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ABSTRACT
Consider an integer matrix A ∈ Z𝑛×(𝑛−1)

that has full column

rank 𝑛 − 1. The set of all Z-linear combinations of the rows of A
generates a lattice, denoted by L(A). An algorithm is given that

computes a matrixC ∈ Z(𝑛−1)×𝑛
such that B := CA ∈ Z(𝑛−1)×(𝑛−1)

is a basis for A, that is, B has full row rank 𝑛 − 1 and L(B) = L(A).
The matrix C will satisfy log | |C | | ≤ 4 log𝑛 + 2 log | |A| | (where | | · | |
denotes the maximum entry in absolute value) and will have at

most 𝑛(1 + log
2
𝑛) nonzero entries. The cost of the algorithm is

about the same as that required to multiply together two square

integer matrices of dimension 𝑛 that have magnitude of entries

bounded by | |A| |.

CCS CONCEPTS
• Computing methodologies → Linear algebra algorithms;
Exact arithmetic algorithms.
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1 INTRODUCTION
The set of all Z-linear combinations of the rows of an integer matrix

A is a (row) lattice, denoted by L(A). We consider the problem

of computing a basis for L(A). The most general version of the

problem takes as input anA ∈ Z𝑛×𝑚 , and asks as output a B ∈ Z𝑟×𝑚
such that L(B) = L(A), where 𝑟 is the rank of A. Such a B is a

basis for L(A). A constraint is that we want the bitlength of entries

in the basis to be not much larger than those of A. Formally, we

require that log | |B| | ∈ 𝑂 (log𝑛 + log | |A| |), where | | · | | for a matrix

or vector denotes the largest entry in absolute value.

Before continuing, we mention that L(A) will always denote
the lattice generated by the rows of A, and, for brevity, we will write

“B is a basis for A” to mean “B is a basis for L(A).”
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One of our motivations for studying this problem is to extend

fast algorithms for computing normal forms of integer matrices to

input matrices with arbitrary shape and rank profile. For example,

the fastest algorithm for computing the Smith form of an integer

matrix by Birmpilis et al. [2] requires as input a square nonsingular

input matrix.

By first producing a basis B ∈ Z𝑟×𝑚 for A ∈ Z𝑛×𝑚 , then produc-

ing a basis B̄ ∈ Z𝑟×𝑟 for Transpose(B) ∈ Z𝑚×𝑟
, we can apply the

Smith form algorithm with the nonsingular input B̄ to obtain the

Smith form of A. We refer to Li and Nguyen [6] for other applica-

tions of computing a lattice basis with entries not much larger than

those of the input matrix, and for a survey of previous approaches

for solving this problem.

A classical case of the problem is 𝑛 = 2 and𝑚 = 1. Computing a

basis for

A =

[
𝑎1

𝑎2

]
∈ Z2×1

corresponds to computing 𝑔 = gcd(𝑎1, 𝑎2). The extended gcd prob-

lem asks also for a lattice generator C ∈ Z1×2
such that

CA =
[
𝑐1 𝑐2

] [ 𝑎1

𝑎2

]
=
[
𝑔

]
.

We will use a cost function B such that the extended gcd problem

can be solved in𝑂 (B(log | |A| |)) bit operations, where | | · | | denotes
the maximal entry in absolute value.

Another case is 𝑛 arbitrary and 𝑚 = 1. Given A ∈ Z𝑛×1
, find

𝑔 = gcd(A), the gcd of all entries in A. [8, Corollary 6.5] gives an

𝑂 (𝑛 B(log | |A| |)) bit operations algorithm that solves the vector

extended gcd problem, producing a C ∈ Z1×𝑛
that satisfies | |C | | ≤

| |A| |.
In this paper, we consider the special case𝑚 = 𝑛 − 1 = 𝑟 , that

is, the input is a full column rank matrix A ∈ Z𝑛×(𝑛−1)
. To the

best of our knowledge, the fastest previous algorithm to compute a

basis B with log | |B| | ∈ 𝑂 (log𝑛 + log | |A| |) is that of Li and Nguyen
[6, Theorem 3.8], which solves the problem in the general case,

that is, for 𝑛, 𝑚 and 𝑟 arbitrary. Applied to the special case 𝑚 =

𝑛 − 1 = 𝑟 that we consider here, their algorithm has cost bounded

by 𝑂 (𝑛𝜔 B(𝑛𝑑)) bit operations, where 𝑑 = log𝑛 + log | |A| | and 𝜔

is the exponent of matrix multiplication. In this paper, we give

an algorithm that solves the problem in 𝑂 (𝑛𝜔 B(𝑑) (log𝑛)2) bit
operations. We remark that this cost estimate matches that of the

Smith form algorithm of Birmpilis et al. [2] and thus our technique

can be used for the application mentioned earlier, at least for the

special case𝑚 = 𝑛 − 1 = 𝑟 .

Instead of producing B directly, we first compute a matrix C ∈
Z(𝑛−1)×𝑛

and then set B := CA. We show that log | |C | | ≤ 4 log𝑛 +
2 log | |A| | and that C will have at most 𝑛(1+ log

2
𝑛) nonzero entries,

independent of | |A| |. To the best of our knowledge, we are not aware
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that the existence of such a C with only 𝑂 (𝑛 log𝑛) nonzero entries

was previously known.

The sparsity of C can be useful in some situations. Suppose,

in addition to the full column rank input matrix A ∈ Z𝑛×(𝑛−1)
,

we have additional linearly dependent columns Ā ∈ Z𝑛×𝑚 . If

C ∈ Z(𝑛−1)×𝑛
is such that CA is a basis for A, then a basis for

the rank 𝑛 − 1 augmented matrix

[
A Ā

]
∈ Z𝑛×( (𝑛−1)+𝑚)

is

given by C
[

A Ā
]
. The additional cost to compute CĀ is only

𝑂 (𝑛𝑚M(𝑑) log𝑛) bit operations, where M is a cost function for

integer multiplication, and 𝑑 = log𝑛 + log | |Ā| |.
We now give an outline of our approach to compute C. Our idea

is to find a vector v ∈ Z𝑛×1
such that the augmented matrix[

A v
]
∈ Z𝑛×𝑛 (1)

is nonsingular. Then we compute C ∈ Z(𝑛−1)×𝑛
to be a left kernel

basis of v that satisfies | |C | | ≤ | |v | |2. Of course, the augmentation

vector v must be special in order for this to work. We show that if

L(
[

A v
]
) contains the last row of I𝑛 , then a left kernel basis

C ∈ Z(𝑛−1)×𝑛
of v has the property that CA is a basis for A. Our

algorithm has three main computational steps:

(1) Compute the left kernel basis w ∈ Z1×𝑛
of A.

(2) Compute an augmentation vector v ∈ Z𝑛×1
from A and w.

(3) Compute a left kernel basis C ∈ Z(𝑛−1)×𝑛
of v.

The rest of this paper is organised as follows. Section 2 gives

basic mathematical background. Section 3 establishes, via a more

general result, the sufficient condition on the augmentation vector

v as described above. Section 4 adapts from the literature some com-

putational tools related to deterministic system solving. Section 5

uses these computational tools to obtain deterministic algorithms

for the kernel basis problem (step 1). Section 6 gives the algorithm

to produce the augmentation vector v (step 2). Section 7 gives the

algorithm to compute a left kernel bases of v (step 3) and also states

the main result of the paper.

Cost model
Following von zur Gathen and Gerhard [3, Section 8.3], cost esti-

mates are given using a function M(𝑑) that bounds the number of

bit operations required to multiply two integers bounded in magni-

tude by 2
𝑑
. We use B(𝑑) to bound the cost of integer gcd-related

computations such as the extended euclidean algorithm. We can

always take B(𝑑) = 𝑂 (M(𝑑) log𝑑). If M(𝑑) ∈ Ω(𝑑1+𝜖 ) for some

𝜖 > 0, then B(𝑑) ∈ 𝑂 (M(𝑑)).
As usual, we assume thatM is superlinear and subquadratic. We

also assume thatM(𝑎𝑏) ∈ 𝑂 (M(𝑎)M(𝑏)) for 𝑎, 𝑏 ≥ 1. We assume

that 𝜔 > 2, and to simplify cost estimates, we make the common

assumption thatM(𝑑) ∈ 𝑂 (𝑑𝜔−1). The assumptions stated in this

paragraph apply also to B.

2 MATHEMATICAL BACKGROUND
An important notion for us is that of a primitive integer matrix.

Definition 1 (Primitive matrix). A matrix A ∈ Z𝑛×𝑚 is prim-

itive if one of the following conditions hold.

(i) (𝑛 > 𝑚) A has full column rank𝑚 and I𝑚 is a basis for A.

(ii) (𝑛 < 𝑚)A has full row rank𝑛 and In is a basis forTranspose(A).
(iii) (𝑛 =𝑚) A is unimodular (that is, det A = ±1).

Definition 2 (Left kernel basis of an integer matrix). A left

kernel basis of an A ∈ Z𝑛×𝑚 with rank of 𝑟 is a matrix K ∈ Z(𝑛−𝑟 )×𝑛
such that
(i) K has rank 𝑛 − 𝑟 ,
(ii) KA is the (𝑛 − 𝑟 ) ×𝑚 zero matrix, and
(iii) K is primitive.

We remark that amatrixK that satisfies only properties (i) and (ii)

of Definition 2 is a nullspace basis of A overQ: property (ii) ensures
that the set of all Q-linear combinations of the rows of K generates

{v ∈ Q1×𝑛 | vA = 01×𝑚}. The additional property (iii) in Defini-

tion 2 ensures that K satisfies L(K) = {v ∈ Z1×𝑛 | vA = 01×𝑚}.

Lemma 3. Let A ∈ Z𝑛×𝑚 have full column rank. If B ∈ Z𝑚×𝑚 is
a basis for A, then AB−1 is integral and primitive.

Proof. Since B is a basis for A, B is nonsingular and we have

UA =


B  (2)

for some unimodular matrix U ∈ Z𝑛×𝑛 . Postmultiplying both sides

of (2) by B−1
gives

UAB−1 =


I𝑚  . (3)

Premultiplying both sides of equation (3) by U−1
gives

AB−1 = U−1


I𝑚  . (4)

Since U is unimodular, U−1
is integral. The right side of equation (4)

is integral. Hence, AB−1
is integral. It follows from equation (3)

that AB−1
is primitive. □

Lemma 4. Let A ∈ Z𝑛×𝑚 of rank 𝑟 be given. If C ∈ Z𝑟×𝑛 is such
that CA is a basis for A, and K ∈ Z(𝑛−𝑟 )×𝑛 is a left kernel basis of
A, then [

C
K

]
∈ Z𝑛×𝑛 (5)

is unimodular.

Proof. Since K is primitive, it follows from Definition 1.(ii) that

there exists a unimodular matrix U such that KU =
[

I𝑛−𝑟
]
.

Let [
C
K

]
U =

[
V ∗

I𝑛−𝑟

]
(6)

and

U−1A =

[
A1

A2

]
, (7)

where A1 ∈ Z𝑟×𝑚 . Multiplying the right hand side of (6) by that

of (7) gives [
V ∗

I𝑛−𝑟

] [
A1

A2

]
=

[
CA

]
. (8)



We conclude from (8) that A2 is the zero matrix and then from (7)

that A1 is a basis for A. Since CA is also a basis for A, the matrix

V must be unimodular. The result now follows from (6). □

3 LATTICE GENERATOR VIA KERNEL BASIS
Suppose A ∈ Z𝑛×(𝑛−1)

and v ∈ Z𝑛×1
are such that

[
A v

]
is

nonsingular. In this section, we establish a sufficient condition on v
to ensure that a left kernel basis C ∈ Z(𝑛−1)×𝑛

of v has the property

that CA is a basis for A.

We rely on the following theorem that applies only to those

nonsingular matrices A ∈ Z𝑛×𝑛 for which there exists a unimodular

decoupling matrix U ∈ Z𝑛×𝑛 such that

UA =

[
∗1

∗2

]
.

Note that for such an A, we have L(A) =
{[

L(∗1) L(∗2)
]}
.

Theorem 5. Let A =
[

A1 A2

]
∈ Z𝑛×𝑛 be nonsingular, where

A1 ∈ Z𝑛×𝑚1 and A2 ∈ Z𝑛×𝑚2 . For any C1 ∈ Z𝑚1×𝑛 and C2 ∈
Z𝑚2×𝑛 , we have

(a)
[

C1

C2

] [
A1 A2

]
=

[
C1A1

C2A2

]
∈ Z𝑛×𝑛 , with

(b) C1A1 a basis for A1, and
(c) C2A2 a basis for A2

if and only if

(i)
[

C1

C2

]
∈ Z𝑛×𝑛 is unimodular,

(ii) C1 is a kernel basis for A2, and
(iii) C2 is a kernel basis for A1.

Proof. (Only if:) Assume that (a), (b) and (c) hold. Since A =[
A1 A2

]
is nonsingular, A𝑖 has full column rank (𝑖 = 1, 2).

From (b) and (c), we have that C𝑖A𝑖 ∈ Z𝑚𝑖×𝑚𝑖
also has full column

rank (𝑖 = 1, 2). It follows that C𝑖A𝑖 is nonsingular (𝑖 = 1, 2).

Postmultiplying both sides of the equation in (a) by[
(C1A1)−1

(C2A2)−1

]
gives[

C1

C2

] [
A1 (C1A1)−1 A2 (C2A2)−1

]
=

[
I𝑚1

I𝑚2

]
. (9)

Since (C𝑖A𝑖 ) is a basis for A𝑖 (𝑖 = 1, 2), it follows from Lemma 3

that

U :=
[

A1 (C1A1)−1 A2 (C2A2)−1
]

is an integer matrix. Therefore,

det

( [
C1

C2

] )
= ±1

and property (i) holds. It remains to show that (ii) and (iii) hold.

Since U is an integer matrix, it follows from (9) that C1 satisfies

the properties required by Definition 2 to be a left kernel of A2. In

particular, C1 is primitive and C1A2 = 0𝑚1×𝑚2
. Similarly, C2 is a

left kernel of A1.

(If:) Assume that (i), (ii) and (iii) hold. It follows from (ii) and (iii)

that (a) holds. It now follows from property (i) that

L
( [

A1 A2

] )
= L

( [
C1A1

C2A2

] )
.

Properties (b) and (c) now follow by noting that A𝑖 and C𝑖A𝑖 have

the same column dimension (𝑖 = 1, 2). □

The following corollary identifies a particular class of matrices

for which Theorem 5 applies.

Corollary 6. Let A =
[

A1 A2

]
∈ Z𝑛×𝑛 be nonsingular,

where A1 ∈ Z𝑛×𝑚1 and A2 ∈ Z𝑛×𝑚2 . If L(A) contains the last
𝑚2 rows of I𝑛 , then any left kernel basis C ∈ Z𝑚1×𝑛 of A2 has the
property that CA1 is a basis for A1.

Proof. Since L(A) contains the last𝑚2 rows of I𝑛 , there exists
a unimodular matrix U ∈ Z𝑛×𝑛 such that

UA =

[
∗

I𝑚2

]
.

Decompose U as

U =

[
C1

C2

]
,

where C1 ∈ Z𝑚1×𝑛
and C2 ∈ Z𝑚2×𝑛

. Then the equation in property

(a) of Theorem 5 holds, and from the unimodularity of U , it follows

that C1 is a left kernel basis for A2, and C2 is a left kernel basis

for A1. We are thus exactly in the situation of Theorem 5, and can

conclude that C1A1 is a basis for A1. Since any two left kernel bases

of A2 are left equivalent, we can replace C1 with C in U and the

matrix remains unimodular. □

4 COMPUTATIONAL TOOLS
The main computational tool we need is an algorithm for nonsin-

gular linear system solving. A deterministic algorithm has recently

been given by Birmpilis et al. [1, Section 11], but was analyzed

under a more restrictive cost model than we are using in this paper.

We restate the result here.

Theorem 7 (System solving). There exists an algorithm that
takes as input a nonsingular matrix A ∈ Z𝑛×𝑛 and a vector b ∈ Z𝑛×1,
and returns as output A−1b ∈ Q𝑛×1, together with the minimal 𝑒 ∈
Z>0 such that 𝑒A−1b is integral. Let𝑑 = log𝑛+ log | |A| |. If log | |b | | ∈
𝑂 (𝑛𝑑), the running time of the algorithm is 𝑂 (𝑛𝜔 B(𝑑) (log𝑛)2) bit
operations.

Proof. [1, Section 11] gives an algorithm that computes an in-

teger vector x ∈ Z𝑛×1
together with an 𝑓 ∈ Z≥0 such that 2

𝑓 A−1b
can be recovered from x using rational number reconstruction. The

cost bound of [1, Theorem 22] is

𝑂 (𝑛𝜔 M(𝑑) (log𝑛 + loglog | |A| |) (log𝑛)) . (10)

The cost model used in [1] does not make the assumptions that

𝜔 > 2 andM(𝑑) ∈ 𝑂 (𝑑𝜔−1). If we do make these assumptions, and

we replace the subroutine in [1, Section 6] with the integer analogue

of the algorithm supporting [4, Theorem 7], the loglog | |A| | term
in (10) can be avoided, giving the cost bound 𝑂 (𝑛𝜔 M(𝑑) (log𝑛)2)
to recover x.

To recover A−1b from x requires rational number reconstruc-

tion. By [3, Section 5.10], the cost of computing 𝑒 and 𝑒A−1b is



𝑂 (𝑛 B(𝑛𝑑)) bit operations; this simplifies to 𝑂 (𝑛𝜔 B(𝑑)) using the

assumptions B(𝑛𝑑) ∈ 𝑂 (B(𝑛)B(𝑑)) and B(𝑛) ∈ 𝑂 (𝑛𝜔−1 B(𝑑)). □

The algorithm supporting Theorem 7 was based on computing a

2-massager for the input matrix. Although originally defined for

nonsingular matrices, the notion of a 2-massager extends directly

to matrices of full column rank.

Definition 8 (2-Smith form). Let A ∈ Z𝑛×𝑚 have full column
rank𝑚. The 2-Smith form of A is the matrix diag(2𝑒1 , 2𝑒2 , ..., 2𝑒𝑚 )
with 2

𝑒𝑖 the largest power of two which divides the invariant factor 𝑖
of the Smith form of A over Z, 1 ≤ 𝑖 ≤ 𝑚.

Definition 9. Let A ∈ Z𝑛×𝑚 have full column rank 𝑚. A 2-

massager for A is a triple of matrices (P, S,M) from Z𝑚×𝑚 such
that,

• P is a permutation,
• S = diag(𝑠1, . . . , 𝑠𝑚) is the 2-Smith form of A,
• M is unit upper triangular, and
• APMS−1 is integral with Rem(APMS−1, 2) ∈ Z/(2)𝑛×𝑚 hav-
ing full column rank over Z/(2).

(P, S,M) is a reduced 2-massager if entries in column 𝑖 of M are from
[0, . . . 𝑠𝑖 − 1], 1 ≤ 𝑖 ≤ 𝑛.

Example 10. A 2-massager for the the matrix

A :=


92 27 99

−124 32 116

556 −42 −150

176 249 77

−8 195 −121


∈ Z5×3

is given by

P, S,M :=


1

1

1

 ,


1

4

16

 ,


1 3 5

1 15

1

 .
The massaged matrix

B := APMS−1 =


27 45 107

32 53 111

−42 −69 −119

249 206 161

195 116 −53


has full column rank over Z/(2).

Birmpilis et al. [1, Section 10] give an algorithm to compute a 2-

massager of a nonsingular matrix. The algorithm extends naturally

to an 𝑛 ×𝑚 matrix of full column rank𝑚.

Theorem 11 (2-massager computation). There exists an algo-
rithm that takes as input a full column rankA ∈ Z𝑛×𝑚 , and returns as
output a reduced 2-massager for A together with the massaged matrix
B := APMS−1. The cost of the algorithm is𝑂 (𝑛𝑚𝜔−1 M(𝑑) (log𝑚)2)
bit operations, where 𝑑 = log𝑚 + log | |A| |.

Proof. Similar to the proof of Theorem 7, if we replace the sub-

routine in [1, Section 6] with the integer analogue of the algorithm

supporting [4, Theorem 7], then [1, Theorem 21] establishes the

theorem in the case 𝑛 =𝑚, that is, for a square nonsingular𝑚 ×𝑚

input matrix, a 2-massager can be computed in

𝑂 (𝑚𝜔 M(𝑑) (log𝑚)2)

bit operations. The only required modifications now to handle

case of a full column rank rectangular 𝑛 ×𝑚 input matrix is to

incorporate blocking into steps 1–4 of the algorithm supporting [1,

Theorem 19].

Step 1 computes an LQUP decomposition of an𝑚 ×𝑚 matrix

over Z/(2) at a cost of𝑂 (𝑛𝜔 ) bit operations. In the rectangular case

this costs 𝑂 (𝑛𝑚𝜔−1) bit operations.
Step 2 computes a single nonsingular system solution of dimen-

sion 𝑚. In the rectangular case, step 2 can be accomplished by

computing ⌈𝑛/𝑚⌉ such linear systems, thus replacing the𝑚𝜔
term

in the cost estimate for the square case by 𝑛𝑚𝜔−1
.

Steps 3 and 4 compute a triangular Smith form of a square matrix

over ring. In the rectangular case, these steps are accomplished

using the integer analogue of [4, Theorem 7] followed up by the

triangularization of a matrix that, compared to the square case, has

row dimension now bounded by 𝑛. The cost increases similarly as

for step 2. □

One additional algorithm that we need is a fast solution to the

vector extended gcd problem [8, Corollary 6.5].

Algorithm 1: VectorGcdex(w)
Input :w ∈ Z𝑛×1

Output : (e, 𝑔) ∈ (Z1×𝑛,Z), satisfying
• ew = 𝑔, with 𝑔 = gcd(w),
• ||e| | ≤ | |w | |, and
• the number of nonzero entries in e is bounded by

1 + log
2
| |w | |.

Runtime :𝑂 (𝑛 B(log | |w | |)) bit operations

5 KERNEL BASIS OF NULLITY ONE
We give an algorithm to compute a left kernel basis w ∈ Z1×𝑛

of a

full column rank input matrix A ∈ Z𝑛×(𝑛−1)
. In this special case,

where the nullity of A is one, the kernel basis w is unique (up to

sign) and can be computed using nonsingular linear system solving.

If Q ∈ Z𝑛×𝑛 is a permutation such that

QA =

[
Ā
a

]
∈ Z𝑛×(𝑛−1)

(11)

with Ā ∈ Z(𝑛−1)×(𝑛−1)
nonsingular, then a left nullspace of QA

over Q is [
aĀ−1 −1

]
∈ Q1×𝑛 .

If 𝑒 ∈ Z>0 is minimal such that 𝑒aĀ−1

is integral, then

w = Q
[
𝑒aĀ−1 −𝑒

]
∈ Z1×𝑛

(12)

is primitive and is thus a kernel basis of A (Definition 2).

Theorem 12 (Kernel of nullity one). A left kernel basis of
w ∈ Z1×𝑛 of a full column rank A ∈ Z𝑛×(𝑛−1) can be computed in
𝑂 (𝑛𝜔 B(𝑑) (log𝑛)2) bit operations, where 𝑑 = log𝑛 + log | |A| |.

Proof. To find a suitable Q, compute a 2-massager (P,M, S) of
A together with the massaged matrix B = APMS−1

. The massaged

matrix B has full column rank modulo 2. Working modulo 2, use



the LSP decomposition of Ibarra et al. [5, Theorem 3.2] to compute

the row rank profile [𝑖1, 𝑖2, . . . , 𝑖𝑛−1] of B over Z/(2). Since PMS−1

is nonsingular, the submatrix of A comprised of rows 𝑖1, 𝑖2, . . . , 𝑖𝑛−1

is also nonsingular. Define Q accordingly.

Compute the minimal 𝑒 ∈ Z>0 such that 𝑒aĀ−1

is integral, and

compute 𝑒aĀ−1

itself. Return w as in (12). The claimed cost bound

follows from Theorems 11 (2-massager computation) and 7 (System

solving). □

The following corollary follows from Hadamard’s inequality [3,

Theorem 16.6] and Cramer’s rule [3, Theorem 25.6].

Corollary 13. The kernel basis produced by Theorem 12 satisfies
log | |w | | ∈ 𝑂 (𝑛𝑑).

6 AUGMENTATION VECTOR
Storjohann [9, Section 13] describes a Las Vegas randomized al-

gorithm DetReduction that takes as input a nonsingular integer

input matrix, and replaces the last column to obtain a new matrix

whose lattice contains the last row of I . Algorithm DetReduction
exploits the fact that the input matrix is nonsingular. Here, we adapt

the approach to obtain the following result. In the proof, we focus

mainly on showing how to avoid the requirement that the input

matrix be nonsingular, and how to avoid randomization by using

the subroutines developed in previous sections.

Theorem 14 (Augmentation vector). There exists an algorithm
that takes as input a full column rank integer matrix A ∈ Z𝑛×(𝑛−1) ,
and returns as output an integer vector v ∈ Z𝑛×1 such that

(1) L(
[

A v
]
) contains the last row of I𝑛 , and

(2) | |v | | ≤ 𝑛2 | |A| |.
The cost of the algorithm is𝑂 (𝑛𝜔 B(𝑑) (log𝑛)2) bit operations, where
𝑑 = log𝑛 + log | |A| |.

Proof. Compute a kernel basis w ∈ Z1×𝑛
of A. Let P ∈ Z𝑛×𝑛

be a permutation matrix such that wP has last entry of maximal

magnitude. Then

(wP) (P−1A) =
[

w̄ 𝑤𝑛

] 
Ā

a

 = 0
1×(𝑛−1)

where |𝑤𝑛 | = | |w | | and Ā ∈ Z(𝑛−1)×(𝑛−1)
is nonsingular since

𝑤𝑛 ≠ 0. Going forward, we will assume, without loss of generality,

that P = I𝑛 .
Use Algorithm 1 (VectorGcdex) to compute a vector b ∈ Z𝑛×1

such that

w b =
[

w̄ 𝑤𝑛

] 
b̄

𝑏𝑛

 = 1.

Then

[
w̄ 𝑤𝑛

] 
Ā b̄

a 𝑏𝑛

 =
[

1

]
. (13)

It follows from (13) that L(
[

A b
]
) contains the last row of

I𝑛 , and thus b is candidate for our solution vector. However, the

entries of b can be too large.

We now show how to adjust b to obtain a reduced solution v.
Postmultiplying both sides of equation (13) by a unimodular matrix[

I𝑛−1 −ȳ
1

]
∈ Z𝑛×𝑛

gives

[
w̄ 𝑤𝑛

] 
Ā b̄ − Āȳ

a 𝑏𝑛 − aȳ

 =
[

1

]
. (14)

Let y ∈ Q (𝑛−1)×1
be the solution to the linear system Āy = b̄.

Let ȳ ∈ Z(𝑛−1)×𝑛
be the integral part of y, that is, ȳ is the unique

integer vector such that | |y − ȳ | | < 1. Then | |b̄ − Āȳ | | ≤ 𝑛 | |A| |. We

choose our solution vector to be v := b − Aȳ. It remains to show

that the last entry 𝑣𝑛 = 𝑏𝑛 − aȳ of v has magnitude bounded by

𝑛2 | |A| |. From equation (14), we have w̄ v̄ +𝑤𝑛 𝑣𝑛 = 1. It follows that

|𝑣𝑛 | =




 w̄
𝑤𝑛

v̄ − 1

𝑤𝑛





 ≤ 



 w̄
𝑤𝑛

v̄




 + ���� 1

𝑤𝑛

���� .
Since w̄ has column dimension 𝑛 − 1, | |w̄ | | ≤ |𝑤𝑛 | = | |w | |, and
| |v̄ | | ≤ 𝑛 | |A| |, we have

|𝑣𝑛 | ≤ (𝑛 − 1) | |v̄ | | + 1 ≤ (𝑛 − 1)𝑛 | |A| | + 1 ≤ 𝑛2 | |A| |.
Corollary 13 gives the bound log | |w | | ∈ 𝑂 (𝑛𝑑). From the spec-

ification of Algorithm 1 (VectorGcdex), we have | |b | | ≤ | |w | |, so
log | |b | | ∈ 𝑂 (𝑛𝑑) also. The claimed running time bound now fol-

lows from Theorem 12 (Kernel of nullity one), the running time of

Algorithm 1 (VectorGcdex), and Theorem 7 (System solving). □

Example 15. The input matrix

A =


231 303 −118 16

344 202 −389 163

185 190 −80 136

263 189 196 66

259 157 131 136


∈ Z5×4

has left kernel

w =
[
−3330033 825718 4373666 7018431 −8377548

]
.

VectorGcdex computes a b ∈ Z5×1 such that

[
A b

]
=


Ā b̄

a 𝑏5

 =


231 303 −118 16 −2022969

344 202 −389 163 0

185 190 −80 136 2

263 189 196 66 0

259 157 131 136 804121


with L(

[
A b

]
) containing the last row of I5. Decompose y =

Ā−1b̄ = ȳ + r where ȳ ∈ Z4×1 and r ∈ Q4×1 with | |r | | < 1:

y =



219432205277

94247415

− 10934282147281

1319463810

896384538211

527785524

709438547431

75397932


= ȳ + r =


2328

−8286

1698

9409


+



24223157

94247415

− 1205017621

1319463810

204718459

527785524

19405243

75397932


.



Our augmentation vector is given by

v = b − Aȳ =


−259

−205

−122

−12

9


.

7 GENERATING A LATTICE BASIS
We begin by giving an algorithm to compute a left kernel basis of

a vector v ∈ Z𝑛×1
. The algorithm we give is closely based on a

more general algorithm [8, Chapter 6.2] that computes a left kernel

basis for an 𝑛 ×𝑚 integer matrix. The variation we give here for

the special case𝑚 = 1 is simpler and allows us to obtain a tighter

explicit bound on the number of nonzero entries in the kernel.

Algorithm 2: SparseKernelBasis(v, 𝑛)
Input :v ∈ Z𝑛×1

with all entries nonzero

Output :K ∈ Z(𝑛−1)×𝑛
, a left kernel basis of v satisfying

• ||K | | ≤ | |v | |2, and
• the number of nonzero entries in K is bounded by

𝑛(1 + log
2
𝑛).

Runtime :𝑂 (𝑛 B(log | |v | |) log𝑛) bit operations
1 if n = 1 then
2 return the 0 × 1 matrix

3 𝑛1 := ⌊𝑛/2⌋
4 𝑛2 := 𝑛 − 𝑛1

5 Decompose v =

[
v1

v2

]
where v1 ∈ Z𝑛1×1

and v2 ∈ Z𝑛2×1

6 K1 := SparseKernelBasis(v1, 𝑛1)
7 K2 := SparseKernelBasis(v2, 𝑛2)
8 e1, 𝑔1 := VectorGcdex(v1, 𝑛1)
9 e2, 𝑔2 := VectorGcdex(v2, 𝑛2)

10 𝑔 := gcd(𝑔1, 𝑔2)

11 return



−(𝑔2/𝑔) e1 (𝑔1/𝑔) e2

K1

K2


We will prove correctness of Algorithm SparseKernelBasis us-

ing three lemmas. The first lemma shows that the output is indeed a

kernel basis. The second lemma establishes that the output satisfies

the two stated conditions. The third lemma gives an analysis of the

running time.

Lemma 16. SparseKernelBasis outputs a kernel basis for v.

Proof. The algorithm uses a divide and conquer approach. The

output of the base case (𝑛 = 1) is correct since v ∈ Z1×1
is nonzero

by assumption.

For the recursive case (𝑛 > 1), we have subproblems of size 𝑛1

and 𝑛2, with 𝑛 = 𝑛1 + 𝑛2. By Lemma 4, the matrix

U 𝑖 =


e𝑖

K𝑖

 ∈ Z𝑛𝑖×𝑛𝑖

is unimodular (𝑖 = 1, 2). The matrix U := diag(U 1,U 2) ∈ Z𝑛×𝑛 is

thus unimodular, and by construction we have

U
U 1

U 2



v
v1

v2


=

c
𝑔1

𝑔2


∈ Z𝑛×1, (15)

where c contains only two nonzero entries, 𝑔1 at index 1 and 𝑔2 at

index 𝑛1 + 1.

Note that the vector

[
−𝑔2/𝑔 𝑔1/𝑔

]
∈ Z1×2

is primitive and

thus can be extended to a unimodular matrix[
∗1 ∗2

−𝑔2/𝑔 𝑔1/𝑔

]
∈ Z2×2

that satisfies [
∗1 ∗2

−𝑔2/𝑔 𝑔1/𝑔

] [
𝑔1

𝑔2

]
=

[
𝑔

]
.

Let E be equal to I𝑛 except with principal (𝑛1+1)×(𝑛1+1) submatrix

equals to

∗1 ∗2

1

. . .

1

−𝑔2/𝑔 𝑔1/𝑔


∈ Z(𝑛1+1)×(𝑛1+1) .

Then E is unimodular with

E

∗1 ∗2

. . .

1

−𝑔2/𝑔 𝑔1/𝑔
. . .

1



c

𝑔1

𝑔2


=

c̄

𝑔 
(16)

By (15) and (16), (EU )v = c̄. Since the last 𝑛 − 1 entries of c̄ are

zeros, and EU is unimodular, the last 𝑛 − 1 rows of EU is a kernel

basis of v. The algorithm outputs the last 𝑛 − 1 rows of EU , except

with row 1 and row 𝑛1 + 1 interchanged. □

Lemma 17. The output | |K | | of SparseKernelBasis satisfies:
(i) | |K | | ≤ | |v | |2, and
(ii) the number of nonzero entries in K is bounded by 𝑛(1 + log

2
𝑛).

Proof. The algorithm splits the problem into two subproblems

with input v1 ∈ Z ⌈𝑛/2⌉×1
, and v2 ∈ Z ⌊𝑛/2⌋×1

. The kernel basis K
for v is comprised of the kernel basis K𝑖 of v𝑖 (𝑖 = 1, 2), and one

extra row

e :=
[

−(𝑔2/𝑔) e1 (𝑔1/𝑔) e2

]
∈ Z1×𝑛,



which we focus on to establish properties (i) and (ii).

First consider property (i). Since 𝑔𝑖 = gcd(v𝑖 ), we have |𝑔𝑖/𝑔| ≤
| |v | | (𝑖 = 1, 2). According to the output specification of Algorithm 1

(VectorGcdex), we have | |e𝑖 | | ≤ | |v𝑖 | | ≤ | |v | | (𝑖 = 1, 2). It follows

that | |e| | ≤ | |v | |2 . Induction on 𝑛 (base cases 𝑛 = 1, 2) now shows

that property (i) holds.

Now consider property (ii). Since the extra row e has at most 𝑛

nonzero entries, an upper bound on the number of nonzero entries

in K satisfies the recurrence

𝑇 (𝑛) = 𝑇

(⌈𝑛
2

⌉)
+𝑇

( ⌊𝑛
2

⌋ )
+ 𝑛, 𝑇 (1) = 0.

From Sloane and Inc. [7], we obtain that

𝑇 (𝑛) = 𝑛(⌊log
2
𝑛⌋ + 3) − 2

⌈log
2
𝑛⌉+1 .

Dropping the floor and ceiling and simplifying yields the claimed

upper bound. □

Lemma 18. The running time of SparseKernelBasis is bounded
by 𝑂 (𝑛 B(log | |v | |) log𝑛) bit operations.

Proof. The nonrecursive work is dominated by the calls to Al-

gorithm 1 (VectorGcdex) which has cost𝑂 (𝑛 B(log | |v | |)). The run-
ning time of the algorithm thus satisfies the recurrence

𝑇 (𝑛) = 𝑇

( ⌊𝑛
2

⌋ )
+𝑇

(⌈𝑛
2

⌉)
+𝑂 (𝑛 B(log | |v | |)),

which solves to the running time bound stated in the lemma. □

Theorem 19 (Sparse kernel basis). There exists an algorithm
that takes as input a nonzero vector v ∈ Z𝑛×1, and returns as output
a left kernel basis K ∈ Z(𝑛−1)×𝑛 for v. The cost of the algorithm is
𝑂 (𝑛 B(log | |v | |) log𝑛) bit operations. The output will satisfy | |K | | ≤
| |v | |2. The number of nonzero entries in K will be bounded by 𝑛(1 +
log

2
𝑛).

Proof. Suppose v has 𝑚 nonzero entries. Let P be an 𝑛 × 𝑛

permutation matrix such that

Pv =


v̄

 ∈ Z𝑛×1

with all entries in v̄ ∈ Z𝑚×1
nonzero. UseAlgorithm SparseKernel-

Basis to compute a kernel basis K̄ for v̄. Then[
K̄

I𝑛−𝑚

]
P

is a kernel basis for v. The result now follows from Lemmas 16–

18. □

We can now state the main result of the paper.

Theorem 20. There exists an algorithm that takes as input a full
column rank A ∈ Z𝑛×(𝑛−1) , and returns as output a C ∈ Z(𝑛−1)×𝑛

such that CA is a basis for A. The output will satisfy | |C | | ≤ 𝑛4 | |A| |2
and the number of nonzero entries in C will be bounded by 𝑛(1 +
log

2
𝑛). The cost of the algorithm is 𝑂 (𝑛𝜔 B(𝑑) (log𝑛)2) bit opera-

tions, where 𝑑 = log𝑛 + log | |A| |.

Proof. Use the algorithm supporting Theorem 14 (Augmen-

tation vector) to compute a v ∈ Z𝑛×1
such that L(

[
A v

]
)

contains the last row of I𝑛 . Use the algorithm supporting Theo-

rem 19 (Sparse kernel basis) to compute a left kernel C of v. Return
C. Correctness follows from Corollary 6.

By Theorem 14, v satisfies | |v | | ≤ 𝑛2 | |A| |. The claimed bound for

| |C | | and the bound on the number of nonzero entries in C follow

from Theorem 19. The runtime bound follows from Theorems 14

and 19. □

8 CONCLUSIONS
Given a full column rank A ∈ Z𝑛×(𝑛−1)

, we have given a deter-

ministic algorithm that produces a C ∈ Z(𝑛−1)×𝑛
such that CA is a

basis for A. Note that any such C must have at least 𝑛 − 1 nonzero

entries, otherwise it would be rank deficient. We show that the

C produced by our algorithm has at most 𝑛(1 + log
2
𝑛) nonzero

entries, a logarithmic factor away from the lower bound.

A natural direction for further research is to extend the approach

to a matrix A ∈ Z𝑛×(𝑛−𝑘) of full column rank 𝑛 − 𝑘 . Using the idea

in the first part of the proof of Theorem 12, we may assume, up to

permuting the rows of A, that we can write A as

A =


Ā
a1

.

.

.

a𝑘


where Ā is nonsingular. Then 𝑘 applications of the algorithm sup-

porting Theorem 20 can be used to produce a C such that CA is a

basis for A.

Initialize S0 = Ā. For 𝑖 = 1, 2, . . . , 𝑘 in succession, let

S̄𝑖 :=


S𝑖−1

a𝑖


and use Theorem 20 to find a C̄𝑖 such that S𝑖 := C̄𝑖 S̄𝑖 is a basis for
S̄𝑖 . To combine the C̄𝑖 , set

C𝑖 =

[
C̄𝑖

I𝑘−𝑖

]
∈ Z(𝑛−𝑖)×(𝑛−𝑖+1)

for 1 ≤ 𝑖 ≤ 𝑘 . The final transforming matrix is then given by

C = C𝑘C𝑘−1
. . .C1 .

If 𝑘 = 𝑂 (1), then the C produced will still satisfy log | |C | | ∈
𝑂 (log𝑛 + log | |A| |), but is no longer guaranteed to be sparse. For

non-constant 𝑘 , further ideas will be required.
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