
64 September 2005 QUEUE rants: feedback@acmqueue.com

M
ulticore is the new hot topic in the latest round of
CPUs from Intel, AMD, Sun, etc. With clock speed
increases becoming more and more diffi cult to

achieve, vendors have turned to multicore CPUs as the
best way to gain additional performance. Customers are
excited about the promise of more performance through
parallel processors for the same real estate investment.

For a handful of popular server-based enterprise appli-
cations, that may be true, but for desktop applications I
wouldn’t depend on that promise being fulfi lled anytime
soon. The expectation for multicore CPUs on the desktop
is to have all our desktop applications fully using all
the processor cores on the chip. Each application would
gracefully increase its performance as more and more pro-
cessors became available for use. Just like past increases
in clock speed and application bandwidth, increasing the
number of processor cores should produce similar perfor-
mance enhancements. It works for the popular enterprise
applications, so why not for desktop applications? Sounds
reasonable, right? Don’t count on it.

Sure, the major enterprise applications such as Oracle,
WebLogic, DB2, and Apache are designed to take full
advantage of multiple processors and are architected to
be MT (multithreaded). They have to be for the large SMP
(symmetric multiprocessing) servers that are the meat and
potatoes of their market.

Even though the concept of using concurrent CPUs to
increase overall software performance has been around
for at least 35 years, remarkably little in the way of devel-
opment tools has made it to the commercial marketplace.
As a result, the vast majority of applications are single-
threaded. Although multicore CPUs will allow you to
share a mix of applications across multiple processors,
individual application performance will remain bounded
by the speed of an individual processor. Application per-
formance will remain the same regardless of whether you
have one or 100 processors because each application can
run on only one processor at any given time.

With the possible exception of Java, there are no
widely used commercial development languages with MT
extensions. Realistically, until now there has not been
much of a need. The widespread availability of com-

mercial SMP systems did
not really arrive until the
early 1990s, and even then
multithreaded applications
came slowly.

When I was at Sun, the company rewrote SunOS to
take advantage of its new multithreading architecture.
It was a long and painful process. Initially, subsystems
were rewritten with locks at either end so they would be
assured to run as one big single thread (MT-safe) and then
rewritten again to be fully MT optimized (MT-hot) for
maximal concurrency. Everything was designed by hand
and there were no tools to manage the complexity.

Around the same time, Sun implemented a set of user
MT libraries that applications could use. As larger SMP
servers started to appear on Sun’s roadmap, the major
enterprise application vendors saw that they too had to
make the investment in converting their software to MT.
The experience was equally painful and similar to the
SunOS MT rewrite. Recognizing the need to make these
applications run MT-hot in order to sell their new SMP
servers, Sun leveraged its experience by assigning engi-
neers to these companies to help them in their migration.

The situation today is quickly becoming a replay
of what happened 10 years ago. Application vendors
requiring more CPU bandwidth can no longer count
on increased clock speeds for better performance and
functionality. Most large-scale client-side applications are
written in C or C++ and historically have been designed
to be single-threaded. Making applications MT-hot is
still a labor-intensive redelivery process. Although a few
vendors, most notably in the multimedia area, have made
some MT enhancements to their applications, they have
just started to pick off the low-hanging fruit. With multi-
core CPUs, widespread desktop performance and func-
tionality improvements are still years away.

What have the development tool vendors been doing
as MT architectures have evolved during the past decade
or so? It’s not as if anyone in the computer industry did
not see this coming. What can we expect in the future?
Given where the industry is today, the introduction of

Multicore CPUs
for the Masses

Mache Creeger, Emergent Technology Associates

Will increased

CPU BANDWIDTH

TRANSLATE INTO USABLE

DESKTOP PERFORMANCE?

curmudgeon

Continued on page 63

 QUEUE September 2005 63 more queue: www.acmqueue.com

multicore CPU-based desktop systems will stall as custom-
ers fi gure out that most of their applications run no faster
on a dual- or quad-core system than on a unicore system.
To sell more machines/CPUs, hardware vendors will have
to do what Sun did and “encourage” application vendors
to redesign their applications to be MT-hot. Desktop
application vendors who have been able to depend on
continual CPU clock increases will now have to invest
in a long and painful rewrite of their software to gain
the next jump in performance and functionality. All this
could take years. Moreover, more agile companies will
now have an opening to make MT-hot investments faster,
potentially snagging customers from incumbent vendors
that are too slow to make the transition.

What is frustrating is that all of this could have
been avoided. MT has been on the horizon for at least
a decade. Because technology companies take a myopic
quarter-by-quarter view in their planning, they missed
the bigger trend of multicore CPUs and their implications
for the desktop. As a result, the tools for MT development
are not in place as these new CPUs hit the market. With
the exception of Java’s minimal MT support, things look
fairly close to what the large enterprise application devel-
opers had to work with more than 10 years ago.

Sadly, I see the following scenario playing out. It will
take several years of pain for application developers to
rewrite their code to be MT-hot. Once a methodology for
conversion has been established, IDE tool vendors will
start bringing out automation extensions that help man-
age MT development complexity. These two processes
could easily take three to fi ve years. Once MT-enhanced
IDE products become established, language extensions
will follow. A commercially accepted development lan-
guage with fully integrated MT control structures should
come into widespread use in fi ve to seven years. In the
meantime, don’t count on that instant performance
increase for desktop applications with the release of each
new CPU family. With multicore systems, having CPU
bandwidth on the desktop and being able to use it are
going to be two very different things. Q

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

MACHE CREEGER (mache@creeger.com) is a 30-year
veteran of the technology industry. He is the principal of
Emergent Technology Associates, marketing and business
development consultants to technology companies.
© 2005 ACM 1542-7730/05/0900 $5.00

curmudgeon

Continued from page 64

