess.For concreteness, we use the Unix �le system in-terface [29] as an example of a conventional interface.Advantages to using the Unix (or similar) interfacefor a multiprocessor include application portability,programmer familiarity, and simplicity. This interfacedoes not, however, directly support parallel �le access.Thus we propose an extension to the conventional in-terface, which supports the most common parallel ac-cess patterns while hiding the details of the underlyingparallel disk structure. It is implementable on bothuniprocessors and multiprocessors, and on single- andmulti-disk systems. Finally, since it is an extension,it still supports programs ported from other systems,programmers who do not require the expressive powerof the extended interface, and access via a standardnetwork �le system.To justify a new interface we argue that the tra-ditional interface is inadequate, that other attemptshave fallen short, and that our new interface is a bet-ter solution. First, we give some background.2 BackgroundMuch of the previous work in I/O hardware paral-lelism involves disk striping. In this technique, a �le isinterleaved across numerous disks and accessed in par-allel to simultaneously obtain many blocks of the �lewith the positioning overhead of one block [30, 16, 24].All of these schemes rely on a single controller to man-age all of the disks, and are intended for uniprocessors.There are two ways to attach multiple disks to amultiprocessor. The �rst is to use a striped array ofdisks (e.g., a Redundant Array of Inexpensive Disks,



or RAID [24]), and attach the array's controller toa processor or to the interconnection network. Thesecond is to attach independent controllers and disksto separate processors or ports on the interconnectionnetwork, as shown in Figure 1. In either case �lesare declustered over many disks. We call the latterstructure Parallel Independent Disks (PID). Examplesof multiprocessors using a PID architecture includethe Intel [14, 15], nCUBE [22, 5, 27], and KendallSquare Research [20] multiprocessors.
NetworkMemoryProcessorMemoryProcessorMemoryProcessorDiskDiskDiskFigure 1: Parallel Independent Disks (PID) inan MIMD multiprocessor.3 The workloadParallel �le systems and the applications that usethem are not su�ciently mature for us to know whataccess patterns might be typical. Here we de�ne ourexpectations for parallel �le access patterns in a scien-ti�c workload. This is important, since they motivatemany features in our interface. Since we concentrateon the programmer's interface to the �le system, wework with �le access patterns, rather than disk accesspatterns.In our research we do not investigate read/write �leaccess patterns, because most �les are opened for ei-ther reading or writing, with few �les updated [10, 23].We expect this to be especially true for the large �lesused in scienti�c applications. Thus, we consider pri-marily sequential, read-only and write-only patternsof access to the records of a �le.

All sequential patterns consist of a sequence of ac-cesses to sequential portions. A portion is some num-ber of contiguous records in the �le. Note that thewhole �le may be considered one large portion. Theaccesses to this portion may be sequential when viewedfrom a local perspective, in which a single process ac-cesses successive records of the portion. We call theselocally sequential access patterns, or just local accesspatterns. This is the traditional notion of sequentialaccess used in uniprocessor �le systems.Alternatively, the pattern of accesses may only looksequential from a global perspective, in which manyprocesses share access to the portion, reading disjointrecords of the portion. Typically, these arise from self-scheduled access to the �le [4]. We call these globallysequential access patterns, or just global access pat-terns.Examples of local access patterns include: reading(or writing) the whole �le sequentially; reading largesequential portions with jumps between portions; di-viding the �le into disjoint segments, with each processreading (or writing) its own segment sequentially; andan interleaved pattern where processes access recordsin a strictly round-robin ordering. Global access pat-terns are based on self-scheduled access to records, ei-ther through the whole �le, or within large sequentialportions with jumps between portions.4 The conventional interfaceWe use the Unix �le system interface as an exampleof a conventional interface. The Unix �le system inter-face is in increasingly widespread use, even in multi-processors (e.g., those made by Sequent, Encore, BBN,Intel, nCUBE, Kendall Square Research, Alliant, Mas-Par, and Thinking Machines). Note that some of theseimplement the Unix �le system interface without theUnix �le system or the rest of the Unix operating sys-tem.In the Unix �le system a �le is modeled as an ad-dressable sequence of bytes (sometimes referred to asa \seekable stream"). The interface is de�ned by thekernel �le system calls [29]. The operations providedare open, create (called creat in Unix), close, read,write, and seek (called lseek in Unix). The open andclose operations mark the start and end of activity ona given �le. Create creates a �le if necessary. Open isprovided a �le name and an intention (read, write, ap-pend, or read-write), and returns a �le descriptor thatis used in all of the other operations. Associated withthe �le descriptor is an implicit �le pointer that main-tains the current �le position. The �le pointer is usedand updated by read and write, and reset by seek.Read and write take a �le descriptor, a user bu�er,and a length in bytes, and return the actual numberof bytes read or written (zero at end of �le). The dataare transferred from or to the �le position indicated bythe �le pointer, and the �le pointer is updated to pointjust after the last byte read or written. Seek requiresa �le descriptor, a byte o�set, and a mode indicatingthat the o�set is relative to the beginning of the �le, tothe end of the �le, or to the current �le position. Seekreturns the new �le position. Extra features, such as



support for logical records and indexed �les, are notpart of the basic Unix �le system.Depending on the particular multiprocessor imple-mentation of the Unix interface, there are many dif-�culties in using the interface to program a parallel�le access pattern. Note that our complaints are notwith Unix speci�cally, but with the Unix �le systemmodel (which was never intended for a multiproces-sor environment). We discuss several problems here,sometimes by considering how one would specify par-allel �le access patterns using the Unix interface.4.1 Sharing open �lesIn our model of parallel applications, all processesthat are part of a single parallel program access a com-mon �le. Typically, each process must open the �leindependently. This requires all processes to have ac-cess to the �le name and read/write intention. It alsogenerates many open requests that must be processedby the �le system. Thus, it is both inconvenient andine�cient to depend on a single-process open opera-tion. An example is CFS [25].Note that with Unix process semantics, not neces-sarily included in a system supporting Unix-like �lesemantics, a �le open at the time of a fork is alsoopen in the new process created by the fork ([21], page175). They also share the same �le pointer. For sys-tems supporting this or some other form of open-�leinheritance, the multitude of single-process open op-erations can be avoided. It is, however, limited to �lesopen before the fork, and thus to closely related pro-cess groups. It is not a general-purpose mechanismfor opening �les in arbitrary process groups. In Unix4.3BSD, an open �le can be shared with an arbitraryprocess by passing it through a Unix-domain socket([21], page 175), although this mechanism is compli-cated.4.2 Self-scheduled accessGlobal access patterns arise when the processesread or write the �le in a self-scheduled order. Theideal mechanism for this is a �le pointer that is sharedby all processes, and atomically updated by the readand write operations. Although some versions ofUnix do have shared �le pointers, there is not enoughconcurrency control in most implementations of thismechanism to make accesses to the shared �le pointeratomic.2 Unix 4.3BSD supports an atomic-appendmode ([21], page 174), which handles one commoncase, but not the general case.A general self-scheduled access order can be imple-mented using only the Unix �le system semantics. Ashared counter is used to indicate the next byte of the�le to be read or written. The counter is atomically in-cremented by the length of the record a process wishesto read (write), using a fetch-and-add operator.3 The2One would expect the individual read and write operationsto be atomic, but we found that this was not always true. Filelocking is supported by some Unix versions, and could be usedto enforce atomic access.3Fetch-and-add is described in [12]. Note that it can, if nec-essary, be implemented on top of an existing lock primitive.

original value of the counter, obtained from the fetch-and-add, is used in a seek operation, which is fol-lowed by the read or write. There are three problemswith this implementation. First, it requires sharedmemory.4 Second, it requires care by the programmerto properly maintain the atomicity of the overall oper-ation. Third, the record length must be known in ad-vance, which is di�cult when reading variable-lengthrecords. This case requires either a separate recordindex or more serialization. Note that a strictly inter-leaved pattern, which is (in some sense) a special caseof the self-scheduled pattern, avoids the shared mem-ory requirement, the fetch-and-add, and some of theatomicity problems, but still forces the user to com-pute �le positions for seek . It also has the problemwith variable-length records. Finally, if the global pat-tern has sequential portions, additional synchroniza-tion is needed to detect the end of a portion, to choosethe next portion, and to reset the shared counter usedabove.4.3 DeclusteringWe assume that each �le is declustered across manydisks in the system. If the �le system does not main-tain the declustering information for each �le, forcingthe programmer to specify the set of disks, disk �les, ordisk blocks, then transparency is lost and the interfaceis much harder to use. An example of this situationis in [3]. Another example is the nCUBE �le systemprior to 1992, which does not distribute a single �leacross disks [27]. We believe that it is important tohave a single name (e.g., Unix pathname) that de�nesthe parallel �le, and to leave the rest to the �le system.4.4 Segmented �lesConsider programming the read-only segmented ac-cess pattern. In this pattern, the �le is divided intodisjoint segments, one per process. Each process mustopen the �le, then locate and read its segment. Theprocess (or some master process) must �nd the lengthof the �le, use the length to compute the length of thesegments, determine the segment it is to read, seek tothe beginning of its segment, and read bytes of the �leuntil the end of its segment is reached. If the divisioninto segments is a simple matter of dividing the �lelength by the number of processes, then little work isneeded. If, however, the �le contains logical records,care must be used to divide the �le at record bound-aries. Another problem is assigning segments to pro-cesses, which may be facilitated by a shared counteror by predetermined process identi�ers.Now consider programming the write-only seg-mented access pattern. Here, each process writes aseparate segment of the �le. The assignment of seg-ments to processes is similar to the read-only case,but this time it is much more di�cult to determinethe starting position and length of each segment. Un-less the eventual length of each segment is known inadvance, the starting positions of the segments are im-4Although a shared counter could be implemented by send-ing messages to a \master" process, this is not likely to bee�cient.



possible to compute.4.5 Bu�eringUser-level bu�ering, such as that in the Unix stdiointerface, can lead to incorrect results. If the user-levelbu�ers are allocated on a per-process, per-�le basis,then bu�er consistency problems arise. For example,one process writes some data to a �le, but the dataremains in the user-level bu�er. Another process thentries to read that part of the �le, and receives outdateddata since it (and the �le system) has no knowledge ofthe new data in the �rst process's bu�er. Thus, anyuser-level bu�ering must be carefully integrated withthe �le system caching mechanism.4.6 SummaryOverall, the Unix �le system interface and seman-tics either cannot support our expected parallel I/Oaccess patterns, or can only support them with greatdi�culty. Programmers need a higher-level interfaceto easily take advantage of parallel I/O.5 Existing multiprocessor �le systeminterfacesSeveral researchers have discussed parallel I/O in-terfaces for MIMD multiprocessors. Dibble, in his de-sign of the Bridge �le system [8], de�nes three inter-faces: standard, which is essentially our conventionalinterface; parallel open, in which a control process is-sues all the read and write requests, automaticallytransferring one record in or out of every process; andtools. Tools have access to the local �le systems of eachdisk, allowing the data on each disk to be handled bythe attached processor, minimizing data ow in theprocessor interconnection network. The standard in-terface is there for compatibility, the tools for perfor-mance, and the parallel-open interface for a compro-mise.Intel's �le system for their iPSC/2 and iPSC/860multiprocessors, CFS [25], also provides three inter-faces [2]: standard (conventional); random-sequentialaccess, which uses a self-scheduled shared �le pointer(allowing atomic append); and coordinated, which isfor interleaved access with either a �xed or variablerecord size. CFS forces each process to open the �leindependently. This is particularly di�cult when cre-ating a �le: one process creates the �le, all processessynchronize at a barrier, and then the others open the�le. The �le system for the newer Intel Paragon ap-pears to be a Unix �le system, based on the OSF/1operating system [15], although CFS access modes arestill available.Another parallel �le system is based on ways to layout a �le on parallel disks [4, 3]. One interface pro-vides self-scheduled access with a shared �le pointer.Another provides individual �le pointers. A uni�edaccess mode provides the standard interface for com-patibility. One de�ciency in this interface is that theuser must supply a list of disks to the open operation.The original �le system for the nCUBE hypercubemultiprocessor [27] is primitive, in the sense that eachdisk has a local �le system independent of the others,

and no global �le system is provided. In a new nCUBE�le system [6, 5, 7], designed around the Unix model,each process speci�es a mapping from the bytes of the�le to the bytes in its own access stream. The �le sys-tem speci�es a similar mapping, from the bytes in the�le to positions on the disks. The combination of thesemappings provides routing information for each bytein the �le, and a convenient renumbering of the bytesfrom the programmer's point of view. This mecha-nism is extended to pipes between parallel programsand to graphics output. Self-scheduled global accessis not possible.The CUBIX �le system for the CrOS system onhypercubes [11] connects a sequential �le server on ahost processor to a parallel application program on thehypercube. It has two interfaces: singular, in whichall processes simultaneously write the same data, andmultiple, in which variable-length records are inter-leaved by process. Variable-length records are bu�ereduntil complete, then atomically written to the �le.To the best of our knowledge, the interface on theBBN, Sequent, and Encore multiprocessors is simplythe conventional interface.The Kendall Square Research KSR1 multiproces-sor [20] uses a PID structure with a RAID attachedto individual processors. Files are mapped into theshared memory address space and accessed with nor-mal memory operations. While memory-mapped �leshave many advantages, they have many disadvantagesas a general solution. Unless the address space is seg-mented, writing segmented �les may be di�cult. Filestypically have di�erent access patterns than virtualmemory, possibly requiring di�erent memory manage-ment techniques [1]. If �les are mapped into a dis-tributed shared memory (DSM) system, consistencyprotocols may need adjustment (since they are nor-mally designed for virtual memory access patterns).Indeed, many operating systems for distributed mem-ory machines do not support DSM, and thus could noteasily support memory-mapped �les.Grimshaw, Loyot, and Prem [13] outline an ex-tensible object-oriented interface based on a simplelow-level, Unix-like �le system interface. The object-oriented front-end encapsulates access methods,caching, prefetching, and �le layout in application-speci�c ways. They focus on providing the mechanismwithout specifying particular access methods. Thisscheme has a lot of promise, but does not solve all ofthe problems we have mentioned (for example, the seg-mented �le problem, which must be supplied by thelow-level �le system). Our interface ideas could becombined with their framework to provide a powerful,extensible interface.It is not possible in any of these interfaces to writesegmented �les without foreknowledge of the segmentsize.Some of these issues may be addressed with the ca-pabilities of the Plan 9 system [26, 28], particularlythe support for per-process name spaces. Thus, tosolve the segmented �le problem in Plan 9, describedin Section 4.4, each process would bind the name footo the �le foo/#, where # is the process's unique idnumber within the parallel application. Thus, each



segment of the �le is actually a separate �le, butthe application opening this �le (once the names arebound) sees a single �le name. Applications not un-derstanding this binding, on the other hand, would notbe able to access the �le as a whole. This relativelycrude technique could also be done with a library intraditional Unix.6 Our proposed interfaceWe have shown that the conventional interface is in-convenient for parallel programming, and pointed outsome problems with other proposals. Now we out-line the concepts behind our proposed interface; exactsyntax is language and system dependent and thus isnot considered here. Each concept directly addressesone or more of the problems outlined in the previoussections.6.1 ConceptsDirectory Structure. There should be a single �le-naming directory structure for the entire parallel �lesystem. The user should not have to specify the listof disks involved [3] or the list of local disk �les [27]when opening a �le. The name structure should be thesame for parallel applications as for sequential appli-cations (such as �le-maintenance and directory-listingtools). For maximumportability and interoperability,it should appear to be a Unix �le system.Multiopen. For a �le to be accessed by all processesin an application, it must somehow be opened for allprocesses in that application. It is inconvenient andine�cient for every process to open the �le indepen-dently. We should not depend on open-�le inheritance(as part of process creation), which is limited to �lesthat are open before the processes are created, to pro-cess groups that are created from one master process,and to systems that have open-�le inheritance.We propose adding a multiopen operation, whichopens the �le for the entire parallel application whenrun from any process in the application. This as-sumes a way to group the processes into an \appli-cation", presumably more general than the set of chil-dren of one parent process. Most signi�cantly, themultiopen is executed after the process group exists,so the group is not limited to pre-opened �les. Inmost applications the multiopen would be executed inthe \master" process. Multiopen opens the �le onlyonce, avoiding repeated directory searches and otheroverhead, and gives each process in the applicationits own �le descriptor (through some implementation-dependent mechanism, e.g., shared memory; SymunixII supports a pdup system call [9]). If processes mayjoin the process group, then they must be able to ac-cess previously-opened �les, and participate in futuremultiopens. Multiopen can optionally create a �le if itdoes not exist.File pointer. When a �le is opened with multiopen,the programmer speci�es whether the �le pointershould be local (providing each process with an in-dependent, local �le pointer), or global (providing asingle shared �le pointer for all processes). These twochoices correspond directly to local and global access

patterns. A global �le pointer provides the synchro-nization needed to implement global �le access pat-terns: a read or write operation on a global �le pointercombines the transfer and �le pointer update into asingle atomic action, facilitating self-scheduled accesspatterns. Either type of �le pointer can be changedwith the seek operation.A process has no control over exactly which recordis read or written when it uses read or write on aglobal �le pointer. Since it may need to know theposition of the transfer, the original value of the �lepointer should be returned after the transfer is com-plete, along with the number of bytes transferred. Forcompatibility, we do not change the interface of readand write. We de�ne the readp and writep operations,which are the same as read and write, respectively,except that they also return the original �le pointerposition.Mapped File Pointers. One of the advantages ofthe nCUBE's mapping functions [5] is their ability toremap the address space of the whole �le into smaller,contiguous address spaces for each process. Theirmapping function maps from (process, pointer) to (po-sition). Each process then sees a single byte stream,indexed by its �le pointer, whereas the �le is indexedby position.We propose to specify a mapping function for each�le pointer, mapping from (pointer) to (position).Thus, a global �le pointer has one mapping function,and local �le pointers have one mapping function perprocess. The actual �le position is computed as a func-tion of the current �le pointer and a parameter:�le position = f(pointer; parameter)This function, and its parameter, are either providedas part of the multiopen operation or through a sep-arate interface. Mapping functions may be changedwhile the �le is open. The function is called on ev-ery �le access, to perform the mapping. It is providedwith the �le pointer, the parameter, the �le descriptor,the operation (read or write), and length. It returnsthe �le position. Built-in functions are also available.For example, interleaved, which has the record sizeas a parameter, de�nes a round-robin pattern of ac-cess to records. Each process remaps the appropriaterecords into a single byte stream, accessed by its local�le pointer. This is probably the most important usefor mapped �le pointers. Another built-in function'sparameter is a pointer to a table or list. For exam-ple, sequential portions (if known in advance) couldbe speci�ed in a list. The application then appears toread a single byte stream, although actually reading acollection of portions. This is most useful for handlingportions in global patterns.Note that this mechanism simplymaps a �le pointerto a �le position, and does not directly specify a map-ping from process to position, as in the nCUBE map-pings. A given �le position may be mapped by anynumber of processes (including zero). Also note thatself-scheduled access, through a global �le pointer, isstill possible.



Logical Records. Dibble [8] argues for direct sup-port for logical records in the �le system. The Unix�le system does not have any built-in support for log-ical records, in contrast to some traditional systems(typi�ed by commercial mainframes). Such supportincreases the complexity of the �le system, but thereare good reasons for logical record support in a paral-lel �le system, even when not supported in a similaruniprocessor �le system:� The record support can be combined with global�le pointer synchronization to provide atomic op-erations for reading and writing records. Thisis particularly useful if the records have variablelength.� By understanding logical records, the �le systemcan avoid splitting a record over two blocks. Thisincreases concurrency in some parallel access pat-terns [17]. It can also increase performance in ran-dom access patterns (at the cost of wasted space).In our interface, then, we divide the �les into byte�les and record �les. The �le type is an attribute ofthe �le. All references to \position" in a record �le arerecord numbers instead of byte o�sets. This a�ects theread, readp, write, writep, seek, and �le pointer map-ping operations. Fixed-size logical records are trivialto support, since the location of any record is eas-ily calculated from the record number. Variable-sizedrecords are more di�cult, since an implementationmust be able to atomically read the next record andupdate the �le pointer, with high concurrency. IntelCFS and CUBIX support interleaved �le writing withvariable-sized records, which solves a similar problem.Multi�les. In most parallel programs, a data set isdivided among the processes in the program. In theconventional �le system, however, a single data set isusually represented as a single �le. For a parallel pro-gram to use a conventional �le system, the individualprocess subsets of the data set must either be com-bined into one �le or stored in separate �les, one perprocess. Neither option is convenient, as we show inour examples in Section 4.4. We provide a new typeof �le called a multi�le for these situations. To the �lesystem a multi�le is a single �le, with one directoryentry, but it is di�erent from a plain (conventional)�le in that it is not a single sequence of bytes. In-stead, it is a collection of sub�les, each of which isa separate sequence of bytes. A multi�le is createdby a parallel program with a certain number of sub-�les, usually equal to the number of processes in theprogram. Each process writes its own sub�le. Later,when the multi�le is opened for reading, each processreads its own sub�le.5 Each process has the illusionof reading an independent small �le, since each sub�leis independently addressed with its own �rst byte andend-of-�le marker. Each sub�le can be extended ortruncated without a�ecting the addressing in any ofthe others. Thus, a multi�le combines the advantages5Note that a multi�le implies local �le pointers. File pointermappings apply within sub�les, not across sub�les.

of a single �le (single name for a single data set) withthose of multiple �les (independently addressable andextendible, easily located beginning and end).Note that a multi�le cannot be easily simulated ontop of a conventional �le system. Storing it as multiple�les clutters up the directories (for example, on theCM-5 [31]), and storing it as a single �le limits theextensibility of each sub�le, due to the linear addressspace provided by the conventional �le.When opening an existing multi�le, an optionalmapping (unrelated to �le pointer mapping) may bespeci�ed that indicates the assignment of sub�les toprocesses. With the default mapping, the number ofsub�les must match the number of processes, and aone-to-one mapping is used. With a user-speci�edmapping, there is no requirement on the number ofprocesses. In fact, the mapping may specify that somesub�les are not used, or that some processes haveno sub�le. For applications that want to manipulatemany sub�les with few processes, we provide an oper-ation usesub�le(x) that switches the mapping for thecalling process to sub�le x. When created, the sub-�les are logically numbered according to the logicalordering of the processes creating them.Multi�les are most useful between parallel pro-grams, so data can be written as separate subsets andlater read as separate subsets. They are also useful foroutput intended for sequential programs. An exampleis a single �le that contains debugging output, with aseparate sub�le for each process.Type Coercion. Our �le system interface supportsfour �le types: byte recordplain byte plain �le record plain �lemulti�le byte multi�le record multi�leNote that the \byte plain �le" is the same as conven-tional �les. Every �le in the �le system is stored asone of these four types. These �le types also representfour access modes that can be speci�ed at the timethe �le is opened. For compatibility, all �les in the �lesystem can be read as a byte plain �le. In fact, forconvenience we allow any �le to be read in any mode,with the �le system coercing the stored �le into thatmode. Note that coercion is just a mapping operation;the stored �le does not change. Files may be openedfor writing in the mode corresponding to their type,or be coerced to plain byte �les.Although most coercions are done transparently,some applications may want to adjust themselves tothe stored �le type. The type operation can be used torequest information about �le type (plain or multi�le,byte or record). This operation may be merged withexisting mechanisms that query other �le attributes(stat in Unix).To coerce a record �le into a byte �le, we ignorerecord boundaries, fragmentation overhead (emptyspace in blocks), and any other overhead, such aslength �elds or indexes. To coerce a byte �le into arecord �le, the user provides either a �xed record sizeor a record delimiter character (e.g., newline). The



details depend on the particular implementation ofrecords.To coerce a multi�le into a plain �le, the sub�les arelogically concatenated together to form the illusion ofone long �le, using the numbering de�ned on sub�les.6A plain �le can also be coerced into a multi�le. Thisis a useful way to divide a �le's data into contiguouschunks for a variable number of processes. The userspeci�es the desired number of sub�les (usually thenumber of processes), and the �le is divided roughlyevenly among the sub�les, with each sub�le assigneda contiguous portion of the original �le. If the �leis a byte �le, the division is by bytes; if the �le is arecord �le, or coerced into a record �le, the division ismade at record boundaries. In any case, the end of acoerced sub�le appears as an end-of-�le to the processassigned to the sub�le.Coercing writable �les is di�cult. We allow coer-cion to byte plain �les only, since the semantics ofthe other coercions are unclear. This allows normalprograms to write to multi�les and to record �les,although we suspect that such writing would not becommon. If a multi�le is coerced to a plain �le, thesub�les are logically concatenated into a single �le.Appends (anything written past the end of �le) a�ectthe last sub�le, and overwrites a�ect the correspond-ing positions in the corresponding sub�les. If coercinga record �le to a byte �le, record boundaries are ig-nored for overwrites, and each write appending to the�le creates a new record.Although some of the semantics of coercion appearstretched, coercion makes multi�les a viable part of a�le system that is still compatible with traditional �lesystems. It also makes the power of multi�les availablefor conventionally stored �les.6.2 ImplicationsWithin the interface, there are many synchroniza-tion issues. In particular, the support of global �leaccess patterns requires atomic access to a shared�le pointer. This is particularly complicated if the�le-pointer update involves a user-de�ned �le-pointermapping, or �nding the length of the next logi-cal record. The latter may require reading datafrom disk, unless there is a separate record index.Global �le pointers are particularly di�cult in adistributed-memory system. By loosening semantics,self-scheduled access can be provided in parallel byusing an interleaved �le pointer until EOF is reachedby some process, then rebalancing the load throughnegotiations between �le servers.Unix-like �le access remains, with the original open,read, write, seek, and close calls, using coercion toprovide byte-stream semantics to all �les. This alsoallows the parallel �le system to be accessed remotely.Network �le access (e.g., NFS) is supported throughcoercion to byte plain �les. Only byte plain �les canbe created through NFS. Tools (variants of rcp, for6An alternative is to logically interleave records of the sub-�les, but this depends on the sub�le being broken into records,and the semantics of the �le so that interleaving makes sense.Certainly, this could be an option.

example) should be created for receiving a �le fromthe network and writing multi�les or record �les.Multi�les can be represented on disk much as direc-tories are now, except that each sub�le has a numberrather than a name. Supporting multi�les is thus quiteeasy, given support for local �le pointers. Coercion isa little more di�cult, but can be done with internalpointer mapping operations.7 SummaryA new �le system interface is necessary for conve-nient parallel �le access. Our proposed interface al-lows for parallel open (with multiopen), synchroniza-tion for global �le access patterns, mapped �le point-ers, support for logical records, and a new �le organi-zation (multi�les). All of the new features are com-patible with the conventional interface, so that a �lecan be used by sophisticated, high-performance par-allel applications, by general-purpose sequential �le-maintenance tools, and by remote systems through anetwork �le system. This interface makes the taskof programming parallel �le applications much easier,and thus should also increase application performance.Future work involves implementing and testingthese ideas, considering SIMD interfaces, and a work-load study to determine the types of access patternsactually used by parallel applications.Acknowledgements. Many thanks to Carla Ellis,Rick Floyd, the Duke BUG group, and Mike delRosario for valuable feedback.References[1] Katherine Jean Armstrong. Improving �le access per-formance: Cache management for mapped �les. Mas-ter's thesis, Univ. of Washington, 1990.[2] Raymond K. Asbury and David S. Scott. FORTRANI/O on the iPSC/2: Is there read after write? InFourth Conference on Hypercube Concurrent Comput-ers and Applications, pages 129{132, 1989.[3] Thomas W. Crockett. Speci�cation of the operatingsystem interface for parallel �le organizations. Pub-lication status unknown (ICASE technical report),1988.[4] Thomas W. Crockett. File concepts for parallel I/O.In Proceedings of Supercomputing '89, pages 574{579,1989.[5] Erik DeBenedictus and Juan Miguel del Rosario.nCUBE parallel I/O software. In Eleventh AnnualIEEE International Phoenix Conference on Comput-ers and Communications (IPCCC), pages 0117{0124,April 1992.[6] Erik DeBenedictus and Peter Madams. nCUBE'sparallel I/O with Unix capability. In Sixth AnnualDistributed-Memory Computer Conference, pages270{277, 1991.[7] Juan Miguel del Rosario. High performance parallelI/O on the nCUBE 2. Institute of Electronics, In-
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