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Abstract

Programming, understanding, and tuning the performance
of large multiprocessor systems is challenging. Experts
have difficulty achieving good utilization for applications
on large machines. The task of implementing a scal-
able system such as an operating system or database on
large machines is even more challenging. And the impor-
tance of achieving good performance on multiprocessor
machines is increasing as the number of cores per chip in-
creases and as the size of multiprocessors increases. Cru-
cial to achieving good performance is being able to under-
stand the behavior of the system.

We have developed an efficient, unified, and scalable
tracing infrastructure that allows for correctness debug-
ging, performance debugging, and performance monitor-
ing of an operating system. The infrastructure allows
variable-length events to be logged without locking and
provides random access to the event stream. The infras-
tructure allows cheap and parallel logging of events by
applications, libraries, servers, and the kernel. The in-
frastructure was designed for K42, a new open-source re-
search kernel designed to scale near perfectly on large
cache-coherent 64-bit multiprocessor systems. The tech-
niques are generally applicable, and many of them have
been integrated into the Linux Trace Toolkit. In this paper,
we describe the implementation of the infrastructure, how
we used the facility, e.g., analyzing lock contention, to un-
derstand and achieve K42’s scalable performance, and the
lessons we learned. The infrastructure has been invaluable
to achieving great scalability.
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1 Introduction

The importance of being able to understand the behavior
of a system in order to achieve good multiprocessor per-
formance has long been understood. As multiprocessors
have grown in complexity, understanding system behav-
ior has become more important. Many operating systems
did not contain in their original design a mechanism to
understand performance. Many times, as those systems
evolved, different tailored mechanisms were implemented
to examine the portion of the system that needed eval-
uation. For example, in Linux, there’s a device-driver
tracing infrastructure, one specific to the file system, the
NPTL trace facility, one-off solutions by kernel develop-
ers for their own code, plus more-general packages in-
cluding oprofile, LKST, and LTT. Even commercial op-
erating systems often had several different mechanisms
for obtaining tracing information, for example, IRIX had
three separate mechanisms. Some of these mechanisms
were efficient, but often they were one-off solutions suited
to a particular subsystem and were not integrated across
all subsystems.

Part of the difficulty in achieving a common and effi-
cient infrastructure is that there are competing demands
placed on the tracing facility. In addition to integrating
the tracing infrastructure with the initial system design,
we have developed a novel set of mechanisms and in-
frastructure that allows us to use a single facility for cor-
rectness debugging, performance debugging, and perfor-
mance monitoring of the system. The key aspects of this
infrastructure are the ability to log variable-length events
in per-processor buffers without locks using atomic oper-
ations, and given those variable-length events, the ability
to allow random access to the data stream. The infras-
tructure when enabled, is low impact enough to be used
without significant perturbation, and when disabled has
almost no impact on the system, allowing it to remain al-
ways ready to be enabled dynamically.

The K42 project[2] is developing a new open-source
operating system kernel incorporating innovative mech-
anisms and policies and modern programming technolo-
gies. K42 is designed to scale up to 64-bit machines with
thousands of processors and down to ubiquitous 2- to 8-
way multiprocessors. Our goal is to start with a “clean
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slate” and examine the system structure needed to achieve
excellent performance in a scalable, maintainable, and
extensible system. Although we wanted to design from
scratch, we could not, and did not want to, implement all
aspects of an operating system from scratch. Further, re-
quiring applications to use a new API would make exper-
imenting with the system unpalatable to potential users.
We therefore did not introduce a new personality, but in-
stead made K42 fully Linux API- and ABI-compatible[1].

Because we designed the system from scratch, we were
able to integrate tracing and performance monitoring from
the earliest stages, allowing an efficient, unified, and scal-
able facility. Providing this integration in a mature operat-
ing system is possible, but tends to be complicated by in-
dividual developers having grown accustomed to the trac-
ing/analysis mechanisms of their subsystems. K42’s in-
frastructure allows cheap and parallel logging of events by
applications, libraries, servers, and the kernel. This event
log may be examined while the system is running, written
out to disk, or streamed over the network. Post-processing
tools allow the event log to be converted to a human read-
able form or to be displayed graphically. Lockless logging
is a key feature yielding very efficient tracing, and the uni-
fied infrastructure allows the facility to remain compiled
into the system.

We have written a set of trace analysis tools, including
one designed to allow graphical display of the data. While
the tools are not the focus of this paper they demonstrate
the power the data can provide. The description of how
we use them also provides insight into how we tuned K42
to achieve good scalable performance. One of the tools al-
lowed us, for example, to evaluate lock contention on an
instance by instance basis. It is hard to understate the im-
portance of being able to graphically view the data. This
capability has allowed us to observe performance difficul-
ties that would otherwise have gone undetected. In addi-
tion to performance tuning, as we have mentioned above,
the data can be used for correctness debugging and per-
formance monitoring.

The rest of this paper is organized as follows. Section 2
defines the goals of K42’s tracing facility and the tech-
nology we used to achieve them. Section 3 describes our
implementation using atomic primitives to avoid locking
to log variable-length events and provide random access
to the data stream. In Section 4 we describe how the tools
used the data generated by infrastructure to help us tune
K42’s performance and to debug the system. This sec-
tion demonstrates the importance of having very efficient
trace events always in the system and available to be dy-
namically enabled. Section 5 discusses related and future
work. Section 6 concludes.

2 Goals

The tracing infrastructure in K42 was designed to meet
several goals. The combination of mechanisms and novel
technology we employed allowed us to achieve the fol-
lowing:

1. Provide a unified set of events for correctness de-
bugging, performance debugging, and performance
monitoring.

2. Allow events to be gathered efficiently on a multi-
processor.

3. Allow efficient logging of events from applications,
libraries, servers, and the kernel into a unified buffer
with monotonically increasing timestamps.

4. Have the infrastructure always compiled into the sys-
tem allowing data gathering to be dynamically en-
abled.

5. Separate the collection of events from their analysis.

6. Have minimal impact on the system when tracing is
not enabled, and allow for zero impact by providing
the ability to ”compile out” events if desired.

7. Provide cheap and flexible collection of data for ei-
ther small or large amounts of data per event.

In addition to a unified tracing infrastructure, there
are other performance evaluation mechanisms that can be
used to understand operating system and machine perfor-
mance. These fall into two classes: 1) operating system
counters/record keeping data, e.g., the number of page
faults in a given process and 2) hardware counters, e.g.,
cache misses. Both of these mechanisms are outside the
scope of the tracing facility, though trace events may be
used to log information gathered by such counters and
later analyzed.

By doing so, the trace infrastructure may be used
to study memory bottlenecks, memory hot-spots, and
other I/O interactions by logging hardware counter events.
e.g. cache-line misses. Integrating the hardware counter
mechanism and the tracing infrastructure allows the coun-
ters to be sampled and understood at various stages
throughout the programs or operating systems execution
yielding a better understanding of system behavior.

Lockless event logging for achieving goals 1-4 and 7

The ability to log with acquiring any locks, events helps
achieve many of the goals we set for K42’s tracing infras-
tructure. Because logging is cheap and does not require
locks, it can be used for purposes ranging from perfor-
mance monitoring to correctness debugging. The lock-
less nature of the logging is a key aspect to being able
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to share a single unified buffer across kernel, application,
and server space. Further, the lockless algorithm allows
variable-length events to be logged, facilitating logging
small or large events.

Using a single buffer and lockless event logging intro-
duces potential integrity and security issues. The buffer
integrity issues are discussed in detail in Section 3.1.
Our algorithm guarantees users cannot cause the kernel
to crash or perform an errant write. Users can, however,
write over parts of the buffer containing kernel or other
user data. Therefore, this scheme is not suitable for au-
diting applications. Security concerns of a user having
access to another user’s or kernel’s data can be addressed
by backing the trace buffer of each process with differ-
ent underlying physical memory similar to the relayfs[18]
channel scheme in Linux.

Flexible and unified events for achieving goals 1 and
5-7

Other operating systems have used different infrastruc-
tures to gather events for correctness debugging as op-
posed to performance debugging or monitoring the sys-
tem. Some even have multiple ways to gather information
for either or both of performance debugging and monitor-
ing. There is a trade-off in determining the number and
kind of tracing facilities to incorporate. If the tracing fa-
cility is tailored to the specific needs of what it will be
used for, then it will more closely match requirements of
that use (correctness debugging for example).

We contend, however, that a unified and flexible system
can provide the same capabilities while yielding advan-
tages. Multiple systems for gathering events have a couple
of disadvantages. In places where an event is important to
multiple systems, more than one event needs to be logged.
Also, to log that event correctly at each trace point in the
code, the programmer has to know which system the event
is intended for. This places an unnecessary burden on the
programmer and can lead to errors. In code with multi-
ple trace systems, it is typical to find more than one event
logged at places throughout the code causing additional
negative performance implications. Multiple trace logs
complicate post-processing tools. Designing one flexible
efficient system provides better performance, is simpler to
code and simpler to update, and yields more understand-
able trace logs.

With the unified K42 tracing infrastructure, the pro-
grammer logs all important events to a single trace buffer,
and separately, analysis tools using the data can decide
which events to display for a given purpose. Having a
unified facility allows a single check to be applied over
all the tracing events to determine whether to trace or not,
thereby reducing the impact on the system when tracing is
inactive. A single facility also provides a more convenient

mechanism by which to compile out all events.
One of the key advantages to a unified facility is illus-

trated by an example from our experience. In a partic-
ular performance debugging session, we were observing
long lock hold times from our lock contention analysis
(see Section 4.6). Because we had integrated scheduling
events (in some systems these would be different mech-
anisms), we were able to see that there were context
switches between the lock acquire and release events al-
lowing us to understand what was actually occurring to
cause the unexpected long hold times.

User-mapped per-processor buffers and control struc-
tures for achieving goals 2 and 3

In K42, good multiprocessor tracing performance is
achieved by storing all the frequently referenced tracing
data structures in memory bound to a specific processor.
This allows all accesses to trace structures on separate
processors to be independent, thereby yielding good scal-
ability. To allow fast logging of events from user space,
these control structures, containing for example the cur-
rent index, and the trace buffers themselves, are mapped
into each application’s address space. On hardware archi-
tectures allowing it (e.g. PowerPC, MIPS), timestamps
are obtained via a cheap user-level interface.

A process may be migrated in the middle of logging a
trace event, potentially garbling the buffer on one or both
of the processors involved in the migration. Though we
have a couple of solutions (disabling migration, or just
ensuring all data is written to the old buffer) we have not
implemented them in K42 because the probability of this
occurring is reduced by K42’s emphasis on locality, K42’s
Linux emulation layer[1], and the fact that kernel threads
do not migrate.

Variable-length events for achieving goals 1 and 7

Each event logged in K42 can be of a different size. There
are trade-offs between using fixed-length or variable-
length events. Fixed-size events allow for simpler logging
and reading out as the consumer of events always knows
the starting point of an event. This allows validity bits to
be used, and allows invalid events to be skipped. Fixed-
length events allow easy random access to the data stream,
aiding reading and displaying large trace files. The disad-
vantages of fixed-length events are that they waste space,
they take longer to write (to disk or network) because ex-
tra data needs to be written for short events, and they make
it complicated to log data that is larger than the fixed size.
K42 obtains the benefits of variable-length events while
retaining random accessibility. It does so by ensuring
that events never cross medium-scale alignment bound-
aries. We insert filler events as necessary to align the event
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stream. Trace analysis tools can skip to any of the align-
ment points in a large trace. This technique provides the
advantages of variable-length events and still allows fast
access to all parts of a large trace (more details in Sec-
tion 3.2).

Major and Minor IDs and a single word trace mask
for achieving goals 4-6

Trace events are assigned major and minor IDs. By lim-
iting the number of major classes to 64, a single com-
parison of a major class bit against a trace mask variable
can determine whether an event should be logged. The
major ID is a constant value, and because the trace mask
variable is frequently referenced it remains “hot” and no
cache misses are incurred. This provides an inexpensive
method for determining whether to log an event, allowing
the infrastructure to always be compiled in. As described
in Section 4, in K42 we left the tracing infrastructure in,
but inactive, even when gathering benchmarking results.

3 Implementation

There are several key aspects to achieving efficient
variable-length event logging from kernel and user space
on a multiprocessor. In this section we describe the lock-
less logging algorithm, our variable-length event strategy,
and some details of K42’s tracing infrastructure; more de-
tails can be found in Auslander et. al.[3]

3.1 Lockless Event Logging

Previous lockless logging schemes[15] used fixed-length
events with valid bits. As described in Section 2 there
are several advantages to using variable-length events (as-
suming the random access problem is solved). In K42 we
designed and implemented an algorithm to allow us to log
variable-length events without locking.

Conceptually, each process attempts to reserve enough
space in the buffer immediately after the current index
for the event it intends to log. Once the process makes
a successful reservation, it may proceed to log its data.
To reserve space, a process attempts to atomically incre-
ment the current index using a compare and store.
The process that successfully increments (as determined
by the return value of the compare and store oper-
ation) the index has the right to proceed to log data into
the buffer. Failing processes retry. Figure 1 shows on
the left, in step 1, two processes, A and B, attempting to
log events of different lengths after the current index from
the initial configuration in step 0. Each process attempts
to atomically increment the current index by the size of
the event being logged. The winner, in this case process

B, will log the event immediately following the old cur-
rent index (see step 2). This will be followed by process’s
A data, assuming no other competing processes attempt
to log more data (see step 3). Because it is important
to guarantee monotonically increasing timestamps, pro-
cesses must re-determine the timestamp during each at-
tempt to atomically increment the index. If the timestamp
was not determined as part of the atomic reserve operation
then that process may be interrupted by another process
execute this code and get the next slot in the buffer, but
obtains an earlier timestamp.

The memory for logging trace events is logically di-
vided into buffers. The size of this buffer in K42
determines the alignment boundary mentioned earlier.
Once a buffer is full, the logging facility proceeds to
the subsequent buffer, and the previous buffer is avail-
able to be written out (to disk or network). The
pseudo code appears in Figure 2 and complete open-
source C code can be obtained by downloading K42 at
http://www.research.ibm.com/K42.

Although the lockless scheme has good performance,
there are potential complications that arise from using the
algorithm. A process’s execution may be interrupted after
it has reserved space to log an event, but before it actually
performs the log. The interruption can occur because the
process is preempted, blocks for a long time, or is killed.
Depending on when (where in the sequence of code in
Figure 2) the process is interrupted, different problems oc-
cur. If the process has had a chance to write the trace event
header, but not the data, then only the data will be unre-
coverable. If, however, the process has not yet logged the
event header, then it is possible the rest of the buffer will
be uninterpretable (our tools have ways of handling this
situation). Only by locking, making the kernel perform
the log, and disabling interrupts can this problem be pre-
vented (there are low-level kernel events, in kernel code
that runs disabled, that would still exhibit the problem, for
example tracing NMIs - Non-Maskable Interrupts). There
are a set of possible methods to ameliorate the difficulties.

If the process’s execution was interrupted due to pre-
emption, then it is likely the process will run again soon
and finish filling in the event before another entity notices,
thus posing no real problem. If the process was killed,
then the data will not finish being logged. The last line
of pseudo-code detects this situation. The traceCom-
mit function updates a per-buffer count of the amount
of data that has been logged to that buffer. The count is
zeroed during the start new buffer code. When
the code responsible for writing the data (to a network
stream, file, etc.) writes this buffer, it can compare the
amount of data logged to this buffer, with the buffer’s
size and report an anomaly if they do not match. If the
process was interrupted because of a long-blocking oper-
ation, it is possible that both the current buffer will not
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proc A

B A

proc B

B 2

3

current index

current index

current index

current index

current index
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0

Figure 1: Illustration of Lockless Event Logging
traceReserve(length, *indexPtr, *timestampPtr)

integer: oldIndex, newIndex
TrcCtl: *trcCtlPtr

update trcCtlPtr
do

oldIndex = trcCtlPtr->index
newIndex = oldIndex + length
if (newIndex >= buffer end)

traceReserveSlow(length, indexPtr, timestampPtr)
// generates filler event, sets timestamp, moves to new buffer

return
*timestampPtr = getTimestamp()

while (!CompareAndStore(&(trcCtlPtr->index), oldIndex, newIndex))
*indexPtr = oldIndex & INDEXMASK // confine index to buffer bounds

traceLog(majorID, minorID, data)
integer: index, timestamp, length

length = length of data + 1 // for header word
traceReserve(length, &index, &timestamp)
trcArray[index] = logTraceEvHeader(timestamp, length, majorID, minorID)
trcArray[index+1 ... index+length-1] = data
traceCommit(index, length) // optional, see explanation in text

Figure 2: Pseudo Code for Lockless Event Logging

have enough data logged, and that the same buffer, when
reused in the future, will have too much (because the long-
blocked process was unblocked and logged data into a re-
cycled buffer). Again the per-buffer counts can detect this
situation.

The chance of an error is small and highly dependent
on the application mix that is run. For large scientific ap-
plications running one thread per processor, such errors
will not occur. The probability increases on systems with
a high degree of multiprogramming, i.e., those context
switching between many applications. We have run en-
tire benchmark suites without incurring any errors. With
high probability (it is unlikely that random data will have
the correct format of a trace event header) errors can be
detected by the post-processing tools.

We have also considered other cheaper (than locking
and disabling) mechanisms to eliminate such errors. In
addition to a per-buffer count there are other possible
ways to detect or minimize the occurrence of garbled data.

For example, it is possible to set a flag in a process data
structure and have the kernel avoid finishing killing a pro-
cess if this flag is set. Other possibilities include cheaply
zero-filling a buffer before use, or keeping a side array of
valid bits for the header data.

In practice, the probability of garbling a buffer, and the
ease with which tools can handle the situation, reduces its
importance except perhaps in mission-critical code where
obtaining every event is necessary.

3.2 Additional Tracing Infrastructure

Variable-length events with random access to data
stream

As described in Section 2, variable-length events have ad-
vantages over fixed-length events. They allow more ef-
ficient writing of data, and they allow large events to be
easily and efficiently logged. However, they interfere with
the ability to randomly access the data stream. Tracing
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files can become large; gigabytes per processor is com-
mon. Post-processing tools should not be forced to scan
through the entire file when trying to display, for example,
a middle 5 seconds of a program’s execution.

In K42 we allow both variable-length events and ran-
dom access to the file by ensuring that events never cross
medium-scale (much larger than event sizes, but much
smaller than file sizes) alignment boundaries, e.g. 128KB
boundaries. We insert filler events as necessary to align
the event stream at these points. Trace analysis tools can
skip to any of the alignment points in a large trace and
can begin interpreting events from that point. A filler
event is just a header with a length equal to the remain-
der of the current buffer; no data need be logged. We have
found empirically that 30 to 40 percent of events end ex-
actly on a buffer boundary and because there are very few
events larger than 4 64-bit words, this alignment in prac-
tice wastes very little space.

This technique does not provide completely random ac-
cess, but is a close enough approximation that it allows
post-processing tools to make it appear to the end user
that the stream is completely random access.

Details of the Implementation

In this section, we present enough details of the tracing
infrastructure to allow an understanding of the different
uses of the facility presented next. More detail is available
in our Performance Monitoring white paper[3], and in the
code itself.

Trace events are assigned major and minor IDs, with a
maximum of 64 major IDs. Trace log statements resolve
to in-line functions that check a 64-bit trace mask to de-
termine if tracing of a particular major ID is currently en-
abled. Thus, no functions calls are made in the case trac-
ing is disabled. Further, the major ID is a constant, and
the frequently used trace mask remains hot, so in practice
no cache misses occur.

A trace event is broken up into a series of 64-bit words.
The first word contains 32 bits of timestamp, 10 bits in-
dicating the length, 6 bits for the major ID, and 16 bits
of major-class-defined data, typically a minor ID. Fol-
lowing the first word are 0 or more 64-bit data words.
We chose to log only 64-bit words because on some ar-
chitectures smaller loads can be expensive, and because
the vast majority of data being logged are 64-bit values
or addresses. Macros provided with the tracing facility
will pack multiple smaller quantities in one 64-bit tracing
word, if needed.

The major ID classification also provides ease of
adding additional events. Major classes are associated
with subsystems within the operating system, traceMem
for the memory subsystem, traceProc, and traceIO,
etc. When an additional event is added, only files in the

affected subsystem need to be recompiled. Per-major-ID
macros allow events with a constant number of data words
to be logged efficiently, without the use of variable argu-
ment functions. Events with non-constant-length data are
logged using a generic function per major ID.

Efficiency of the Implementation

In addition to designing per-processor buffers to achieve
a scalable multiprocessor implementation, we have care-
fully constructed the logging of each individual event to
be as optimized as possible. Further, to achieve our goal
of always leaving the tracing statements in the code, the
mask provides a cheap way to determine whether to log
an event or not.

The cost of checking the trace mask is 4 machine in-
structions. When running, and even when benchmarking
K42, (for example, see the SPEC SDET graph in sec-
tion 4) we leave the trace statements in. The overall per-
formance degradation is less than 1 percent.

The majority of trace events are logged from C code.
Logging a trace event in C takes between 70 and 80 Pow-
erPC instructions. A 1-word 64-bit event requires 91 cy-
cles ( 100 ns on a 1GHZ processor) with 11 cycles for
each additional 64-bit word logged. We have not yet im-
plemented optimized assembler code for generating trace
events, except on critical code paths that are already coded
in assembler. On these hand-optimized paths, logging a
trace event requires about 30 instructions, including 6 in-
structions to update the per-buffer count.

4 Uses and Lessons
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Figure 3: Results of running SDET on K42 and Linux on
a 24-way multiprocessor

The tracing facility has been invaluable in helping us to
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achieve good scalability. Some of the important features
that have allowed the facility to be so effective are its low
perturbation when enabled, allowing us to trace informa-
tion like lock contention (see Section 4.6) or a fine-grain
breakdown of the costs of different system calls (see Sec-
tion 4.7). In addition, developers have used its features
for correctness debugging (see Section 4.2). We have de-
veloped graphical tools to display the data as well (see
Section 4.3). Some of the technology from K42’s trac-
ing infrastructure has been incorporated into Linux (see
Section 4.1).

In this section we describe how we have used the facil-
ity to allow us to improve scalability in K42. The tech-
niques we applied are applicable to supercomputing sys-
tems in general. The use of per-processor buffers, non-
locking atomic event logging, cheap user-space logging, a
single unified structure, etc., are techniques that could be
applied in systems other than K42 and Linux.

We begin the section by describing our experience with
the tools on a specific application. Figure 3 is a graph
showing our experiment based on the SPEC SDET (Stan-
dard Performance Evaluation Corporation’s Software De-
velopment Environment Throughput) benchmark. Briefly,
this experiment runs a series of independent scripts that
simulate a typical Unix time-shared environment by run-
ning commands such as awk, grep, and nroff. More
details of the experiment may be found in Appavoo et.
al.[1]. As evidence of the low impact of the tracing infras-
tructure, the data for the K42 graph shown in this figure
was taken with the trace infrastructure compiled in.

When we made our first measurements of this experi-
ment, K42’s performance did not scale well. Though K42
was designed to scale near perfectly, quick or incomplete
implementations of different code paths led to poor scal-
ing. Further, our uniprocessor numbers were worse than
Linux’s. The challenge of achieving the performance il-
lustrated in Figure 3 required utilizing the data tracing in-
frastructure and several of the tools described throughout
this section.

The graphics tool helped us discover several perfor-
mance problems. With it we noticed large idle periods
on many processors when the benchmark started. These
idle periods were clearly visible using the graphics visu-
alizer but would have been difficult to discover via other
methods. The excessive idle periods were caused by poor
coordination between the timing and start routines of the
benchmark. Another helpful feature of the graphics tool
was the its ability to display throughout the benchmark’s
execution the points at which particular events occurred,
thus allowing a sense of the benchmark’s behavior to be
achieved rapidly. In a similar manner, we used the graph-
ics visualizer to help us determine what happened when
our lock behavior degraded abruptly.

It was the lock analysis tool, which allowed us to un-

derstand and pinpoint the bottleneck locks, that proved to
be most valuable in helping us achieve scalability. We
went through a series of iterations where we used the lock
analysis tool to determine the most contended lock in the
system, fixed it, and then ran the tool again to identify the
next most contended lock. We performed this operation
until there were no more seriously contended locks.

We also used tracing to study our uniprocessor perfor-
mance using a tool that produces a fine-grained analysis
of elapsed time. A breakdown of page faults indicated
that we needed to improve fork performance, which we
accomplished by replicating state lazily in the child after
a fork. The tool also allowed us to understand whether the
behavior degradation (with respect to Linux) was coming
from the user code, our Linux emulation code, or our ker-
nel code. Throughout the process, the single tracing in-
frastructure was able to provide the data needed by the
various tools described in this section.

It is interesting to note that there was some resistance
early in the effort by core kernel developers (much the
same as in the Linux kernel development community and
previous operating system development efforts) as they
did not perceive the usefulness of these tools in under-
standing system behavior. The usefulness of the tools
however was proved over time as they allowed us to
quickly and effectively tune the system. Many of the core
kernel developers had used some tools on previous operat-
ing systems projects including Hurricane, IRIX, AIX, and
Linux, but the efficiency, pervasive subsystem coverage,
and ease of use of the infrastructure allowed quicker and
more effective performance optimizations. In the rest of
this section we examine the various tools that utilize the
data provided by the tracing infrastructure.

4.1 LTT and relayfs

The Linux Trace Toolkit (LTT)[17][16] is the most-used
tracing facility in Linux. Although LTT is not currently
part of the kernel, it is included in many of the popular
distributions, including UnitedLinux, MontaVista, Lineo,
Debian, ELinos, and Denx, and efforts are underway to
have it included it in the kernel. In the last year, several
aspects of the technology described above have been in-
tegrated into LTT with positive results. More recently,
relayfs[18], a mechanism for transferring data from ker-
nel to user space in Linux, has also incorporated aspects
of K42’s tracing technology.

An order of magnitude performance improvement was
achieved when this technology was applied to Linux.
The three primary aspects providing this performance
improvement were the lockless logging of events, per-
processor buffers, and more efficient timestamp acquisi-
tion. Cheap user-mapped buffers are currently under de-
velopment.
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Figure 4: Graphical Viewing Tool

8
Proceedings of the ACM/IEEE SC2003 Conference (SC’03) 
1-58113-695-1/03 $ 17.00 © 2003 ACM 

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2009 at 08:37 from IEEE Xplore.  Restrictions apply.



The default option in LTT is now to use the lockless
logging though the locking option is still available. The
locking option, which disables interrupts and process-
state transitions, though slower, provides a greater like-
lihood that events will not be garbled. There are how-
ever, still cases when the locking scheme may lose events.
The LTT mechanism has been extended to use a sepa-
rate buffer per processor. On PowerPC hardware plat-
forms (where K42 was developed) a cheap synchronized
clock is available. However, x86 architectures do not pro-
vide such a clock. Instead, LTT logs the cheaply avail-
able tsc with each event, and only at the beginning and
end is the more expensive get time of day call made
allowing synchronization between different processors’
buffers through interpolation of the tsc values between
the get time of day values.

4.2 Correctness Debugging

In addition to performance tuning, the tracing facility was
designed to be used by kernel and applications develop-
ers to help correctness debug the system. A feature of
the design aiding this effort is management of the trace
array for each processor as a circular buffer. When the
buffer becomes full new events overwrite old events so
that if the kernel should crash, the most recent activity
recorded by the tracing infrastructure is available. This
“flight recorder” functionality can be accessed from the
debugger via a function call that prints out the last set of
trace events. It has features to show only certain type of
events and has control as to how many events it displays.
If the kernel is not stable enough to call this function, a
crash dump tool can access the trace log providing similar
functionality. We have not implemented the crash dump
tool yet.

System developers have used the trace facility to cor-
rectness debug the system. For example, a deadlock in
the file system space was tracked down with the tracing
facility. To discover the deadlock, it was important to
track the order of all the different requests being received
from the file system’s numerous clients. A printf solu-
tion would both have been too clumsy and would have
changed the timing thereby masking the deadlock. In-
stead, a trace file was produced and post-processed to de-
tect where the cycle had occurred.

Because of the ease of adding additional events and the
efficiency with which they are logged, other developers
have used the tracing facility to obtain statistics about the
relative frequency of different paths taken through code.
A typical alternative solution would have been to design
a one-off counter solution that would have been removed
once the information was gathered. Because the tracing
facility was cheap and easy enough to use, it made this
process simpler.

4.3 Graphical Analysis

It is hard to understate the importance of a graphical tool
in understanding the data. Certain behavior does not be-
come evident unless the data is visualized. We have ar-
gued many times with kernel developers who claim not
to need any such capability, but inevitably the graphic
and/or performance analysis tools turn up a previously un-
suspected problem and the developer becomes a convert.
This has been true in both the current and past operating
systems we have worked on. The graphical tool we have
developed has focused on helping us understand operating
system behavior. In addition, we are working to convert
K42’s trace file to one the LTT visualizer understands.
The data could certainly feed machine- or application-
centric graphical tools.

The screen snapshot shown in Figure 4 shows the pri-
mary view of the kmon visualization tool. The timeline
in the top middle provides a bird’s eye view of the events
occurring in the system. The timeline view provides the
developer with a visual sense of what is occurring in the
system and how active the system is. The user can zoom
in or out to get a sense of the system behavior at different
granularities.

Other aspects of the tool allow specific events to be
marked and counted. In Figure 4, two such events
have been selected. TRACE USER RUN UL LOADER
(difficult to see in a black and white printing) and
TRACE USER RETURNED MAIN are events indicat-
ing initialization and termination of a process. The graph-
ical tool, when the mouse is clicked in the timeline area,
will produce a listing of every event that occurred around
the time period the mouse was clicked in. A sample listing
appears in Figure 5. There are considerably more features
available with the tool.

The crucial feature the graphic tool provides is the abil-
ity to rapidly get a sense of system performance and to
detect quickly any anomalous behavior even if it was not
explicitly under consideration as a problem. As an exam-
ple, one time when viewing a data file, 10ms continuous
chunks of red (kernel time) were appearing. To any tool
that provide summaries or averages this would have been
in the noise because there were not that many of them.
However, they visually stood out. Once we observed the
behavior we were able to trace it down to an unexpected
poll condition and fix the behavior.

4.4 Listing of Every Event

We have a tool that takes a binary trace file and produces
the textual output shown in Figure 5 (left column is time in
seconds). The event names in the second column and the
event description in the third column, are generated from
an eventParse structure filled in when a developer de-
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21.4747350 TRC_USER_RUN_UL_LOADER process 6 created new process with id 7 name /shellServe
21.4747422 TRC_EXCEPTION_PGFLT PGFLT, kernel thread 80000000c12b0f90, faultAddr 405e628,
21.4747882 TRC_EXCEPTION_PGFLT_DONE PGFLT DONE, kernel thread 80000000c12b0f90, faultAddr 405
21.4748091 TRC_EXCEPTION_PPC_CALL PPC CALL, commID 0
21.4748530 TRC_MEM_FCMCOM_ATCH_REG Region 800000001022cc98 attached to FCM e100000000003f30
21.4748709 TRC_MEM_FCMCRW_CREATE TRC_MEM_FCMCRW_CREATE ref e100000000003f90
21.4749142 TRC_EXCEPTION_PPC_RETURN PPC RETURN, commID 600000000
21.4749247 TRC_EXCEPTION_PPC_CALL PPC CALL, commID 0
21.4749573 TRC_MEM_REG_CREATE_FIX Region default 10000000 created fixlen addr 113000
21.4749773 TRC_MEM_REG_DEF_INITFIXED region default init fixed 80000000102b7c00 addr 10000000
21.4749873 TRC_MEM_ALLOC_REG_HOLD alloc region holder addr 10000000 size 113000
21.4749962 TRC_MEM_ALLOC_REG_HOLD alloc region holder addr 10000000 size 113000
21.4750293 TRC_MEM_FCMCOM_ATCH_REG Region e100000000003fa0 attached to FCM e100000000003f90

Figure 5: Trace Event Listing from K42

histogram for pid 0x1 mapped filename servers/baseServers/baseServers.dbg
count method
904 FairBLock::_acquire()
585 HashSNBBase<AllocGlobal, 0l, 8l>::add(unsigned long, unsigned lon
386 DispatcherDefault_IPCCallEntry
265 MemDesc::alloc(DataChunk*, unsigned long, unsigned long&, unsigne
254 HashSimpleBase<AllocGlobal, 0l>::find(unsigned long, unsigned lon
227 _wordcopy_fwd_aligned
159 XHandleTrans::alloc(Obj**, BaseProcess**, unsigned long, unsigned
141 TmpRWLock<BLock>::releaseR()
135 DentryListHash::lookupPtr(char*, unsigned long, NameHolderInfo*&)
134 HashSimpleBase<AllocGlobal, 0l>::extendHash()
130 DirLinuxFS::externalLookupDirectory(char*, unsigned long, DirLinu

Figure 6: Breakdown by Time Within a Single Process

fines a new event. This structure contains a description of
the data in the event (i.e., binary data, string, and the size
of the data), and a printf-like formatted string describing
how to print it.

Complete details of the self-describing string can be
found in the source. Briefly, the structure contains 3 fields.
The first field is a macro TR(arg) that allows arg to
be used as both a constant and string by the tools. The
second field consists of a string that defines the format of
the binary data in the trace event. It has as many space-
separated tokens as there are values in the event. The
tokens can be 8, 16, 32, 64, or str, indicating 8, 16,
32, 64 bits of data or a string. The third field is a printf-
like string indicating how the data should be printed out.
The tokens from the field are numbered starting at 0 and
may be referenced in the third structure by %N[format],
where the %N indicates the numbered token from the sec-
ond field (the numbers do not need to be in order in the
third field) and the format is a printf-like string indicating
how to print the value. An example from our source code
follows:

{__TR(TRACE_MEM_FCMCOM_ATCH_REG), "64 64",
"Region %0[%llx] attach to FCM %1[%llx]"},

The structure allows tools to display events without any
special knowledge of the events themselves.

4.5 Breakdown of Time by Process

An event that logs the program counter at random times
is used to drive statistical execution profiling. Post-
processing analysis maps the pc values to C function
names and provides a sorted histogram of the routines that
were statistically most active. Figure 6 shows a lock rou-
tine leading the list. We have trace events on the locking
paths to help determine which locks account for this time
as described in the next section.

4.6 Lock Contention

A particularly important performance aspect of large mul-
tiprocessors is lock behavior. One of the powerful tech-
niques we have been able to use because of the efficient
tracing facility is the ability to trace contended lock paths.
The lock analysis tool has played a crucial role in helping
us detect when a particular lock is generating contention,
and how much that contention is affecting performance.
Figure 7 shows the data the lock analysis tool produces.
The left column is the total amount of time (over the given
run) that was spent waiting for that particular lock. The
next column is the number of times that lock was con-
tended. The spin column is the number of times we have
gone around the spin loop waiting for the lock. Spin count
can be significantly different from time if the process fails
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top 10 contended locks by time - for full list see traceLockStatsTime
time count spin max time pid

call chain
3.466320753 1209 188795433 0.012220087 0x1

AllocRegionManager::alloc(unsigned
PMallocDefault::pMalloc(unsigned
GMalloc::gMalloc()

0.684612632 573 37233770 0.007647854 0x0
AllocRegionManager::alloc(unsigned
PMallocDefault::pMalloc(unsigned
GMalloc::gMalloc()

0.104643241 11885 4910595 0.000322320 0x1
PageAllocatorDefault::deallocPages(unsig
PageAllocatorUser::deallocPages(unsigned
AllocPool::largeFree(void*,

0.075784944 8772 3526318 0.000471144 0x1
PageAllocatorDefault::allocPages(unsigne
PageAllocatorUser::allocPages(unsigned
AllocPool::largeAlloc(unsigned

Figure 7: Lock Contention Analysis

to acquire the lock and blocks to wait for it. The next
column is the maximum time a process ever waited to ac-
quire this lock. The tool will sort on any of these columns.
The next column indicates the PID the lock was associated
with (PID 0 in K42 is the kernel and 1 is baseServers[1]).
The final column is the call chain that led to the lock ac-
quisition.

4.7 Fine-Grained System Behavior

K42 tracing data is detailed and fine-grained enough to
allow us to attribute time accurately among processes,
thread switches, IPC (inter-process communication) ac-
tivity, page-faults, and transitions to and from the Linux
emulation layer in user space. Further, in each such cat-
egory, we can identify and track the page-faults that oc-
curred, and the IPC calls that were made. Within server
processes and the kernel we identify how much time is
spent servicing IPC calls made by other applications,
which is then categorized by function.

Figure 8 shows the detail we are able to achieve with
the tracing data. In this paper we do not fully describe
the data, however, it is clear that with the efficient tracing
infrastructure significant amount of detail can be obtained
and thus used to understand system behavior. In the fol-
lowing data, all times are in microseconds. The first col-
umn of numbers is the amount of time spent computing in
that code, followed by the number of times it was called,
followed by the number of events that occurred. For ex-
ample, SCexecve accumulated 209.59 usecs, was called
once, and contained 86 events. The second column rep-
resents the time and number of page faults that occurred
because of these calls. For example, SCexecve incurred
15 page faults taking 273.20 usecs. The last column rep-

resents the same data for IPCs. For example, SCexecve
made 34 IPCs with a total time of 691.53 usecs. Other
relevant data is the “Ex-process” row, which is the num-
ber and time spent on calls for this process but outside of
it (kernel and server time). Finally, at the bottom, is a list
of thread entry points containing the number of times they
were called and the amount of time they spent servicing
requests.

5 Related and Future Work

Previous work for tracing operating systems such as
AIX[5], IRIX[15], or Linux[17] have had limitations in-
cluding using fixed-length events, only allowing tracing
via system calls, requiring locking to log events, and
using inefficient timestamp acquisition. The work de-
scribed here addresses these problems and provides an im-
plementation that efficiently logs variable-length events,
does not require a system call to log an event, uses per-
processor buffers, acquires timestamps efficiently, and
provides lockless logging of events.

There has been considerable work in understanding
parallel system behavior[14][13][7][9]. A large focus of
this and other similar work[6][8][12] has been to reduce
the amount of tracing information either through statis-
tical sampling, dynamic insertion into code for areas of
current interest, or choosing a few important events.

By choosing a few key events in Choices[7] the overall
system behavior was able to be roughly understood. Other
work such as Dyninst[6] and Paradyn[8] has examined
how to dynamically insert events but was more targeted
towards application space. But even KernInst[12], which
is targeted at kernel instrumentation, has higher overheads
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pid: 3d parent: 30 lpid: 163 lparent: 157
Exec:./runtest.sh /bin/rmdir
SCbrk : 8.39/4/8 f: p: 31.16/2
SCchild : 338.43/4/120 f: 1041.17/80 p: 107.45/18
SCclose : 26.07/2/13 f: 45.42/3 p: 42.49/4
SCexecve : 209.59/1/86 f: 273.20/15 p: 691.53/34
SCexit : 13.43/1/9 f: p: 24.19/5
SCfstat : 4.78/1/3 f: p: 6.69/1
SCgetpid : 1.01/1/1 f: p:
SCmmap : 53.39/4/42 f: p: 199.94/19
SCmprotect : 0.56/1/1 f: p:
SCopen : 38.10/3/12 f: p: 60.60/3
SCread : 24.03/1/9 f: 42.04/2 p: 46.78/3
SCrmdir : 13.61/1/3 f: p: 53.92/1
SCsigaction: 10.29/6/6 f: p:
SCsigprocma: 4.54/1/2 f: 10.07/1 p:
async : 2.69/2/2 f: p:
dispatcher : 32.71/1/13 f: 87.53/7 p: 9.77/3
user : 1718.56/27/104 f: 1304.87/76 p:

0 In-process total: 2500.18/434
-----------------------------------------------------------------------------

cleanup : 929.41/1/5 f: p:
fault : 2804.31/184/186 f: p:
ppc : 1274.52/93/210 f: p:

0 Ex-process total: 5008.23/401
wall 10800.11/0

-------------------------------------------------------------------------------
CRT::ForkChildPhase2 255.32/2
DispatcherDefault::AsyncMsgHandler 4.05/3
CRT::ForkWorker 246.10/4
COSMgrObject::CleanupDaemon 185.61/2
MPMsgMgrEnabled::ProcessMsgList 3.56/1

Figure 8: Fine-Grained Behavior Breakdown

than the facility described here. This overhead is due in
part to the flexible and dynamic nature of KernInst re-
quiring springboard and overwrite instructions. Recent
work[13][14] has examined dynamic and adaptive instru-
mentation to focus collection on locally crucial aspects of
performance.

Tracing and performance tuning multiprocessor oper-
ating systems has different constraints than understand-
ing multiprocessor application performance. In operating
systems there are a series of well known events that affect
behavior, examples include context switch, I/O interrupt,
IPC, etc. The ability to rapidly trace all these frequent
events in the minimum time is key to understanding sys-
tem behavior. For understanding operating system behav-
ior, we believe a combination of highly optimized events
in well-known locations will always be important. Build-
ing on that, tools like KernInst, or a similar Linux tool
Dynamic Probes[4], will be used to complement the in-
place tracing events. In fact, for this reason, DProbes is
currently being integrated with LTT.

Even for operating systems, the importance of dynamic

tools should not be overlooked. Dynamic tools are neces-
sary when attempting to start monitoring in unanticipated
ways an already installed and running machine. We are
investigating using our hot swapping mechanism[10] to
provide this capability in K42. Though the importance of
being able to add dynamic events in the field is great, we
believe that for kernel developers tuning their own code,
the ease with which trace events can be added and the ef-
ficiency with which they operate will continue to make
them the mode of choice. Thus, the importance of having
an easy and efficient facility as described here is high.

While we have not focused on the end tools and vi-
sualization aspect, it is the most important aspect in the
final understanding of system behavior. Almost all of the
above cited work included a substantial attempt to cull
the pertinent information into a crisp graphical represen-
tation. There have been books[11] written on how to view
and analyze system performance data. Our tools have suf-
ficed to meet our current needs, but integrating them with
more powerful techniques remains an important aspect of
our continuing performance monitoring work.
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Future work

The tracing infrastructure has provided tremendous bene-
fit to us in understanding the behavior of K42 and achiev-
ing good scalability. K42 is becoming a stable platform
on which other researchers may experiment. As more fo-
cus is placed on middleware and applications, the anal-
ysis tools will need to continue to be developed to pro-
vide more application-centric information. The base in-
frastructure used to understand the system should provide
sufficient capability to gather any data needed by these
tools.

An immediate area of future work is converting the out-
put stream produced by K42’s trace facility so that it can
be read by LTT’s visual display toolkit[16]. That package
provides a nice model to understand thread interactions.
Another area we have not yet focused on, that will be
more important as our application base grows, is provid-
ing protection and security between different applications.
Currently, all data is logged to a single shared buffer. Al-
though this has good performance and analytical proper-
ties, different users may not desire to have information
about their behavior available to other users. To solve this,
we intend to map in different buffers to user applications
that do not have sufficient privileges to see all data. To
date, we have focused on using the infrastructure to under-
stand the behavior of the kernel and on helping to correct-
ness debug the system. The infrastructure was designed
to facilitate dynamic tuning of the operating system. We
are investigating how to integrate our hot-swapping[10]
infrastructure with the tracing infrastructure in order to
provide feedback for the system to tune itself.

6 Conclusions

We have developed an efficient, unified, and scalable trac-
ing infrastructure that allows for correctness debugging,
performance debugging, and performance monitoring of
a large multiprocessor operating system. Some of the key
features of the tracing infrastructure include lockless log-
ging, per-processor buffers accessible from user and ker-
nel space, variable-length events, and a randomly accessi-
ble data stream.

The tracing facility is well integrated into our code, eas-
ily usable and extendable, and efficient, providing little
perturbation of the running system. We described differ-
ent ways to analyze the tracing data including lock con-
tention analysis and graphical display. The facility has
been invaluable in helping us achieve good scalability in
K42.

K42 is under active development at IBM Watson,
and collaborating universities. Interested parties may
learn more about the project at the following web site:
http://www.research.ibm.com/K42.
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