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ABSTRACT 
Most operating systems enforce process isolation through hardware 
protection mechanisms such as memory segmentation, page mapping, 
and differentiated user and kernel instructions. Singularity is a new 
operating system that uses software mechanisms to enforce process 
isolation. A software isolated process (SIP) is a process whose 
boundaries are established by language safety rules and enforced by 
static type checking. SIPs provide a low cost isolation mechanism that 
provides failure isolation and fast inter-process communication. 

To compare the performance of Singularity’s SIPs against traditional 
isolation techniques, we implemented an optional hardware isolation 
mechanism. Protection domains are hardware-enforced address 
spaces, which can contain one or more SIPs. Domains can either run 
at the kernel’s privilege level or be fully isolated from the kernel and 
run at the normal application privilege level. With protection 
domains, we can construct Singularity configurations that are similar 
to micro-kernel and monolithic kernel systems. We found that 
hardware-based isolation incurs non-trivial performance costs (up to 
25-33%) and complicates system implementation. Software isolation 
has less than 5% overhead on these benchmarks. 

The lower run-time cost of SIPs makes their use feasible at a finer 
granularity than conventional processes. However, hardware isolation 
remains valuable as a defense-in-depth against potential failures in 
software isolation mechanisms. Singularity’s ability to employ 
hardware isolation selectively enables careful balancing of the costs 
and benefits of each isolation technique.  

Categories and Subject Descriptors 
D.4.1 [Operating Systems]: Process Management, D.4.7 
[Operating Systems]: Organization and Design 

General Terms 
Performance, Design, Reliability, Experimentation 

Keywords 
Singularity, hardware protection domain, hardware isolated 
process (HIP), software isolated process (SIP)  

1. INTRODUCTION 
Process isolation is a fundamental function of most operating systems. 
Isolation protects system integrity by preventing one process from 
interfering with another’s, or the system’s, code or data, and by 
preventing untrusted code from accessing protected resources. 
Isolation also contributes to system resilience by providing failure 
boundaries that permit part of a system to fail without compromising 
the whole. 

Most operating systems use a CPU’s memory management hardware 
to provide process isolation, using two mechanisms. First, processes 
are only allowed access to certain pages of physical memory. Second, 
privilege levels prevent untrusted code from manipulating the system 
resources that implement processes, for example, the memory 
management unit (MMU) or interrupt controllers. These mechanisms’ 
non-trivial performance costs are largely hidden, since there is no 
widely used alternative approach to compare them to. Mapping from 
virtual to physical addresses can incur overheads up to 10–30% due to 
exception handling, inline TLB lookup, TLB reloads, and 
maintenance of kernel data structures such as page tables [29]. In 
addition, virtual memory and privilege levels increase the cost of 
inter-process communication. 

As a consequence, most operating systems provide processes that are 
too expensive to be used for fine-grain isolation, say between an 
application and a code extension. To avoid this overhead, closely-
coupled extensions are often loaded into the same address space as 
their host, without any sort of isolation. Moreover, even when 
components are separated into processes, the high cost of inter-
process communication encourages use of shared memory, which 
couples processes’ failure behavior [18]. 

The system architectures that result from these performance pressures 
are a major source of problems in software reliability, security, and 
compatibility [14]. Although extension code may be untrusted, 
unverified, faulty, or even malicious, it is loaded into its host’s 
address space with no hard interface or boundary between the two—
because the cost of traditional hardware protection mechanisms is too 
high. The outcome is often unpleasant, because a failure in the 
extension compromises or terminates the host. For example, Swift 
reports that faulty device drivers cause 85% of diagnosed Windows 
system crashes [38]. Moreover, without hard boundaries, extensions 
can bypass public abstractions to access implementation internals, 
which constrains future program evolution and compels extensive 
compatibility testing. 

To address these problems, we constructed a new operating system 
called Singularity [27] that uses two mechanisms to offer isolation 
with a wider range of cost-benefit tradeoffs. At one end of the range 
are hardware isolated processes (HIPs), which are analogous to 
processes in other operating systems. Hardware isolation is built on a 
mechanism called a protection domain. At the other extreme are 
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software isolated processes (SIPs), which use programming language 
safety and system architecture to provide a less expensive isolation 
mechanism. Singularity also supports hybrid combinations of 
hardware and software isolation. One or more SIPs can reside in a 
protection domain, in configurations ranging from pure SIP to pure 
HIP. Figure 1 shows protection domains used to support combinations 
of software and hardware isolation with different cost/benefit trade-
offs. 

The design and implementation of a system based on SIPs is a major 
contribution of this work. A software isolated process is a collection 
of memory pages and a language safety mechanism that ensures that 
code in a process cannot access another process’s pages. A SIP 
replaces hardware memory protection with static verification of 
program safety. Singularity uses language safety and a fast 
communication mechanism built on channels [15] to enforce a 
system-wide invariant that neither the kernel nor any other process 
contains a reference into a given process’s object space. Because 
different process’ object spaces always reside on disjoint memory 
pages, memory reclamation is straightforward when processes 
terminate. 

This architecture provides fine-granularity isolation and high 
performance. If a process fails, no other process’s data is left in an 
inconsistent state, and failure notification is cleanly propagated 
through communication channels. Without hardware protection, 
system calls and inter-process communication run significantly faster 
(30–500%) and a communication-intensive benchmark runs 
approximately 20% faster. 

A second major contribution of this work is a direct comparison of the 
costs of hardware and software isolation mechanisms. Previous 
studies implemented one or the other approach or used simulation to 
quantify overhead. Because Singularity implements both isolation 
mechanisms, we can directly compare costs on the same platform. We 
found that the two main contributors to the cost of memory 
management were establishing and maintaining the virtual to physical 
mapping and changing privilege levels between applications and the 
kernel. Changing address spaces incurred minor costs for micro-
benchmarks, but was a significant overhead for a macro-benchmark 
with a large amount of communications and context switching. In 
addition, hardware protection increased the cost and complexity of 
inter-process communication. 

An additional contribution of this work is an initial exploration of 
Singularity’s ability to use hardware isolation selectively, rather than 

at every process boundary. For example, system processes and device 
drivers (each of which run in their own process) can — but need not 
— reside in the same address space as the kernel. Using a single 
address space permits fast communication, but still provides strong 
memory and failure isolation. For example, a driver can fail without 
crashing the system. Similarly, application processes may share an 
address space with its extensions. The use of hardware protection, 
however, provides a defense against errors in the implementation of 
software isolation. Singularity’s flexibility allows this tradeoff to be 
carefully balanced. 

We emphasize that this paper analyzes the use of a processor’s virtual 
memory hardware for process isolation and protection. Virtual 
memory is often used for on-demand paging of memory to secondary 
storage, and has other uses [4].These other uses are often orthogonal 
to protection, and don’t necessarily require the full cost of hardware 
process protection. 

The rest of the paper is organized as follows. Section 2 describes 
software isolated processes (SIPs). Section 3 describes the 
implementation of Singularity’s protection domains and virtual 
memory. Section 4 contains performance results. Section 5 concludes.  

2. SOFTWARE ISOLATED PROCESSES 
Software isolated processes (SIPs) use software verification, rather 
than hardware protection, to isolate portions of a system. They rely on 
verifying code’s safe behavior to prevent it from accessing another 
process’s (or the kernel’s) instructions or data. A verifiably safe 
program can only access data that it allocated or was passed, and it 
cannot construct or corrupt a memory reference.1 

This invariant is usually expressed as two simpler properties: type and 
memory safety. Type safety ensures that the only operations applied 
to a value are those defined for instances of its type. Memory safety 
ensures the validity of memory references by preventing null pointer 
references, references outside an array’s bounds, or references to 
deallocated memory. These properties can be partially verified by a 
compiler, but in some circumstances require run-time tests. Java and 
C# are expressive, safe programming languages that can be compiled 
with a small performance penalty for safety [16]. The overhead of 
these tests in two large Singularity benchmarks is approximately 4.5% 
(Section 4.4). Other modern languages, such as Perl, Python, and 
Ruby, are also safe. 

In Singularity, all untrusted code that runs in a SIP must be verifiably 
safe. The SIP may also contain trusted, unverified code that cannot be 
expressed in a safe language, for example, parts of the language 
runtime, a memory allocator, or an accessor for memory-mapped I/O. 
The correctness and safety of this type of code needs to be verified by 
other means. 

A SIP is a closed object space that resides on a collection of memory 
pages exclusively owned by a process (Figure 2). An object space is 
the complete collection of objects reachable by a program at a point 
in its execution. Singularity ensures that two processes’ objects 
spaces are always disjoint by not providing shared-memory 
communication, and by using the language type system to prevent 

                                                                 
1 Object allocation creates new references and requires trusted, unsafe 

code. In Singularity, object allocation occurs within a trusted 
runtime, which logically is an extension of the kernel. Verifying the 
safety of a memory allocator or garbage collector is an interesting 
open research question [43].  
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Figure 1. Alternative architectures enabled by software isolated 
processes. 
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processes from sending a object reference through inter-process 
communication [15]. 

In Singularity, all inter-process communication occurs through 
message passing across channels, which allows two processes to 
exchange data through an area of memory called the exchange heap 
(Figure 2) [15]. Data blocks in this heap are structs, not objects (i.e., 
they do not contain methods) and are not allowed to contain object 
references. Messages can contain references to exchange heap data, 
making it possible to send structured data between processes. 
However, an object reference cannot be embedded in a message. 
Moreover, the system maintains the invariant that there exists at most 
one pointer to an item in the exchange heap. When a process sends a 
message, it loses its reference to the message, which is transferred to 
the receiving process (analogous to sending a letter by postal mail). 
Therefore, processes cannot use this heap as shared memory, and 
messages can be exchanged very efficiently through pointer passing, 
not copying. 

Unlike Singularity’s segregation of SIPs on disjoint memory pages, 
other safe language systems have taken the approach of having 
processes allocate memory from a single, shared heap. Singularity’s 
design has several advantages. First, it reduces coupling between 
processes by eliminating the shared memory allocator and garbage 
collector and by permitting each process to allocate and reclaim its 
own memory using the techniques that are appropriate. The large 
number of existing garbage collection algorithms, and experience, 
suggest that no one garbage collector is appropriate for all systems or 
applications, so this flexibility helps achieve good system 
performance [17]. A shared heap and garbage collector constrain the 
object format and run-time system of every process that uses it. 
Moreover, these shared facilities are a common point of failure. 
Second, Singularity’s design facilitates process termination, as the 
system can simply reclaim entire memory pages, rather than relying 
on garbage collection to reclaim individual objects.  

Memory pages from different SIPs can reside in the same address 
space (physical or virtual), so that switching processes need not incur 
the usual overhead of flushing the TLB. Moreover, since there are no 
cross-process references, SIPs can equally well reside in distinct 
address spaces, either to overcome a 32-bit address limitation, or to 
enhance software isolation with hardware mechanisms (below). 

Singularity also verifies that untrusted code does not contain 
privileged instructions, so all processes can run at Ring 0 (kernel 
level) on an x86 processor. As a consequence, when hardware 
protection is not used, system calls and inter-process communication 
on Singularity are up to an order of magnitude faster than other 
systems (Section 3.4). With lower overheads, SIPs can be used at a 
very fine granularity for failure containment.   

2.1 Discussion 
In Singularity, SIP isolation is built from language safety and system 
design. Language safety is a desirable end in itself, as it helps 
eliminate or mitigate software defects such as buffer-overrun attacks. 
When safe languages are already in use, the isolation provided by 
SIPs incurs little additional cost, beyond a deliberate loss of the 
ability to share data between processes. However, because SIPs 
preclude unsafe languages such as C++, they involve a potential loss 
of language freedom. This has not been a problem in Singularity, 
since Sing#, our slightly extended dialect of C#, is a flexible and 
expressive language. While we implemented Singularity in Sing#, any 
language with a compiler that emits type-safe MSIL could run on the 
system (e.g., Visual Basic, F#, or Iron Python). We note in passing 
that software fault isolation [42] could encapsulate unsafe code in a 
SIP. However, SFI is less attractive since its run-time overhead is 
higher than a well-implemented safe language, and SFI does not 
correct defect-prone features of unsafe languages. 

A serious concern with SIPs, however, is the correctness of the 
implementation of language safety. At present, we depend on our 
compiler (Bartok) to verify the type safety of a program, not introduce 
errors during optimization, and produce run-time checks. Bartok uses 
a typed intermediate language [9], which helps ensure that it 
maintains type safety through the compilation process from typed 
MSIL to untyped x86 code. Nevertheless, it is a complex, optimizing 
compiler. We are working toward removing Bartok from the trusted 
computing base by using typed assembly language (TAL) [19, 31]. A 
TAL compiler produces a proof of the type safety of compiled x86 
code along with the code itself. A properly structured proof of type 
safety can be verified by a small, simple checker whose correctness is 
far easier to ensure than a compiler’s. We are confident that TAL can 
prevent unsafe code from executing on Singularity. 

SIPs are also dependent on the correctness of trusted, unsafe code, 
such as the runtime and, most notably, the garbage collector. We are 
actively investigating techniques for verifying the correctness of these 
parts of the system. 

Hardware isolation is able to detect errors in trusted, unsafe code that 
underpins software isolation, for which full verification of correctness 
is not yet possible. This demonstrates its usefulness in systems where 
the strongest possible isolation is desirable. Of course, hardware 
protection comes at a cost. Section 3 describes how hardware 
protection features are implemented in Singularity and Section 4 
quantifies its overhead. 

Another concern about SIPs is the possibility of hardware faults 
corrupting a pointer value or a computation, which could cause a 
program to violate type safety guarantees and subvert its SIP. The 
same concern applies when using hardware protection. 
Govindavajhala and Appel showed that memory errors could be used 
to subvert type safety in a Java virtual machine [22]. Their 
recommendation, which we share, is increased use of hardware error 
detection and correction techniques, such as error correcting codes 
(ECC) on memory and data paths, to ensure the assumption of correct 
execution that underlies all program safety. Advances in 
semiconductors are making transistors less reliable, so hardware error 
detection and correction is likely to become more common in future 
processors [32]. 

Singularity differs from other single address operating system, such as 
Pilot, Cedar, Smalltalk, Lisp Machines, Oberon, or Inferno [12, 20, 
35, 39, 44], which encouraged sharing objects between processes and 
did not segregate a process’s objects. These systems presented a 
programming model similar to threads in a process, rather than SIPs’ 

Figure 2. Software Isolated Processes (SIPs). 
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process-like, segmented object spaces. They also relied on garbage 
collection to reclaim memory when a process terminates. Garbage 
collection has a higher per-object overhead than reclaiming entire 
pages, and can be thwarted by pointers to “dead” objects. These 
systems also used a single garbage collector for all processes and did 
not have the flexibility to select a collection algorithm appropriate to 
a computation. 

The JX system is similar to Singularity in many respects. It is a 
microkernel system written almost entirely in a safe language (Java) 
[21]. Processes on JX do not share memory and communicate through 
synchronous RPC with deep copying of parameters. The processes 
run in a single hardware address space and rely on language safety for 
isolation. The primary differences between JX and Singularity are the 
communication and extension mechanisms. Singularity processes 
exchange data, not objects, which eliminates the need for 
communicating processes to share a common object layout and 
method bodies. Moreover, Singularity uses asynchronous message 
passing over strongly typed channels, which is more flexible than 
RPC, but still permits verification of communication behavior and 
system-wide liveness properties [34]. Finally, Singularity does not 
allow dynamic code loading, but instead runs extensions in their own 
SIP(s). 

Other systems implemented isolation mechanisms for Java. The J-
Kernel implemented protection domains in a JVM process, provided 
revocable capabilities to control object sharing, and developed clean 
semantics for domain termination [24]. Luna refined the J-Kernel’s 
run-time mechanisms with an extension to the Java type system that 
distinguishes shared data and permits control of sharing [25]. 
KaffeOS provides a process abstraction in a JVM along with 
mechanisms to control resource utilization in a group of processes 
[5]. Java incorporated some of these ideas into isolates [33], which 
are similar to AppDomains in Microsoft’s CLR. Singularity differs 
from these systems in several ways. It eliminates the duplication of 
resource management and isolation mechanisms between an operating 
system and language runtime system by integrating the two. It also 
segregates a process’s objects, so that a terminated process’s memory 
can be reclaimed without garbage collection. SIPs also strictly prevent 
sharing, which provides a greater amount of isolation and fault 
tolerance and permits each process to have a fully independent 
language runtime system, even to the extent of entirely different 
runtimes and garbage collectors. 

3. HARDWARE PROTECTION DOMAINS 
For Singularity, hardware protection offers a supplemental layer of 
protection beyond the isolation provided by SIPs. Hardware isolation 
offers the ability to detect violations of software-isolation 
mechanisms, providing a potentially valuable defense-in-depth. 

Singularity implements hardware isolation through a protection 
domain (domain for short), which is a hardware-enforced protection 
boundary that can host one or more SIPs. Each protection domain 
consists of a distinct virtual address space. The processor’s MMU 
enforces memory isolation in a conventional manner. Each domain 
has its own exchange heap, which is used for communications 
between SIPs within the domain. A protection domain that does not 
isolate its SIPs from the kernel is called a kernel domain. All SIPs in 
a kernel domain run at the processor’s supervisor privilege level 
(“Ring 0” on the x86 architecture), and share the kernel’s exchange 
heap, thereby simplifying transitions and communication between the 
processes and the kernel.  

Communication within a protection domain continues to use 
Singularity’s efficient reference-passing scheme. However, because 

each protection domain resides in a separate address space, 
communication across domains involves data copying. The message-
passing semantics of Singularity channels makes the two 
implementations indistinguishable to application code (except for 
performance). 

A protection domain could, in principle, host a single process 
containing unverifiable code written in an unsafe language such as 
C++. We have not explored this possibility. Rather, protection 
domains always contain a SIP, which continues to provide isolation 
and a failure boundary in case the original process code loads 
extensions, libraries, or other code. 

Because multiple SIPs can be hosted within a protection domain, 
domains can be employed selectively to provide hardware isolation 
between specific processes, or between the kernel and processes. The 
mapping of SIPs to protection domains is determined by system 
policy configuration and can be changed by an administrator. A 
Singularity system with a distinct protection domain for each process 
is analogous to a traditional hardware-isolated microkernel system. A 
Singularity system with a kernel domain hosting the file system, 
network stack, device drivers, and kernel is analogous to a 
conventional, monolithic operating system, but is more resilient to 
driver or subsystem failures because each component is contained in a 
SIP. 

3.1 Virtual Memory 
Virtual memory is the primary mechanism that a traditional operating 
system uses to enforce isolation between processes. Singularity uses 
virtual memory in a similar way to implement protection domains. 
Singularity only uses virtual memory for protection and does not page 
memory to disk. 

As with many other systems, Singularity organizes its memory into 
two main regions: the kernel range and the process, or “user,” range. 
The user memory range in a given protection domain maps to 
different physical pages than any other protection domain’s user 
range, which ensures hardware-enforced isolation. Every domain’s 
address space includes an identical mapping for the kernel range of 
memory, which ensures that kernel data structures are always 
addressable, regardless of which process is running.  Singularity uses 
a processor feature that marks the memory-mapping entries for the 
kernel range of memory as “global,” which indicates that they should 
not be flushed from the TLB when the TLB is implicitly invalidated 
during an address-space switch. 

Compared to the basic Singularity configuration, which only uses 
physical memory, satisfying a kernel or process request to allocate a 
(virtually) contiguous range of memory is significantly more complex. 
First, the kernel must find a suitable, unused range of virtual memory 
addresses. Next, the kernel must find an unused physical page of 
memory for each page within the range, and manipulate the mapping 
structures to map the two addresses. The additional complexity causes 
a roughly five-fold increase in memory-management cost (Section 
4.1). 

Virtual memory also imposes additional costs on some context 
switches. The Singularity scheduler saves and restores the processor 
context when switching between runable threads. When scheduling a 
thread from a different protection domain, Singularity loads the 
processor control register that controls the address space, which 
invalidates all non-global TLB entries. As a result, all references to 
the user memory range incur additional memory accesses to refill the 
TLB. A system running a large number of protection domains (and 
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therefore address spaces) will incur overhead due to TLB misses. This 
effect is quantified in Section 4.3. 

3.2 Privilege Modes  
Singularity can behave like most systems and ensure the integrity of 
the process/kernel hardware boundary by running processes outside a 
kernel domain at a lower privilege level (“Ring 3” on x86 processors). 
Since the instructions that manipulate the virtual memory mappings 
are invalid at lower privilege levels, this mechanism ensures that the 
operating system retains sole control of memory protection. In 
addition, the kernel range pages are marked as inaccessible to 
unprivileged code, which ensures the integrity of kernel memory. 

A major cost of the privilege mechanism arises when a process 
invokes the kernel. When a Singularity process is running in a kernel 
protection domain, and therefore executing at elevated privilege, the 
kernel can be invoked with the same procedure-call mechanism that a 
process uses for internal calls. The only additional overhead is the 
bookkeeping necessary to mark a transition between two garbage-
collection domains. This demarcation on the stack ensures that the 
kernel’s garbage collector does not traverse process data structures 
(and vice versa). A process running in a non-kernel protection domain 
(at lowered privilege) incurs additional costs. It must use an 
instruction that invokes the kernel while simultaneously and safely 
elevating the processor’s privilege level. Singularity uses the sysenter 
/ sysexit mechanism offered by modern x86-class processors. This 
pair of instructions offers a streamlined mechanism for invoking 
privileged code from an unprivileged context, but the process remains 
considerably more expensive than a simple procedure call. The four-
fold cost increase incurred by privilege transitions is detailed in 
Section 4.1. 

3.3 Inter-process Communication 
Singularity allows the efficient exchange of structured data (but not 
objects) through its communication channels. Message passing within 
a protection domain is inexpensive since the system exploits 
language-level invariants and a common exchange heap to avoid 
copying data between sender and receiver.  

Our C# language dialect imposes a linearity constraint on data in the 
exchange heap: exactly one reference exists to each object [15]. This 
requires the sender of data through a channel to relinquish any 
reference to the transmitted data, and application code is statically 
checked to ensure that it respects this constraint. This invariant 
enables Singularity processes in the same domain to exchange data 
without copying, since the sending process cannot read or modify the 
data after it is sent (and cannot distinguish copying from pointer 
passing). Entire trees of data can be safely moved solely by reference 
passing, due to the guarantee that no references may exist to data 
within the tree at the moment the tree is transmitted. 

Communication channels are comprised of two endpoints, each 
owned by exactly one process (both can be owned by the same 
process). If a channel spans a non-kernel protection domain boundary, 
the sending and receiving processes do not share an exchange heap, 
and the usual reference-passing technique is no longer usable. Data 
must be copied from one protection domain to the other, with the 
assistance of the kernel. In our current implementation, data is first 
copied from the transmitting process into the kernel domain’s 
exchange heap. As the data is copied, it is deallocated in the sending 
process’ exchange heap, preserving the invariant that the sending 
process loses access to transmitted data. When the receiving process 
attempts to retrieve channel data, the kernel copies the data into the 
receiving process’s exchange heap. 

This multi-step process is considerably more costly than reference 
passing. When communicating across protection domains, the cost of 
sending a one-byte message is roughly 10 times higher, and it 
increases with message size to 25 times for a 32KB message (Section 
4.1). An obvious optimization performed by our implementation is to 
avoid the copy into the kernel domain, if the sender and the kernel 
share the same domain, and similarly in the case the receiver shares 
its domain with the kernel. For blocks of page size or larger, we also 
perform memory remapping instead of copying. These optimizations 
are all transparent to the sender and receiver. We are also 
investigating techniques to eliminate the need to copy data in two 
stages.  

3.4 Discussion 
Hardware isolated processes (HIPs) are the norm for modern 
operating systems, such as Unix or Windows. HIPs rely on a 
processor’s memory management unit (MMU) to implement a distinct 
virtual address space for each process. Each process has a per-process 
binding for each virtual address, and the MMU detects references to 
undefined addresses. Mapping and protection are implemented by a 
virtual memory system, which is a combination of hardware and 
software whose design varies among machines [28]. Hardware for 
HIPs does not come for free, though its costs are diffused and difficult 
to quantify: 

Virtual memory systems (with the exception of software-only systems 
such as SPUR [46]) rely on a hardware cache of address translations 
to avoid accessing page tables at every processor cache miss. 
Managing TLB entries has a cost, which Jacob and Mudge estimated 
at 5–10% on a simulated MIPS-like processor [29]. The virtual 
memory system also brings its data, and in some systems, code as 
well, into a processor’s caches, which evicts user code and data. 
Jacob and Mudge estimate that, with small caches, these induced 
misses can increase the overhead to 10–20%. Furthermore, they found 
that virtual memory induced interrupts can increase the overhead to 
10–30%. Other studies found similar or even higher overheads, 
though the actual costs are very dependent on system details and 
benchmarks [3, 6, 10, 26, 36, 40, 41]. In addition, TLB access is on 
the critical path of many processor designs [2, 30] and so might affect 
processor clock speed. 

Virtual memory increases the cost of calls into the kernel and process 
context switches [3]. The reported overhead of crossing the kernel 
protection boundary is 82 cycles on a Pentium processor [23]. In 
addition, on processors with an untagged TLB, such as most current 
implementations of the x86 architecture, a process context switch 
requires flushing the TLB, which incurs refill costs. 

HIPs provide protection at the granularity of a memory page 
(typically 4KB). This size is much larger than a typical object (in 
SPECjvm98 benchmark applications, the average ranges from 22–
29,949 bytes, with most well under 50 bytes2) or memory-mapped I/O 
port, so a protection boundary encompasses large pieces of code or 
entire data segments, not individual objects. Alternatives, such as 
Mondrian memory protection [45], provide finer granularity access 
control, but are not yet available. 

Singularity is a microkernel operating system that differs in several 
respects from other microkernel systems, such as Mach, L4, SPIN, 
Vino, and Exokernel [1, 7, 13, 23, 37]. Microkernel operating systems 
partition a monolithic kernel into components that run in separate 
processes. Previous systems, with exception of kernel extensions for 

                                                                 
2 Emery Berger, personal communication, 3/21/06. 
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SPIN, were written in an unsafe programming language and used 
processor memory management hardware and protection rings as an 
isolation mechanism. Singularity uses language safety and message-
passing communication to isolate processes at a lower cost, thereby 
addressing an important difficulty in other microkernel systems. 

Because hardware-enforced processes incur considerable overhead, 
microkernel systems evolved kernel extensions to lessen this cost 
while protecting system integrity. SPIN implemented extensions in a 
safe language and using programming language features to restrict 
access to kernel interfaces [8]. Vino used sandboxing to prevent 
unsafe extensions from accessing kernel code and data and 
lightweight transactions to control resource usage [37]. Both systems 
allowed extensions to directly manipulate kernel data, which left open 
the possibility of corruption through incorrect or malicious operations 
and inconsistent data after extension failure. Singularity’s stronger 
extension model prevents data sharing between a parent and an 
extension. 

Nooks provides lightweight protection domains for Linux kernel 
extensions such as device drivers [38]. These domains use the MMU 
to restrict a driver to read-only access to the portion of kernel’s 
address space that does not belong to a driver. Nooks also interposes 
instrumentation on all control and data transfers between the kernel 
and the driver. Drivers are written in unsafe language, so Nooks 
isolation mechanism is more expensive and domain-specific than 
SIPs. 

van Doorn built a Java virtual machine that isolated classes in 
distinct, hardware-enforced address spaces [11]. To retain Java’s 
semantics, it allows cross-domain pointers, which required 
considerable effort to maintain compatible mappings in different 
spaces. These pointers, and the shared language runtime and garbage 
collector, undermined much of the failure isolation. 

4. PERFORMANCE 
We measured the performance of six Singularity configurations 
(Figure 3): 

SIP-Phys. The kernel and all processes execute in SIPs running in 
Ring 0 and accessing physical memory (the virtual memory hardware 
is entirely disabled). 

SIP-Page. The kernel and all processes execute in SIPs running in 
Ring 0, with the MMU’s virtual to physical mapping enabled. 
Performance differences relative to SIP-Phys measure the cost of 
manipulating the MMU and the additional cache misses to refill the 
TLB. 

HIP-R0. The kernel, device drivers, and system processes execute in 
one kernel protection domain. The application executes in a different 
kernel domain (which shares an exchange heap with the kernel). The 
kernel and all processes run in Ring 0. Note that code in a domain 
executes in a SIP, so it still incurs the overhead of enforcing language 
safety. Performance differences relative to SIP-Page measure the cost 
of changing the address space (but not privilege level) when 
transferring control between the application and the system. 

HIP-R0-S. This configuration is the same as HIP-R0, except that 
each process (including drivers and system processes) executes in its 
own kernel domain. All domains share an exchange heap. 
Performance differences relative to HIP-R0 measure the cost of 
changing the address space (but not privilege level) when transferring 
control between all processes and the kernel. 

HIP-R3. The kernel, drivers, and system processes execute in one 
protection domain. The application executes in a different, non-kernel 
protection domain (which does not share an exchange heap with the 
kernel). The kernel domain runs in Ring 0 and application domain 
runs in Ring 3. This is comparable to protection on a conventional 
operating system, except for the isolation provided by SIPs in the 
kernel domain. Performance differences relative to SIP-Phys measure 

SIP-Page

HIP-R3

SIP-Phys

HIP-R0 HIP-R0-S

HIP-R3-S

Kernel Kernel 
domain

Non-kernel 
domain

System 
process SIPApplication

Figure 3. Measured Singularity configurations.  
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the cost of conventional hardware isolation. Differences relative to 
HIP-R0 measure the cost of privilege levels. 

HIP-R3-S. This configuration is the same as HIP-R3, except that 
each process (including drivers and system processes) runs in its own 
unprivileged, non-kernel domain in Ring 3. The kernel runs in a 
kernel domain in Ring 0. Each domain has I ts own exchange heap. 
This configuration is comparable to the protection on a traditional, 
hardware-isolated micro-kernel operating system. 

All configurations ran on AMD Athlon 64 3000+ (1.8 GHz) with an 
NVIDIA nForce4 Ultra chipset, 1GB RAM, a Western Digital 
WD2500JD 250GB 7200RPM SATA disk (without command 
queuing), and the nForce4 Ultra native Gigabit NIC (without 
hardware TCP offload acceleration). Singularity ran with a non-
concurrent mark-sweep collector in both the kernel and processes 
(including drivers) and a simple round-robin scheduler.   

4.1 Micro Benchmarks 
 The micro benchmarks (Figure 4) report the cost of low-level 
systems operations, relative to the SIP-Phys configuration. The 
“ABICall” benchmark measures the cost of a simple call on the 
Singularity kernel. The “PageAlloc” benchmark measures the cost of 
allocating and committing one page of memory. The “CreateThread” 
benchmark measures the cost of creating a thread in an existing 
process. The “ThreadYield” benchmark measures the cost of 
scheduling a thread in a process. The “CreateChannel” benchmark 
measures the cost of creating a channel. The “NameBind” benchmark 
measures the cost of binding a channel to a name in the system’s 
name server. The “CreateProc” benchmark measures the cost of 
creating a process. The “SR” benchmarks measures the cost of 
sending and receiving a message (1, 32, 1K, and 32K bytes, 
respectively) between two threads in the same process. The “PSR” 
benchmarks measures the same scenario between threads in distinct 
processes. Numbers are the average time (in cycles) to execute a test 
20,000 times, except ABICall, PageAlloc, and CreateProc, which 
executed 10,000, 1,000, and 100 times, respectively. 

The cost of these benchmarks increase dramatically when virtual 
memory and processor privilege levels are implemented (SIP-Page 
and HIP-R3, respectively). The performance effects of separate 
address spaces are minor. For example, the ABICall benchmark 
shows that privilege levels increase the cost of a process-kernel 
transition by a factor of 3.8 (80→304 cycles: SIP-Page→HIP-R3). 
Similarly, the PageAlloc benchmark shows that maintaining page 
tables increases the cost of allocating a page of memory by a factor of 
4.9 (385→1876: SIP-Phys→SIP-Page). Processor privilege levels 
further increase this cost by 30% (2,198: HIP-R3).  

For other benchmarks, page tables increase the cost of creating a 
thread by a factor of 2.4 (16,933→41,406 cycles: SIP-Phys→SIP-
Page), creating a channel by a factor of 2 (4,007→7,940), binding a 
channel by 24% (39,067→48,251), and creating a process by 35% 
(388,162→522,727). Changing address spaces has relatively little 
effect on these benchmarks, except that name binding increases in 
cost by 18% (48,381→57,276: HIP-R0→HIP-R0-S) and process 
creation by 14% (520,473→593,418) when each process runs in its 
own domain. Implementing privilege levels has a larger effect. 
Creating a thread becomes 83% more expensive (41,616→76,188: 
HIP-R0→HIP-R3), creating a channel becomes 90% more expensive 
(8,192→11,784), name binding 81% more expensive 
(48,381→75,819), and process creation 60% more expensive 
(520,473→830,999). 

The cost of communication is dependent on the system configuration 
and message size. Implementing virtual memory increases the cost of 
a one-byte intra-process communication by approximately 33% 
(984→1,306 cycles: SIP-Phys→SIP-Page) and a one-byte inter-
process communication by 36% (1,041→1,415 cycles: SIP-
Phys→SIP-Page). Separate address spaces in kernel domains have 
relatively little effect on communication cost. However, implementing 
privilege levels increases the cost a one-byte intra-process 
communications by 94% (1,312→2,534: HIP-R0→HIP-R3) and a 
one-byte inter-process communication costs by 41% (1,826→2,580: 
HIP-R0→HIP-R3). The effect of copying data, as opposed to pointer 
passing, is illustrated by inter-process communication in HIP-R3-S, 

Figure 4. Microbenchmark performance.  
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which is 3.9 – 9.6 times as expensive as HIP-R3, in which the 
communicating processes are in the same protection domain. 

4.2 Other Systems 
To validate these results, we compared simple operations on 
Singularity and several other operating systems. We used FreeBSD 
5.3, Red Hat Fedora Core 4 (kernel version 2.6.11-1.1369_FC4), and 
Windows XP (SP2). 

Table 1. Cost of basic operations. 

Cost (CPU Cycles)  

ABI Call Thread yield PSR-1 Create Proc 

Singularity 
SIP-Phys 80 365 1,041 388,162 

Singularity 
HIP-R3 304 638 2,580 830,999 

FreeBSD 878 911 13,304 1,032,254 

Linux 437 906 5,797 719,447 

Windows 627 753 6,344 5,375,735 

 

Table 1 reports the cost of the basic operations in Singularity and 
three other operating systems. On the Unix systems, the ABI call was 
clock_getres(), on Windows, it was SetFilePointer(), 
and on Singularity, it was ProcessService 
.GetCyclesPerSecond(). All these calls operate on a readily 
available data structure in the respective kernels. The Unix thread 
tests ran on user-space scheduled pthreads. Kernel scheduled threads 
performed significantly worse. The “PSR-1” measured the cost of 
sending a 1-byte message from one process to another and then back 
to the original process. On Unix, we used sockets, on Windows, a 
named pipe, and on Singularity, a channel. 

Basic thread operations in Singularity, such as yielding the processor 
or synchronizing two threads, are comparable or slightly faster than 
the other systems. Nevertheless, because of Singularity’s SIP 

architecture, cross-process operations run significantly faster than in 
the mature systems. Calls from a process to the kernel are 5–10 times 
faster on Singularity, since the call does not cross a hardware 
protection boundary. A simple RPC-like interaction between two 
processes is 4–9 times faster. And, creating a process is 2–14 times 
faster than the other systems. 

Singularity is a new system and its performance has not been heavily 
tuned. Nevertheless, this comparison shows that Singularity’s 
implementation is competitive with commercial operating systems, 
and helps validate the Singularity measurements. 

4.3 Macro Benchmarks 
We used two macro benchmarks to measure the overall performance 
of the various system configurations. The first benchmark (“Bartok”) 
was an execution of the Bartok compiler compiling the Singularity 
kernel. The kernel is approximately 165,000 lines of code (1.6MB of 
MSIL) and compiles in approximately 40 seconds. The compiler is a 
single process that uses hundreds of megabytes of memory, so this 
benchmark consists of a single memory-intensive process with little 
inter-process communication. The other benchmark (“WebFiles”) is a 
synthetic program that replays the file accesses that occur during the 
SPECWeb99 benchmark. It consists of a modified SPECWeb client 
that directly accesses the file system, without invoking a web server. 
This benchmark reads 50,000 files consuming 50.3MB of disk space. 
On Singularity, a file read involves several processes (the application, 
the file system, and the disk driver), so this benchmark measures a 
communication-intensive collection of processes. 

Figure 5 reports the performance metrics for these two benchmarks 
under the different configurations. The bars labeled “Cycles” report 
their execution times, in processor clock cycles, relative to SIP-Phys 
(70 and 22.9 billion cycles for Bartok and WebFiles, respectively). 
“CPI” reports the average processor cycles per instruction, relative to 
SIP-Phys (1.29 and 1.30 CPI, respectively). “Insts Retired” reports 
the number of executed instructions, again relative to SIP-Phys (54.4 
and 17.6 million instructions, respectively). “TLB_L2_Requests” 
reports the number of L2 cache misses that result from TLB refills, 
this time relative to SIP-Page (66.0 and 20.4 million, respectively). 
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Figure 5. Macrobenchmark performance. Metrics are relative to SIP-Phys, except for TLB cache misses, which are relative to SIP-Page. 
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The compute-intensive Bartok benchmark incurs an overhead of 
approximately 2.5% (in cycles) due to TLB misses in all system 
configurations, except the base configuration, SIP-Phys, which does 
not use the TLB. The non-SIP-Phys configurations incur a TLB miss 
approximately every 1080 instructions and execute approximately 2% 
more instructions than the base configuration. The cost of processing 
these misses is unaffected by the protection mechanisms, since most 
of this benchmark executes in a single process. 

The picture is very different for the other benchmark. The 
performance of WebFiles is considerably reduced by hardware 
protection boundaries, because this benchmark heavily exercises 
context switching and communications. The SIP-Page configuration 
runs 6.3% slower than the baseline, as it executes 8% more 
instructions and has 20 million caches misses due to TLB refills. 
Adding protection domains (HIP-R0) decreases performance by 
another 12.6%., relative to SIP-Phys. The number of instructions does 
not change over SIP-Page, but cache misses due to TLB refills 
increase by a factor of almost 6 times. Adding privilege levels (HIP-
R3) increases the execution time by another 14.0% relative to SIP-
Phys, which is a combination of executing 11.9% more instructions 
and 16.8% more cache misses. Overall, HIP-R3 executes 33.0% more 
cycles than SIP-Phys and 25.1% more cycles than SIP-Page. Isolating 
every process in its own domain (the microkernel solution) further 
increases the hardware overhead. HIP-R3-S executes 37.7% more 
cycles than SIP-Phys and 29.6% more cycles than SIP-Page. 

4.4 Software Safety Overhead 
To measure the overhead cost of the run-time tests needed to ensure 
language safety for SIPs, we prevented the Bartok compiler from 
generating these tests and reran the two macro benchmarks. These 
tests were the code generated for array references, pointer 
dereferences, value unboxing, and type casts. Without these safety 
checks, the Bartok benchmark executed 4.5% fewer cycles and the 
WebFiles benchmark executed 4.7% fewer cycles. The run-time 
overhead of language safety is slightly higher than hardware isolation 
for the Bartok benchmark and far lower than hardware isolation for 
WebFiles. However, language safety offers important benefits not 
provided by hardware process protection, for example, detecting in-
process errors such buffer overruns.  

5. CONCLUSION 
Virtual memory hardware is a powerful, multi-faceted mechanism, 
which originally permitted the implementation of demand paging in 
an era of small memories and eventually became the default 
implementation for process isolation. Although most operating 
systems implement isolation with this mechanism, its limitations, both 
in performance and protection granularity, make alternative protection 
mechanisms worth considering. This paper describes two new 
mechanisms and compares them directly against conventional 
systems. A software isolated process (SIP) is a process whose 
boundaries are established by language safety rules and enforced by 
static type checking. With proper system support, SIPs can provide a 
low cost isolation mechanism that provides failure isolation and fast 
inter-process communication. Protection domains are hardware-
enforced address spaces, which can contain one or more SIPs. 
Domains can either run at the kernel’s privilege levels and share an 
exchange heap or be fully isolated from the kernel and run at the 
normal application privilege level. These two mechanisms can be 
flexibly combined in hybrid arrangements that balance the security of 
hardware isolation against its costs. 

As techniques become available to ever more thoroughly verify the 
safety of software isolation techniques, hardware isolation may 
become less and less necessary in practice. In the meantime, 
Singularity allows hybrid system architectures that are more efficient 
than hardware protection alone, but provide in-depth protection 
against isolation failures. This paper also identifies an opportunity to 
revisit the design of MMUs: in situations where full hardware 
protection is not used, it may be possible to streamline the remaining 
virtualization functions. 
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