
Mark S. Silver

Browser-based applications:
popular but flawed?

Published online: 16 February 2006
� Springer-Verlag 2006

Abstract Browser-based applications (BBAs), applications built on top of
web browsers, dominate the world of Internet Applications today but are
fundamentally flawed because the web browser is a weak platform for
applications. Three characteristics of the browser—page orientation, state-
lessness, and limited computation—combine to produce a set of practical
problems for BBA users. These problems include delays and discontinuities,
confusion and errors, clumsy interfacing and limited functionality, printing
problems, and filing difficulties. The paper analyzes these usability problems,
providing numerous examples and tracing them back to underlying browser
characteristics. The paper also examines the factors that make BBAs so
popular despite their flaws. The paper concludes by considering directions
for understanding the phenomenon better and for improving the current
state of Internet Applications.

Keywords Browser-based application Æ Internet application Æ Weblication Æ
Web-based application Æ Usability

Why are so many e-commerce web sites so bad? Many factors contribute to
the problem, but even were we to transcend them all, the fundamental reality
is this:

Today’s web browsers are the wrong software for e-commerce.

How can that be? Have not millions of shoppers used their browsers to make
billions of dollars worth of purchases on-line? Is not browsing, in fact, an
important part of shopping?

M. S. Silver
Fordham University, Suite 604C 113 W. 60th Street, New York, NY 10023, USA
e-mail: msilver@acm.org

ISeB (2006) 4: 361–393
DOI 10.1007/s10257-005-0024-3

ORIGINAL PAPER

Yes, web browsers can be great for finding and comparing products.
After all, a key component of traditional shopping is browsing and one of
the advantages of e-commerce is the ease of browsing multiple offerings. But
purchasing has two components: searching and transacting. And the trans-
actional aspects of buying a product are a poor fit for web browsers. The
mismatch between applications’ needs and browsers’ capabilities leads to
numerous practical problems. Consider the notice the Bureau of Public Debt
offers users of its TreasuryDirect Electronic Services:

Warning: If you fail to follow the following directions, you can seemingly
conduct a transaction—and even receive a confirmation number—when,
in fact, no transaction was processed

Such a flawed system, commonplace on the web, would be unacceptable
as a traditional transaction processing application. These deficient systems
are not generally the fault of the developers; they arise from the constraints
imposed by using technology—the web browser—inappropriate for the task.
Even in cases where building an application on top of the browser does not
force the system developer to adopt a poor design, the browser-based ap-
proach nonetheless encourages design flaws.

Electronic commerce is far from the only instance of this phenomenon.
Web browsers are being used in place of specialized clients for a variety of
tasks for which they are not well suited. The broader issue, therefore, is this:

Browser-based applications (BBAs) are proliferating, yet most are fun-
damentally flawed. These flaws produce significant usability problems,
which lead to the negative consequences one would expect: errors, wasted
time, and dissatisfaction.

This paper analyzes the benefits and limitations of BBAs vis a vis spe-
cialized-client programs with an emphasis on usability issues. The paper
begins with a brief overview of BBAs, noting the factors that make them
popular as well as the underlying characteristics of browsers that make BBAs
problematic. The paper then concentrates on studying the many practical
problems that plague BBA users, tracing their origins to browser charac-
teristics. Next, the paper considers more fully the factors that make BBAs
popular despite their many weaknesses. After identifying a variety of ques-
tions that emerge from this paper that require further research, the paper
concludes by considering briefly the most important and challenging of these
issues, how next generation Internet Applications might be implemented.

1 Understanding BBAs, their strengths, and their weaknesses

For decades, Internet Applications were based on specialized client and
server software. Then the World Wide Web arrived. The web began as a
largely passive application, used for retrieving information but not for
processing it. Browser and server capabilities were later extended, enabling
browser users to send information to web servers (by completing forms) and
servers to perform much more extensive information processing. This gave
birth to a new breed of application, the BBA, also known as a web-based

362 Mark S. Silver

application or weblication. Instead of being coded in a programming lan-
guage and running directly on the operating system, the client side of these
applications is coded in HTML (and javascript) and runs on top of the web
browser. BBAs derive their functionality from a combination of the brow-
ser’s (limited) functionality and the server’s extensive information-processing
capabilities, accessed through server-generated web pages. In short, when the
client is browser-based, the servers do nearly all the work.

Today, BBAs dominate the world of Internet Applications. They derive
their popularity, in part, from the immense popularity of the web itself.
Using BBAs is a natural extension of using browsers, and just about anyone
using the Internet can use a web browser. So people are comfortable with
BBAs, and there is a widespread perception—true or not—that BBAs
require little or no training. Nearly every computer connected to the Inter-
net already has a web browser installed, so BBAs can be run without
installing additional client software. Even users away from their own com-
puters can be assured easy access to BBAs, since any machine with Internet
connectivity and a browser will do. Moreover, BBAs are extremely useful,
enabling people to do many things they never dreamed of doing on-line.
Running in the browser window, and drawing on the hyperlinking of the
web, BBAs create a seamless user experience, as the user moves naturally
from finding a BBA to running it. Not surprisingly, BBAs also provide good
browsing, which many applications—such as shopping on-line—require.
And system developers enjoy the benefit of building platform-independent
clients. For a compelling discussion of the upside of web-based applications
for developers see Graham (2004).

Note that not all browser-launched applications are BBAs. For example,
some web sites launch Java applets from the browser. Although these applets
may run in a browser window, they constitute a distinct class of Internet
Applications, since they derive their features from what Java—rather than
the browser—has to offer.

Three technological aspects of web browsers are key to assessing their
capabilities for supporting BBAs:1

– Browsers are page-oriented (in the sense of web pages, not printed pages).
The basic unit of transmission from the server to the browser is precisely
one web page, which the browser immediately renders on the screen. The
page is coded in HTML, a presentation language, which tells the browser
how the page should appear, but little else.

– Browsers are stateless, in the sense that each transaction between the client
and server is an independent event. While browsers maintain a history of
web pages visited, they view this history as a sequence of independent
pages.2

1 This assessment of pure browser characteristics does not reflect the features of such
add-on technologies as Java applets and Flash applications, considered later in the paper.

2 Cookies were introduced, in part, to overcome the independence problem. But while
cookies are stored on the client machine by the browser (as agent for the server), it is the
server, not the browser, that pays attention to their content. The browser remains stateless.
Moreover, HTTP cookies are problematic in a number of ways (Fielding and Taylor 2002).

Browser-based applications: popular but flawed? 363

– Browsers are extremely limited in their capability to perform local com-
putation; they only retrieve and display resources (such as web pages and
images). When true information processing is required, they must rely on
servers to do it for them.3

These three perfectly reasonable characteristics for a browser constitute
significant limitations for a more general-purpose Internet client. While web
browsers receive and display a whole page at a time, applications such as
transaction processing require interactions at the level of records or indi-
vidual fields. While browsers treat each page independently, most applica-
tions process information as a sequence of connected steps. And while very
thin clients may not process information locally, most client–server archi-
tectures do draw upon the client for some local computation. These defi-
ciencies lead to numerous practical problems for BBAs.

2 The practical problems of BBAs

While BBAs generally get the job done, they do not generally get it done
well. Users of browser-based e-commerce, e-mail, e-learning, and other
applications suffer through numerous difficulties (Landgrove 2003; Platt
2001; Tognazzini and Nielsen 2001). Consider the following representative
problems:

– People frequently misuse the browser’s ‘‘Back’’ button, confusing them-
selves and, often, the application, too.

– People bang buttons repeatedly when nothing happens soon enough.
Doing so is problematic when the button authorizes such transactions as
selling stock or buying an airplane ticket.

– BBAs often require people to submit entire forms andwait for replies before
simple input errors are detected. Recovery from these errors is often poor.

– Screen updates that should take place automatically occur only if the user
explicitly presses an ‘‘Update’’ button.

– Whenever the display changes—even if only a single field has chan-
ged—the web browser must receive a new page from the server, clear the
screen, and render the new page. This delays human–machine interaction
and interrupts visual continuity, degrading usability.

– Functionality is often weak and the interface clumsy.
– Printing what you want, in the format you want, is difficult or impossible.
– Saving what you want electronically, where you want it saved, is even
more difficult.

These practical problems—and others like them—generally reflect the
combined effect of the three key characteristics of browsers: page-orientation,
statelessness, and limited local computation. Usability problems also follow
from the limited user interface capabilities that browsers afford and the

3 The introduction of javascript provided browsers with some local computation. But
javascript was implemented as a kludge (Togazzini and Nielsen 2001) and the information-
processing capabilities it affords are limited in significant ways.

364 Mark S. Silver

awkwardness of constructing one application on top of another (the brow-
ser). The various practical problems merit more formal examination.

The following analysis of BBAs contemplates the vast majority of
applications that do not take advantage of the added capabilities that Java
applets, XML, Flash, and .NET may offer. These significant technologies are
deferred to the end of the paper where solutions to the problems of current
BBAs are considered.

2.1 Delays and discontinuities

Graphical user interfaces (GUIs)—sported by most web browsers—are
designed to provide users immediate visual responses to their actions, but
most users of BBAs do not experience the sub-second response times re-
quired for effective human–machine interaction. Because the browser is
page-oriented, users are subjected to frequent temporal delays and visual
discontinuities that interfere with their ability to interact smoothly with the
application. Each time the browser receives information from the server, the
user suffers through all of the following:

1. The new page arriving over the Internet.
2. The browser window being cleared.
3. The new page being rendered.

This phenomenon is not a problem when using a browser for browsing;
each user action is intended to retrieve a new document, so some retrieval
time is unavoidable and the screen-clearing is natural. But for most other
applications, users do not require an entire new page with each interaction;
they typically require only a few fields of information. Often the newly ar-
rived page differs minimally from the previous one, yet the user not only
waits for all the information to arrive again, but his or her visual continuity
is also broken by the clearing and rendering. If the web page does not fit on a
single display screen, the user has the further visual disorientation that
accompanies scrolling down to locate the original place in the page. A good
application would update only the changed display fields—immediately and
without destroying visual continuity.

Consider, for example, the way the ‘‘Add to Cart’’ button is implemented
in many shopping-cart sites. Clicking ‘‘Add to Cart’’ while scanning a cat-
alog page triggers transmission of a new catalog page, differing from the
original only in the two or three fields that summarize the cart’s contents.
Even if the new page arrives rapidly—which is often not the case—the
consumer must still reorient by scrolling back down the page to his or her
original position. Finding that position is even more difficult when the cat-
alog page offers many similar products.4

4 Clicking the ‘‘Add to Cart’’ button at Barnes&Noble.com can be even more disori-
enting for the buyer (and counterproductive for the e-seller). Netscape Navigator has on
occasion responded by retrieving and rendering a page from Netscape.com beckoning the
viewer to buy books at Amazon.com. It is difficult to imagine such a perverse phenomenon
in a non-browser-based application.

Browser-based applications: popular but flawed? 365

The process for hiding the images shown in on-line catalogs is similarly
flawed. Clicking the ‘‘Hide Images’’ button on a catalog page implies that
you want to see less information than your computer is currently displaying,
but ironically, your browser must request additional information from the
server—a new web page without images. Instead of having the images dis-
appear nearly instantly, you typically suffer a delay while the new page is
transmitted, the screen is cleared, the imageless page is rendered, and you
reorient yourself in the page.

Comparing a browser-based chat system with a specialized chat client such
as an IRC client highlights the BBA discontinuities.5 In both cases, each chat
participant submits messages to the chat server and expects to receive
reflections of the messages posted by others in (more or less) real-time. With
an IRC-client, reflected messages are received one at a time and added to a
scrolling window of messages. Users can read the messages as they arrive and
scroll down to review older messages, if necessary. But with a browser-based
system, reflected messages are received a page at a time. Each newly arrived
page typically contains some new messages together with some that have
already been seen. Once the screen has been cleared and the new page of
messages rendered, the user must reorient visually to determine where in the
list of messages to continue reading. If the user needs to go back in the
conversation, it may sometimes be necessary to use the browser’s ‘‘Back’’
button to return to an earlier page of messages that will partially overlap those
in the current page. And, of course, while all this is going on, newmessages are
accumulating on the server that will be received by the user later as part of
another new web page (leading to the same difficulties once again). The key
problem here is that the basic unit in a chat is the message. A specialized chat
client such as IRC operates at the message level and supports the chat
smoothly. But the page-orientation of the browser-based system creates
confusion and inconvenience by receiving and displaying a page of messages
at a time, where which messages appear on a given page is a matter of chance.

BlackBoard, a BBA that supports course management and e-learning,
illustrates how delays and discontinuities can follow from good intentions.
BlackBoard is very good at acknowledging each action instructors take, such
as posting an announcement or sending an e-mail. But because the browser is
page-oriented, processing the acknowledgment involves the following steps:
the screen is cleared, the sparse acknowledgment page is rendered (see
Fig. 1), the user clicks ‘‘OK’’ (to acknowledge the acknowledgment), the
screen is cleared, and a new page is rendered, returning the user to more or
less where he or she was before taking the action. This is much overhead for
a simple acknowledgment. And it is not just the acknowledgments that bog
BlackBoard down. BlackBoard is a highly interactive program, but due to
the browser’s page orientation, each client–server interaction suffers from the
same excessive overhead. For instance, before BlackBoard lists all students
enrolled in a course, it warns the instructor that this function may be time

5 This paragraph considers a pure browser-based approach to chat to illustrate the
differences between BBAs and specialized-client applications (SCAs). In practice, many
web-based chat systems use Java applets to avoid the problems of a pure browser-based
approach.

366 Mark S. Silver

consuming and asks for confirmation. The warning is a good idea, but this
page-level interaction with the server often takes more time than it does to
generate the full student list. A client-generated warning would be more
efficient for the user.

Delays and discontinuities in the user experience follow not only from the
browser’s page orientation but also from its lack of local computation. The
client–server architecture is based on the notion that processing is distributed
between the client and server in a way that makes most efficient use of the
computing resources. In the typical application, some tasks are best per-
formed locally by the client. For example, if a customer changes the number
of units he or she orders, one would expect the client software to perform the
minimal calculations necessary to arrive at a new subtotal, recalculate any
sales tax, and produce a grand total. But BBAs do not do this; they rely on
the servers to do the processing. So instead of a near instantaneous recal-
culation, the user must suffer through the latency associated with sending the
new information over the Internet to the remote server and receiving the
updated information back. Moreover, while this computational burden on
the server may seem small, the composite effect of all users’ computations
being shifted to servers may overburden them, introducing further delays.

Consider, for example, a consumer using a shopping-cart website who
decides to order an additional copy of a book. He or she typically must go
through the following arduous sequence:

– Update the quantity field.
– Press the ‘‘Update Quantity’’ button.
– Wait for a new page (that differs only slightly from the old one) to arrive.
– Reorient himself or herself after the screen is cleared and rendered again
with a nearly identical display. Scrolling may be necessary to find the
previous location on the page.

In contrast, a specialized application could update the screen in-place
immediately upon the buyer’s increasing the quantity. In general, it would
not be necessary to interact with the server at this point, because the

Fig. 1 One of BlackBoard’s many acknowledgment pages

Browser-based applications: popular but flawed? 367

computation could take place locally. And even if interaction were required,
only the necessary fields would be received and updated in-place. In short,
the delays and discontinuities degrade the BBA’s usability relative to a
specialized client.

Notice how the lack of local computation interacts with the browser’s
page-orientation to exacerbate the delays and discontinuities. If servers are
performing computations that might be better suited for the client, then at
least we would like the server and client to exchange information efficiently.
But this would imply exchanging data at the record or field level, not the
page level. Conversely, if each interaction incurs the pain of retrieving and
rendering a full web page, then we would like to do it infrequently, by having
the client do more computation. But the web browser is not up to the task.
Consequently, the combination of limited local computation and no small
retrieval units is double trouble for the BBA.

2.2 Confusion and errors

2.2.1 Button banging

Many people, competent at browsing with browsers, are prone to confusion
and errors when using BBAs. Some of the confusion and errors may be
second-order effects of the delays and discontinuities. Users often press a
button repeatedly when they do not get an immediate response. In the case of
e-consumers pressing the ‘‘Submit’’ button, this behavior leads to multiple
transactions. Stories abound of electronic shoppers getting stuck with two
airline tickets for the same itinerary and electronic traders selling the same
lot of stock twice (ending up short).

How significant is this problem? Evidently a few seconds of non-response
are enough for users to pound the ‘‘Submit’’ button, necessitating warnings
such as the following:

After you click the submit button, wait for your confirmation to appear.
Do not click the ‘‘Submit’’ button more than one time.

Warnings of this type are very common on the web, especially among
financial institutions. Rather than warn in advance and hope for the best, a
good application would immediately acknowledge that the transaction is in
progress and then lock out the extra ‘‘submits.’’ But the stateless web
browser, having no sense that a transaction sequence is in progress, simply
notifies the server of the user’s latest request. In this case, if the server does
not prevent the duplicate transaction, the e-consumer is out of luck.

The bugaboos of button banging are not limited to e-commerce appli-
cations. When users of Prentice-Hall’s Train & Assess IT e-learning system
click repeatedly on a testing button, each click invokes the test anew. This
earns the student a zero on the first instance of the test and may prevent him
or her from retaking the test. This problem is quite common since students
often become impatient waiting first for the Macromedia Authorware plug-
in to load and then for the test to arrive over the Internet.

368 Mark S. Silver

2.2.2 The ‘‘Back’’ button

Another significant source of confusion and errors is the browser’s ‘‘Back’’
button. Interacting with an application—especially a transaction processing
application such as on-line shopping—typically requires a sequence of steps.
Many BBAs divide the transaction sequence into a series of web pages. The
user might first select products, then quantities, then shipping options, then
payment options, and so forth. Since the browser is stateless, it sees these
simply as a series of independent pages. The server must manage the state of
the transaction. Now what is a buyer to do if he or she needs to back up a
step in the process? The most natural action would be to click the browser’s
‘‘Back’’ button, especially since this is the most frequently used browser
feature (Nielsen 2000a). But doing so only tells the browser—blissfully
ignorant of the state of the transaction—to redisplay the previous page. The
server may or may not be notified. And depending on how the buyer moves
forward again (pressing the ‘‘Forward’’ button or clicking a button within
the page), and how well the server keeps track of what the buyer is doing,
both the buyer and application can become confused about where the buyer
is in the sequence.6 Did the buyer just modify a previous transaction or
submit a new one? Indeed, this is another way of getting two airplane tickets
or selling the same stock twice.

The ‘‘Back’’ button presents other usability problems, as well. Under
some circumstances, pressing the ‘‘Back’’ button in Netscape Navigator 7
produces the following message, unintelligible to many users:

Given this cryptic message, some users are likely to be unable to reach
their desired page while others are likely to resubmit transactions that have
already been processed and should not be resent. Might this just be a
weakness of Netscape Navigator? Microsoft Internet Explorer (6.0) seems to
generate a more understandable message when the ‘‘Back’’ button is pressed
under the same circumstances:

Warning: Page has Expired
The page you requested was created using information you submitted in a
form. This page is no longer available. As a security precaution, Internet
Explorer does not automatically resubmit your information for you.

6 Ironically, cookies—which were intended to help compensate for the browser’s state-
lessness—can actually contribute to this confusion surrounding the state of the application
(Fielding and Taylor 2002).

Browser-based applications: popular but flawed? 369

To resubmit your information and view this Web page, click the Refresh
button.

But the ‘‘warning’’ fails to warn users of the potentially dangerous con-
sequence of their actions—the risk of duplicate transactions. Moreover,
pressing ‘‘Refresh’’ yields the following dialog box, even more confusing
than the one in Netscape:

So the hardship for users is not an artifact of a particular browser but of
using the browser—any browser—as a platform for the application.

How serious are the various problems with the ‘‘Back’’ button? The
Pennsylvania Department of Revenue offers this warning to taxpayers filing
their returns on-line:

Please DO NOT use the BACK or FORWARD buttons on your brow-
ser’s toolbar. If you use either button, your information WILL NOT BE
SAVED and you will have to fill out the appropriate form(s) again. Please
use one of the navigation buttons within the pa.direct.file application to
navigate.

Even worse than having to complete a complex form again would be
believing you had conducted a transaction successfully, because you received
a confirmation number, when, in fact, no transaction was processed. And the
Bureau of the Public Debt warns its TreasuryDirect customers that this can
happen to them if they press the ‘‘Back’’ button while in the process of
purchasing U.S. government notes and bills. In contrast, customers who pay
their AT&T Universal Mastercard bills on-line and press the ‘‘Back’’ button
may have the opposite experience. They may successfully complete the
transaction but nonetheless believe that they failed, necessitating this
warning to prevent them from trying to pay the bill again:

Note: If you hit the back button, you will go back to the payment screen
with a zero dollar amount. Be assured that your payment was accepted, and
the zero amount in the payment window does not mean it was cancelled.

So pressing the ‘‘Back’’ button in BBAs can be quite dangerous. It would
be bad enough if BBA users simply had to unlearn their favorite browser
feature—the ‘‘Back’’ button. But some BBAs demand the opposite behav-
ior—that users do employ the ‘‘Back’’ button. For years, American Express
offered this guidance to its customers:

To change the amount you wish to pay, please use your browser’s BACK
button.

370 Mark S. Silver

Perhaps the least usable of all are those sites that are inconsistent.
Opening an account with Discover Bank brings this ominous instruction:

Please do not use your browser’s ‘‘Back’’ button so that you do not lose
the information you have entered.

But elsewhere on the same site users were (until recently) told the opposite:

If you are registered for the Account Center, please use your browser’s
‘‘Back’’ button to return to the Login page and try again.

Needing to keep track of when you may use the ‘‘Back’’ button, when you
must use it, and when you must not places a cognitive burden on the user and,
not surprisingly, leads to many errors.

2.2.3 The ‘‘Stop’’ button

The ‘‘Stop’’ button can also be problematic, necessitating the following
warning when transferring funds at Wachovia:

Please know that clicking the browser’s ‘‘Stop’’ button may or may not
stop your transaction.

Since browsers were designed for browsing, ‘‘Stop’’ tells a browser to stop
downloading or rendering the file, not to cancel a transaction in progress.
But a user might reasonably expect ‘‘Stop’’ to mean ‘‘Stop.’’

While in some cases pressing ‘‘Stop’’ may have no effect on the transac-
tion in process, in other cases it may leave the user stuck in the middle, with a
partially processed transaction. Prentice Hall warned students trying to
register for its Active Book site about this as follows:

Please note that it may take several seconds to validate your ACCESS
CODE. Please do not click your browser’s ‘‘Stop’’ button while the vali-
dation process is taking place.

Failing to heed this warning may leave the student unregistered for the site
but with a ‘‘used’’ access code that is no longer valid for registration. Here,
too, instead of warning users, a normal application would lock out the illegal
actions.

2.2.4 Updating the server

When contemplating delays and discontinuities we already encountered
another major source of confusion and errors: the need for servers to gen-
erate new shopping-cart pages when consumers change quantities. Most
shopping-cart sites use an ‘‘Update Quantity’’ button to force the trans-
mission of a new web page when consumers change order quantities. But this
button is problematic because until the user clicks the button, he or she is
looking at an inconsistent screen whose totals may not match the quantity
apparently ordered. If printed, this inconsistency is preserved for posterity,

Browser-based applications: popular but flawed? 371

as in Fig. 2. And at many sites, if the user never clicks the ‘‘Update’’ button
the updates are lost. Some BBAs are coded to invoke the server automati-
cally when a user changes a field, but this solution can be even more dis-
ruptive, especially if the user is in the midst of a series of changes.

Inconsistencies within a site concerning the consequences of not pressing
the ‘‘Update Quantity’’ button make for even more confusion and errors.
At both Amazon.com and Barnes&Noble.com you are forgiven for not
clicking the ‘‘Update’’ button if you proceed directly to ‘‘Checkout.’’ But if
you ‘‘Continue Shopping’’ the updates are lost. And since these actions
take the consumer to a page that does not display the shopping cart, the
customer is not likely to know whether the changes took effect or not.
Compounding these internal consistency problems are the differences
across sites. For example, BBAs vary widely in how they behave when
users press the ‘‘Enter’’ key after entering a changed quantity (Silver and
Ward 2004).

2.2.5 Bookmarking

A fifth source of errors and confusion is fairly unique to BBAs because it
pertains to bookmarks. Users have become accustomed to setting book-
marks when browsing the web, but when these same users bookmark pages
in the middle of a BBA’s transaction sequence, the consequences can be

Fig. 2 Inconsistency: line-item totals and subtotal do not match the quantities ordered

372 Mark S. Silver

severe. A user jumping into the middle of an application is not a problem
often encountered by traditional applications.

2.2.6 Multiple browser windows

Consider yet another problem: the use of multiple browser windows
(Wroblewski and Rantanen 2001). Users of BBAs that open secondary
browser windows may find the primary window out-of-date. Prentice Hall’s
Train&Assess IT uses its primary window for navigation and status infor-
mation, but the actual training and testing are performed in a secondary
window. When the secondary window closes on completion of a lesson or
test, the information in the primary window often does not reflect the activity
just completed, since the browser is stateless and sees the browser windows as
independent. Refreshing the primary window is required to bring it up-to-
date. This confuses many students, who think the system did not credit them
with the training or testing.

BBAs that open new windows may encounter another problem. To avoid
unwanted advertisements, many users set their browsers to block ‘‘pop-up
windows.’’ But this is problematic for BBAs that use such windows for
required functionality. For example, at least one major airline uses a pop-up
window to provide travelers with their on-line boarding passes. If pop-ups
are blocked, the boarding passes never appear. Users cannot rectify this
problem by unblocking pop-ups and trying again because by then the server
has recorded the boarding pass as issued and will not generate another one.
This difficulty is an artifact of using the browser as a platform for e-com-
merce. It is difficult to imagine a traditional application behaving this way.

The secondary window problem is not limited to BBAs that automatically
open new windows for their users. Most BBAs allow users to open pages in
new browser windows by right-clicking the link. When users engage in
transactions in such a window, status information in the original window
becomes out-of-synch with the true status. Sometimes such actions even
crash the session by confusing the server-side of the application, which is the
only part of the application keeping track of what is going on. One might
argue that opening a new window is bad behavior by the user, but of course
the BBA is truly at fault for allowing this behavior. Ultimately, the problem
traces back to the use of browser technology where it is not appropriate.

2.3 Clumsy interfacing and limited functionality

2.3.1 Limited interfacing techniques and capabilities

Since browsers hardly compute, the server must provide the bulk of a BBA’s
functionality. And since relying on the server leads to delays and visual
discontinuities, the user interface to a BBA’s functional capabilities is often
clumsy. Moreover, since interactions between the browser and server are at
the page-level, the BBA—despite its GUI—does not provide a direct

Browser-based applications: popular but flawed? 373

manipulation interface. Interactions can also be awkward because the BBA’s
interface is constrained by what the browser can be made to do with HTML
and javascript. In short, as Graham (2004) puts it, web pages are ‘‘lame’’ as a
user interface.7

While most applications implemented in a modern GUI employ toolbar
icons, pull-down menus, short-cut menus, and key-combinations to invoke
functionality, BBAs implement most of their controls as hotspots (links) in
the web page, often identified by graphical buttons. Since most users will be
familiar with their GUI’s traditional widgets, these non-standard buttons
degrade usability. They may be scattered throughout the page, rather than
clustered at the top of the screen, so the user must hunt for them. They are
often difficult to pick out. Even an experienced user who knows where to find
the button may still suffer a usability loss by having to scroll the display or
move the mouse a substantial distance to reach it. And there are no key-
combinations for the power user to invoke as an alternative to pointing and
clicking. Application-specific shortcut menus are also absent; right-clicking
activates the browser’s shortcut menu, which offers options at best irrelevant
to, and in some cases highly inappropriate for, the BBA.

BlackBoard, for example, always places its ‘‘Cancel’’ and ‘‘Submit’’
buttons at the bottom right of the web page. In many ways the design reflects
great attention to usability: the consistency across the site is laudable; the
‘‘Cancel’’ button precedes the ‘‘Submit’’ button, decreasing the likelihood of
errors; and the buttons are on the right-side, a very short distance from the
scroll bar. But placing the buttons at the bottom of the web page, which is
often very long with the most important elements near the top, forces users
to scroll down substantially each time they need to complete an action.
Constantly having to scroll down impairs usability.8

Most GUIs feature such direct-manipulation facilities as ‘‘drag and drop’’
for moving items. But BBAs do not. If an instructor wants to rearrange items
in BlackBoard, instead of dragging and dropping the items, he or she must
renumber them by putting new numbers in the associated text boxes. And as
each item is moved, a new page is sent from the server. Renaming items is
even more tedious than rearranging them.

2.3.2 Piggybacking applications

Another difficulty with BBA interfaces is not so much a function of the
browser’s technical characteristics as it is a consequence of building one
application on top of another. BBAs confront their users with two sets of

7 Graham goes on to claim that web pages are ‘‘just good enough,’’ however, given the
other benefits of web-based applications.

8 One might argue that BlackBoard could have worked around this problem the way
many other BBAs have by putting the buttons at the top and bottom of the page. But the
very need to employ a work-around highlights this inherent BBA interfacing weakness.
Moreover, BlackBoard likely had good reason for not placing buttons at the top of the
page. BlackBoard takes a restrictive approach that forces the user to confront the full form
before submitting it. A non-browser-based approach, however, could have implemented
this restrictiveness without requiring so much scrolling.

374 Mark S. Silver

interface elements: (1) the menus, toolbars, and other elements of the
browser’s interface and (2) the controls and inputs scattered around the web
pages that define the BBA. The browser’s interface, of course, is common
across all BBAs and is usually consistent with other applications running on
the same GUI. In contrast, the BBA’s own interface elements are unique.

Presenting users with two sets of interface elements increases the com-
plexity of the design, decreases the intuitiveness of the interaction, and de-
grades usability. Nielsen (2000a) notes that controls need to do what the user
expects them to do. The double interface makes this more difficult to
accomplish. For instance, as previously observed, right-clicking on a BBA
widget yields not the BBA’s short-cut menu, but the browser’s, whose op-
tions are either irrelevant or inappropriate for the BBA. Sometimes the user
must choose between similar, or even seemingly identical, options in the two
interfaces. In particular, this dilemma adds to the confusion surrounding the
‘‘Back’’ button. Do I hit the ‘‘Back’’ button on the browser’s toolbar to
cancel an operation or the ‘‘Cancel’’ button that was placed on the web page
for that purpose (Nielsen 2000b)? Do I use the browser’s ‘‘Back’’ button or
the ‘‘Back’’ button embedded in the web page? Similarly, when I move
forward again, do I use the browser’s ‘‘Forward’’ button or some button on
the page? For some BBAs, it doesn’t matter. For others, an incorrect choice
can be disastrous. Users of the Amtrak site, for instance, can stumble upon
this error message:

Problem With Navigating Through the Site. The problem you are expe-
riencing may be related to using your browser’s Back’ and Forward’
buttons in the booking process. In general, you will get better results by
using the buttons on each page to progress through the booking process.
The buttons are usually orange in color, and labeled Next’, Submit’, etc.

2.3.3 Limited functionality

Restricting functionality can reduce the clumsiness of the interface, and this
is what many BBA designers do. Between the things a BBA simply cannot
do, and the things that BBA designers choose not to do, many BBA’s offer
limited functionality. For example, early browser-based e-mail systems often
lacked spell checking, ways of sorting messages, ways of filing messages, and
ways of attaching files. And even those BBAs that now provide these func-
tions often suffer from constraints on the functionality and poor interfacing.
For example, specialized e-mail clients typically provide continuous spell
checking whereas BBAs are usually limited to spell checking the whole
document on request. Perhaps these functional limitations are one reason
Nielsen (2000a) recommends not ‘‘trying to implement advanced applica-
tions inside a Web browser.’’

2.3.4 Browser incompatibilities

It is well known that many BBAs work better in one browser than in an-
other. Many sites even inform their users of this fact. But while in some cases

Browser-based applications: popular but flawed? 375

the differences simply reflect the quality of the user experience, or the extent
of the functionality supported, in other cases a BBA may work in one
browser and fail without explanation in another. To some extent, of course,
this is a fault of the designers, who should have tested the BBA for com-
patibility with all the major browsers. But again, the root cause of this
problem—and the reason that this issue is painful for developers even when
handled properly—is that applications are being piggy-backed on top of
browsers.

Incompatibilities are not limited to different browsers. Different versions
of the same browser can be problematic. BBA developers often choose be-
tween implementing systems with features that will not function on older
versions of the browser and limiting functionality to maintain compatibility
with the older versions. Even users of the latest version of a browser may
encounter problems if they have not installed all the updates. Consider, for
example, these messages from AT&T Universal Mastercard and Discover-
card, respectively:

If you currently use Internet Explorer 6.0 and experience problems
requesting a Click-to-Pay Payment, you may need to download a software
update from Microsoft�.

Internet Explorer users: If you are getting this error, you may need the
latest browser updates.

2.3.5 Cookies

Many BBAs depend on cookies. When users block cookies, some BBAs
notify them that cookies must be accepted, while others either malfunction
or cease to function without explanation. Yes, BBAs that malfunction or fail
without explanation are poorly constructed, but we should not hold the
browser-based approach blameless. Since cookies are a work-around for the
statelessness of browsers, this problem, too, is ultimately a consequence of
adopting the BBA approach.

2.3.6 General clumsiness

Figure 3 could well be the most glaring example of BBA clumsiness. When
using Internet Explorer—a Microsoft product—to download and install
MSN Messenger—another Microsoft product—users were are at one time
warned that they were about to have a choice but they had to choose the first
option. What normal application would behave this way?

2.4 Printing

Printing is another good example of how the lack of local computation
combines with the page-orientation to make BBAs problematic. Unable to
send information to the printer directly, BBAs generally print by having

376 Mark S. Silver

users invoke their browsers’ print functions. But browsers print entire web
pages, which is usually not what the applications should be printing:

– Web pages combine information presentation with navigation (Nielsen
2000a), so the typicalweb page contains the information to be printed aswell
as navigational buttons and navigational guidance.When such aweb page is
printed the printout is cluttered with the extraneous navigational elements.

– While specialized clients sometimes find it useful to print a screen im-
age—that is, exactly what is on the screen—applications usually need to
print more or less than what currently appears. And they may need to
print it in a different layout from what appears, since screen-oriented and
print-oriented documents are constructed differently (Nielsen 2000a). So
the browser’s print function, which prints the entire web page being
viewed, does not usually print what is needed. Being constrained to print
the page, the whole page, and nothing but the page, is a significant limi-
tation for BBAs.

The typical work-around for this problem is to put a ‘‘Printable Version’’
link on the page that, when selected, generates a new web page showing exactly
what should be printed. But this, too, is problematic because it degrades
usability. Consider the sequence the user must follow to print something:

1. After clicking on the ‘‘Printable Version’’ button, the user must wait while
the new page is retrieved over the Internet and rendered on the screen.

2. Then the user must instruct the browser to print the current web page.

Fig. 3 A Microsoft kludge

Browser-based applications: popular but flawed? 377

3. Finally, after printing, the user must leave the special print-oriented
page and return to where he or she was previously.

Usability suffers in several ways:

– A sequence of at least two (usually three) commands is performed by the
user to take one simple action (to print something).

– Some BBAs commingle the two elements of the interface, first having the
user select a link on the page to generate the ‘‘printable version’’ (step 1)
and then having him or her employ the browser’s controls (a toolbar icon,
menu item, or key combination) to invoke the print function (step 2).
Those BBAs that avoid this problem by placing a ‘‘Print’’ link on the
printable version page violate the purity of the printable version, since the
link appears in the printout.

– The user suffers two needless delays: (1) He or she must wait for retrieval
of the special printable page over the Internet even though the page typ-
ically contains information already on the client. (2) He or she must also
wait for the page to be rendered on the screen even though the page is
being retrieved for printing and not viewing.

– The user must also find a way to navigate back from the page displaying
the printable version to where he or she was prior to printing. BBAs take
one of two approaches. Many BBAs open the printable version in a sec-
ondary browser window, so after printing the user closes the extra win-
dow. Other BBAs render the printable version in the current browser
window, generally requiring the user to use the ‘‘Back’’ button to return to
the previous page. The secondary window approach is typically the more
usable, but each requires an added step by the user and each has its
problems.

When the printable version appears in a secondary window, users must
close this window after printing. If the BBA puts a ‘‘Close’’ button on the
page—as many do—the purity of the printed version is violated. On the
other hand, if the page does not contain a ‘‘Close’’ button, the user may be
unsure how to exit the printable version. Users may be reluctant to click
the browser’s ‘‘Close’’ button because if the BBA did not open a new
window, the browser will close, terminating the application in progress.
Usability may suffer as the user tries to determine whether or not the BBA
opened a new window.

Rendering the printable version in the current browser window can be even
more problematic than opening a secondary window. Since a pure printable
version contains no navigational buttons, it is a dead-end in hyperspace.
This approach usually requires the user to invoke the browser’s ‘‘Back’’
button. But he or she might first search exhaustively for a more intuitive
possibility. As already noted, the ‘‘Back’’ button is hazardous in many
BBAs, so users take a risk by clicking it. Moreover, in those circumstances
where users are going back to a page generated by a form posting, pressing
‘‘Back’’ generates the cryptic messages about ‘‘expired’’ pages discussed
earlier. Even for experienced users who may not be bothered by those
messages, reposting the form data adds more keystrokes and delays.

378 Mark S. Silver

Some BBAs solve the dead-end problem by putting an unobtrusive link
somewhere in the printer-friendly page to take the user back after printing.
But this is a no-win situation. If the link does not blend in well, then it
violates the purity of the navigation-free printable version. And if it does
blend in well, then the user cannot find it to use it.
Perhaps the greatest danger of the same-window approach is that if users
mistakenly think a new window was opened—as in many BBAs—they will
close the window, exiting the browser and the BBA unintentionally.

Whichever approach is used, the user loses visual continuity by leaving
and returning to the focal page (which sometimes has to be rendered again
by the browser).

Two more difficulties:

– Browser print functions themselves are relatively unsophisticated and af-
ford page authors little control over the structure of the printout. So, when
all is said and done, the pages that emerge from the print function often
suffer from poor pagination and other problems.

– Websites that use frames introduce an additional problem, because users
are easily confused about which frame they are—or should be—printing.

Some websites use the Adobe Acrobat Reader to handle documents that
may require printing. While Acrobat offers a number of benefits, it does not
solve any of the problems just discussed other than pagination. And Acrobat
introduces costs of its own: The user must wait for Acrobat to load and users
are often confused by the double toolbars—one for the browser and one for
the Acrobat plug-in. In particular, using the browser’s print icon rather than
Acrobat’s—an easy error to make—will often fail to print the document and
leave users baffled by the cryptic error message they receive.

Nielsen (2000a) notes that HTML offers a tag for identifying an alternative
printable version of a page. In browsers that support this tag, this approach
would eliminate the cumbersome three-step printing process as well as the
need to return to the initial focal page. But the approach does not solve all of
the BBA printing problems. It does not avoid the need to transmit essentially
the same information twice. And it does not support the more customized,
user-driven printing that many applications should provide.

2.5 Personal electronic filing

Since printing is problematic for BBAs, it would seem to be good news that
e-mail, e-commerce, e-learning, and all the other ‘‘e’’s are moving us stea-
dily—if slowly—in the direction of electronic filing rather than paper
printing. But BBAs have trouble filing information for much the same reason
they have trouble printing it: Browsers save whole web pages and what needs
to be filed is often not a page. A consumer may only need to file a few key
numbers from each month’s on-line statement, but instead of just adding a
new record to an existing database he or she must save an entire web page as
a separate HTML file. The consumer could cut and paste fields from the web

Browser-based applications: popular but flawed? 379

page into a database management system or some other application—and
many people do—but this work-around is tedious and error-prone.

Not only do BBAs generally constrain their users to storing informa-
tion as web pages, but their support for filing these pages locally is also
weak:

– Consumers trying to ‘‘go electronic’’ will likely want to organize the many
pages they are saving. But with a BBA, all they can do is rely on the
operating system’s directory structures and explicitly choose a subdirec-
tory each time they save a page. Users would likely want to group doc-
uments from a given BBA together and might even want to have
subgroupings of documents—for example, one subdirectory for monthly
statements and another for confirmations. A proactive application that
exploited the directory structure could make selecting a destination
directory much easier or even automatic. But BBAs cannot do that.

– Many BBAs stop short of what they could do—namely, assigning the
pages distinct and meaningful filenames—so users must devise their own
naming conventions as well. Relying on the default filename generally is
ineffective because many BBA-generated pages have the same default
filename. For example, statements from financial institutions typically
default to such filenames as ‘‘Statements.htm’’ rather than to more
descriptive names including the institution name and statement date.

– Some websites are designed in such a way that the page cannot be saved at
all. One receives this message from Netscape Navigator when trying to
save a purchase confirmation from cvs.com:

Some BBAs offer improved local filing by generating downloadable data
files that can be imported into other applications. One longstanding
example of this approach is the ability to download files in formats suitable
for Quicken or Microsoft Money. Other examples are becoming more
prevalent. Many financial institutions will deliver your monthly or quar-
terly statement in PDF format. Similarly, BlackBoard supports down-
loading the student grade book as a CSV file that can be imported into
spreadsheet programs and other applications. While this approach im-
proves on saving web pages, it still falls short of providing the local storage
and retrieval functions that a typical non-BBA application could provide.
Moreover, since the file download capabilities still rely on the browser, they
suffer from the same weaknesses in naming and organizing files as do the
facilities for saving web pages. And using the BBA’s downloading features
will often be non-trivial. Here, for example, are the instructions Black-
Board used to provide:

380 Mark S. Silver

Other BBAs—especially those that support downloading in multiple for-
mats—provide even more complex instructions, while still others provide no
instructions at all, leaving the user to guess. In any case, somewhere along the
way the user will confront a dialog box such as this one in Netscape Navigator

or this one in Microsoft Internet Explorer

Instructions

The gradebook has been saved to a file. To download this file to your computer, fol-
low the instructions below.

1. After saving the file, open Microsoft Excel or a similar program, and go to the
File menu. Select Open. On a Macintosh, this may be the only way to open the
file, as the system may not automatically associate the saved file with Excel.

2. Locate the directory where the file is saved and double-click the filename (the file
is named gb_export.csv by default.)

Download Tip: When downloading the gradebook, you may want to save it to a more
permanent location, rather than the default location. This will help you locate the
gradebook more easily once download is complete.

Browser-based applications: popular but flawed? 381

Once again, much of the complexity, added steps, potential confusion,
and room for errors in this ‘‘improved’’ approach results from piggy-backing
the application on top of the browser, relying on the browser for function-
ality that a specialized application would provide itself.

All told, BBAs are inherently deficient in their ability to support personal
electronic filing. Perhaps the difficulties with electronic filing are why so many
e-commerce BBAs recommend that users print their confirmation pages.9

2.6 Summation

The foregoing discussion, summarized in Table 1, suggests that BBAs pose
significant practical problems. These problems can all be traced to the
browser-based approach (see Table 2) and most reflect some combination of
the three key browser characteristics. One might ask, however, to what
extent these common weaknesses are unavoidable consequences of the
browser-based approach and to what extent they simply reflect poorly de-
signed BBAs. Not all of these problems are unavoidable. Some can be
eliminated by extensive server-side programming or clever use of javascript.
Others are inescapable, although the better designed BBAs sometimes reduce
their magnitude somewhat. In any case, the frequency and severity of the
browser-based problems in practice suggest that many web developers are
not successfully avoiding them or reducing their severity. Moreover, many of
the solutions are kludges that bring with them their own problems. So while
there is certainly much room for designing better BBAs, better BBA design
does not resolve the issue.

That said, over the last 2 years we have slowly been seeing some BBAs
finding ways to reduce somewhat some of the negative consequences of
browser-based limitations. Consider the following:

– JPMorganChase improved its printable version capability in a number of
ways, most significantly by using javascript to invoke the browser’s print
function automatically once the printable-version window is loaded. This
approach simplifies matters for the user, reducing the steps from three to
two (for a process that ought to require just one step, of course). Most
BBAs have not made this modification.10

– Many web sites improved their treatment of printable versions by opening
a new browser window for the printable version, thereby eliminating some
of the difficulties described earlier. Many others, however, retain the sin-
gle-window method. But those retaining the single window are often

9 In fairness to BBAs, there is another obstacle to more widespread electronic filing:
Most users are not yet sufficiently disciplined in backing up their files, and home users and
many office users are not on networks that backup automatically, so printing is a safer
alternative to electronic filing if preserving the information is important.

10 Express Scripts reduced the process to a single step by automatically invoking the
browser’s print function on the printable version page and then immediately loading
the next page required by the user. If the downloading and rendering take place fast enough,
the user may hardly notice the intermediate printable version page. But the kludginess of
this clever approach—which has the potential to confuse the user—is itself testimony to the
deficiency of the browser as a platform.

382 Mark S. Silver

Table 1 Summary of practical problems

Practical problems Explanation and specific manifestations

Delays and
discontinuities

All user actions—such as clicking ‘‘Add to My Cart’’ or
‘‘Update Quantity’’—require transmission and rendering of a
complete new web page introducing temporal delays and
interrupting the flow of the interaction. The intervening clearing of
the display further interrupts the flow, introducing visual
discontinuities.
This problem is exacerbated when users must scroll down to reorient
within the newly arrived page.

Confusion and
errors

Button banging: Pressing the same button repeatedly can
trigger duplicate transactions.

Pressing the ‘‘Back’’ button often causes undesirable effects
in a transaction sequence.

Pressing the ‘‘Stop’’ button does not cancel a transaction in progress
though users may expect it to do so.

Changing the quantity ordered in a shopping-cart site can be
troublesome because the user must click an ‘‘Update Quantity’’
Button.
•Users may fail to register the update (and not know it).
•Temporary inaccuracies may appear on screen. These may be
preserved in print.

Bookmarks may enable users to jump into the middle
of a transaction sequence.

Activity in secondary browser windows may leave the
primary window out-of-date or confuse the application.

Clumsy interfacing
and limited
functionality

The BBA does not provide a direct manipulation interface
(although it is a GUI).

Functionality is often restricted due to browser limitations or to
reduce interface awkwardness.

Users must hunt for buttons on web pages instead of using
toolbar icons, pull-down menus, key-combinations,
and shortcut menus.

Users confront two sets of interface elements due to the piggy-
backing of one application on top of another (the browser).

Incompatibilities across major web browsers cause
functionality and BBAs to fail, often without explanation.

Problems with cookie handling cause features and BBAs
to fail, often without explanation.

Printing Users can print only the web page they are viewing:
•Web pages are typically cluttered with navigational information
that should not be printed.

•Even without navigational clutter, applications often need to
print something other than exactly what appears on the screen.

•Even if the web page contains exactly what needs to be printed,
screen- and print-oriented displays require different formatting.

•Pagination is poor.
The various workarounds (e.g., using ‘‘printable versions’’ or
Adobe Acrobat) provide incomplete solutions or introduce
problems of their own.

Personal electronic
filing

Users need to store and retrieve information—records or fields—
locally, but BBAs generally let users store only entire web pages.
Some BBAs will not even do that.

Web Browsers provide limited support for naming and
organizing web pages (and any other files) stored locally,
so files are difficult to find when they are needed.

Browser-based applications: popular but flawed? 383

coding their websites in a way that avoids the ‘‘postdata expired from
cache’’ hassle.

– AT&T Universal Mastercard users can now save their confirmation web
pages locally following on-line bill payment.

– Norwegian Cruise Line now supports users’ opening link targets in new
browser windows. Previously users trying this would open a useless win-
dow containing an inapplicable error message.

No doubt that by the time you read this some of the specific examples
identified in this paper will also have been remedied by the site designers. But
while some BBAs have worked around various browser-based problems with
more extensive server-side coding, greater use of javascript, or modified
designs, most have not. How are we to understand this phenomenon—that
is, the relatively slow pace of improvement? A number of potential expla-
nations come to mind:

Table 2 Practical problems following from fundamental browser characteristics

Browser characteristic Practical problems

Page orientation Delays and discontinuities:
• Lack of more granular information exchanges necessitates

transmitting entire web pages between the server and client
Printing problems:
• BBAs print only whole web pages, not the more customized

printouts typically needed by applications and users
Filing problems:
• BBAs can file only whole web pages, not specific

fields or records

Limited local computation Delays and discontinuities:
• Limited local computation leads to frequent round-trips

to the server
Confusion and errors:
• Updated quantities may be lost
• Totals on the screen may not reflect updated-quantities

Statelessness Confusion and errors:
• Problems with button banging, the ‘‘Back’’ button, and the

‘‘Stop’’ button, which can crash the application, create
duplicate transactions, and cause other problems

• Problems keeping track of which items and how many of each
are in the shopping cart

Clumsy interfacing and limited functionality:
• Problems with cookies, a work-around for statelessness,

causing applications to fail (often without any explanation)

Piggy-backing
of applications (BBA on
top of browser)

Clumsy interfacing and limited functionality:
• BBAs do not provide direct manipulation interfaces—only the

browser’s interface
• Users must hunt for buttons on web pages instead of using

toolbar icons, pull-down menus, key-combinations, and
shortcut menus

• Users confront two sets of interface elements

Other browser
characteristics

Confusion and errors:
• Users may try to jump to a bookmark in the middle of a BBA
• Secondary browser windows cause various problems

384 Mark S. Silver

– Some BBA developers may be unaware of their BBA’s weaknesses. This
would not be surprising since many websites pay insufficient attention to
usability and usability-testing (Shneiderman et al. 2003; Nielsen 2000a),
since the problems documented here have not previously been described so
extensively, and since many BBA developers are non-professionals.

– Some BBA developers may recognize the problems but be unaware of the
solutions other developers have pioneered. Put differently, some of these
work-arounds may be diffusing slowly through the developer population.
This may be especially likely since some BBAs are professionally devel-
oped but others are not.

– Some BBA developers may be aware of these problems but discount their
significance, concluding that most of their sites’ visitors either do not
perceive the problems or do not suffer unduly because of them.

– Some BBAs may not be well maintained, remaining relatively unchanged
over time despite their weaknesses.

– BBA developers, especially for complex applications, generally rely on
software development tools rather than writing extensive HTML and
javascript themselves. These tools may not support the alternative ap-
proaches, leaving the developer either unable to implement the work-
arounds at all or unable to implement them without substantial effort.

– While some of these work-arounds may be easy to implement, others may
require significant effort, especially when server-side coding is involved.
For some BBA teams, fixing the problems identified here may be a low
priority, not deemed worth the effort. This may be especially true since the
workarounds do not solve the major BBA weaknesses and may provide
only marginal improvements.

– Some BBA developers may purposefully choose to forego the solutions.
Since some kludges that reduce a given problem either introduce another
or force a shift in design, a given BBA’s designers may prefer the original
approach, despite its limitations, to the alternatives.

Whatever the reasons may be, BBA problem severity is being reduced
relatively slowly. More importantly, even were the pace to quicken, these
efforts would provide only marginal improvements and could not solve the
major BBA problems. Before turning to more fundamental solutions, an
assessment of BBA strengths—found in the following section—is in order.

3 Understanding BBA popularity

Despite their many problems, BBAs dominate the world of Internet Appli-
cations. Several years ago, Nielsen (2000c) noted that since the arrival of the
World Wide Web, almost no progress had been made in specialized Internet
clients. And the situation has not changed much since then. Given BBAs’
many weaknesses, how can we explain their great popularity?

This question is not difficult. BBAs are popular because web brows-
ers—like the World Wide Web itself—are immensely popular. Nearly every
computer connected to the Internet already has a web browser installed, so
BBAs can be run without installing any additional software. Even users away

Browser-based applications: popular but flawed? 385

from their own computers can be assured easy access to BBAs, since any
machine with Internet connectivity and a browser will do. In fact, using the
browser as a platform provides a double benefit, both eliminating the need
for installing applications and making them (largely) platform independent.
These benefits are especially significant for organizations deploying internal
applications to a large number of employees who may use a variety of ma-
chines and operating systems.

Not only do most computers have web browsers installed, but most users
are familiar with browsers. Indeed, many Internet users view themselves as
accomplished browser users. Even web novices can become familiar with
browsers quickly since most are easy to learn and use. User familiarity and
competence with browsers translate into user comfort with the applications
that run in browsers—the BBAs. BBAs seem familiar to the user, due to the
familiar browser interface, and the user feels competent to use them, given
his or her competence with browsers. The many people who use multiple
BBAs may feel even more comfortable since the various BBAs all share the
common browser-based interface.

Would it be fair to argue that this sense of BBA familiarity and com-
petence translates not only into user comfort but also ease-of-use? The
argument would be as follows:

Since browsers are easy to learn and use, and especially since many people
already know how to use browsers, applications based on browsers
(BBAs) are easy to learn and use. In other words, if you can use a
browser—and who cannot?—using a BBA is easy. Moreover, since most
Internet Applications are BBAs, learning and using one more BBA is easy
since it has the same browser-based interface as the others. In human-
factors lingo, usability is enhanced by positive transference from one BBA
to another.

This argument, however, does not hold up to scrutiny. BBA comfort
may lead people to believe that BBAs are easy to use, but the ease-of-use
may be illusory. When an Internet Application is implemented on top of a
web browser, the user invokes the application’s functionality by interacting
with the application’s web pages, filling in forms and clicking on appro-
priate buttons to perform activities. Although the browser’s controls may
be familiar and easy-to-use, the BBA’s usability is determined by how
easily the application-specific web pages can be used. There is no reason to
believe these would be any easier to use than a specialized client per-
forming the same functions. In fact, the BBA is likely to be more difficult
to use, due to the many practical problems described earlier (especially
those in the ‘‘Clumsy interfacing and limited functionality’’ section). Try-
ing to use the various browser-based e-mail systems illustrates these
observations.

But what about the positive transference claim—that the common
browser interface across numerous BBAs contributes to ease-of-use as one
moves from one BBA to another? This argument also fails because each
BBA sports its own forms and buttons. Even within a particular appli-
cation type—say, e-mail—one finds significant differences in the browser-
based systems. From a usability perspective, someone with multiple e-mail

386 Mark S. Silver

providers would be much better off using a single, specialized e-mail client
than employing the sundry web-based e-mail systems. Indeed, very dif-
ferent specialized applications that share a common GUI might seem
more similar to each other than would various BBAs that share the
browser platform (but rely on page-based widgets for most of their
interaction).

Put differently, the potential for positive transference that follows from
what BBAs have in common may go unrealized, or even be sur-
mounted by negative transference, due to the numerous differences among
BBAs. Here are just a few of the examples identified by Silver and Ward
(2004):

– We have already seen that BBAs differ one from another in how they
handle the ‘‘Back’’ button and printable versions. Misusing these features
leads to potentially severe penalties (such as generating duplicate trans-
actions or exiting the browser prematurely).

– BBAs differ in how they treat the ‘‘Enter’’ key when a user is completing a
form. Some BBAs treat ‘‘Enter’’ as a signal to post the form; others do
not. In the former case, if the user mistakenly presses ‘‘Enter’’ prema-
turely, the partially completed form is sent to the server. At best, the user
is inconvenienced by the delays and discontinuities associated with having
the page returned to him or her for completion. At worst, the BBA acts on
the form as though it were complete, possibly causing all sorts of problems
for the user.

– Financial institutions—banks, credit card providers, insurance companies,
investment firms—typically provide a logout button on their pages, but
the button goes by various names—logout, signoff, exit, and so forth—and
is positioned in varying locations. So a person who uses many financial
BBAs, despite being very familiar with such applications, must still search
for this important button in any given application.

– Shopping-cart sites differ in their behavior if someone proceeds to
checkout without pressing the ‘‘Update Quantity’’ button: Some BBAs
process the change; others ignore it.

While BBA familiarity certainly affords some benefits, the substantial and
consequential differences among even similar applications impose significant
costs. These inconsistencies can make it difficult to learn new BBAs or
remember how to use old ones.

While BBA ease-of-use may be more perception than reality, BBAs do
offer two other benefits to their users. First, by using the browser as a
unifying platform, users do not have the inconvenience of jumping in and
out of a variety of applications programs. Running all Internet Applica-
tions on top of the browser contributes a sense of seamlessness and con-
tinuity to the user experience by eliminating the need for users to have the
operating system open and close applications. In some sense, you can live
your on-line life in a single window (the browser window). When one
follows hyperlinks to jump from one BBA to another, the experience is
even more seamless. Such is the case when a person follows an advertise-
ment from one website to another or when an e-mail message embeds a

Browser-based applications: popular but flawed? 387

link to an on-line store. Moreover, browsers are perfectly suited for
searching for applications. Using the same software to run the application
as you used to find it creates a seamless experience; you arrive at the site
and come up running.

A final factor favoring BBAs is that many Internet Applications require,
or at least benefit from, some information browsing capacity, so building
these applications on top of a browser affords a ready-made, high quality,
highly integrated browsing capability. E-commerce applications fit this
description; browsers may be terrible for transacting business, but they can
be great for browsing products.11

So the main benefits of BBAs are these:

– Application availability (due to web browser availability) and platform
independence (limited somewhat by browser and version incompatibili-
ties).

– User comfort (due to web browser familiarity, web browser competence,
and perceived ease-of-use—however illusory it may be).

– A seamless (integrated) user experience.
– A good browsing capability.

It is easy to see why, historically, BBAs became pervasive in the world
of Internet Applications. Perhaps some Internet developers made the
conscious, rational choice to base their applications on browsers given
the benefits for users: availability, comfort, perceived ease-of-use, seam-
lessness, and good browsing. Perhaps some saw the benefits for themselves:
ease-of-deployment, since updates would only have to be performed on the
server (Graham 2004), and ease-of-development, since they would not need
to develop a new client (although the latter may also be illusory since
server-side development can be so messy). And for some maybe the move
to BBAs was not so much a deliberate choice as the only avenue consid-
ered at a time when, to many, the World Wide Web and the Internet
seemed synonymous.

4 The future of Internet Applications: research challenges

The foregoing analysis suggests a troubling situation: BBAs dominate the
world of Internet Applications, and are likely to continue to do so for some
time, yet they are fundamentally flawed. Further study of this phenomenon

11 Support for browsing is a natural for BBAs but this virtue does not belong exclusively
to them. SCAs can also offer good browsing. Increasingly the few specialized Internet client
applications that we have are including scaled-down browsers (mini-browsers) or the ability
to launch a full browser. For example, such media players as Windows Media Player,
RealPlayer, MMJukeBox and WinAmp provide their users with access to web-based media
guides and the like. Quicken embeds a mini-browser for accessing financial news. Yahoo’s
FinanceVision—now defunct but an excellent example of an SCA—included a generalized
browser window. Indeed, Microsoft Internet Explorer and Netscape Gecko (the engine
behind Netscape Navigator, Mozilla, and Firefox) can be embedded in specialized appli-
cations.

388 Mark S. Silver

has two main thrusts: (1) to examine more fully and empirically the conse-
quences of employing BBAs and (2) to propose and analyze ways to improve
upon the current situation.

4.1 Studying actual and perceived BBA usability

The analysis in this paper makes strong conceptual claims that BBAs pose
significant usability problems. But these pejorative assertions require empir-
ical verification. In particular, the following questions need empirical study:

– To what extent are the BBA usability problems identified in this paper
manifest in actual use?

– If manifest, how consequential are these problems for BBA users and for
companies that employ BBAs? For instance, do on-line shoppers lose
substantial amounts of time? Do on-line merchants lose substantial
amounts of sales?

If the problems identified here theoretically are found to be consequential
empirically, further research will be required to reconcile the deficiencies of
BBAs with their apparent popularity. The apparent popularity of BBAs
notwithstanding their deficiencies might simply reflect the dominance of the
combined strengths of BBAs over their weaknesses. A more intriguing
explanation would be that people may perceive BBAs to be easy-to-use de-
spite their many usability problems. This possibility raises a third empirical
question:

– To what extent do people perceive BBAs as easy to use?

Should empirical studies bear out this conjecture—that perceptions of
usability are high but actual usability as traditionally measured is low—still
more work will be required to understand the anomaly.

Empirical findings concerning the perceptions, extent, and consequences
of BBA problems might also shed light on another issue touched on earlier:

– Why have developers been slow to adopt work-arounds that could reduce
BBA difficulties?

For instance, if the usability consequences of BBA deficiencies are not so
great, or if users do not perceive them to be so great, developers may have
little incentive to invest great effort in remedying them.

Since BBA usability may be degraded not only by the endemic deficiencies
of the browser as a platform—the primary focus of this paper—but also by
inconsistencies in how different BBAs implement similar features, another set
of questions requiring empirical study is the following:

– How great are the inconsistencies across BBAs? To what extent do such
inconsistencies impair usability? To what extent do people perceive the
inconsistencies and any concomitant usability losses?

Browser-based applications: popular but flawed? 389

All told, concerns over BBA usability open the door to an extensive
program of empirical research. Table 3 summarizes the behavioral issues
requiring investigation.

4.2 Improving the situation

If we find it troubling that a class of defective applications dominates the
Internet, then the key question becomes what can be done to remedy this
situation. A full treatment of this question is well beyond the scope of this
paper, but we can contemplate the nature and range of possible solutions.

The challenge for research and practice is to develop technological
alternatives to the current BBA approach that remedy BBA deficiencies
while leveraging BBA strengths. Any true solution would need to provide
clients with local computation, statefulness, more granular information
exchanges, and more extensive interface capabilities while retaining the
availability, platform independence, and ease of deployment of BBAs as well
as their perceived usability, seamlessness, and support for good browsing.

At first glance, it is tempting to divide the approaches into two sets:
browser-based solutions and specialized-client solutions (such as Eudora and
Microsoft Outlook for e-mail). But these approaches need not be distinct.
Indeed the most promising solutions might include elements of each, since
they would need to incorporate the strengths of each.

Consider first the extremes. The pure BBA solution would be to extend
the browser further, just as HTML and javascript were extended over the
years. Indeed, such advances as XML-enabled browsers and the recently
introduced XForms promise to solve some, but not all, of the BBA prob-
lems. The obvious strength of this approach is that it retains the full benefits
of browsers. The weaknesses are that this approach will likely fall short of
remedying all the BBA deficiencies and that it may involve constructing
additional kludges on top of an already shaky scaffold. Moreover, relying on
enhanced browsers poses availability and deployment problems since users
would require newer versions of their browsers and, as Nielsen (2000a) notes,
many users are slow to migrate to new versions of the browser. The incre-
mental ‘‘extend-the-browser’’ approach also needs to be viewed cautiously
since, ironically, today’s troubled BBAs were brought into existence by such
browser extensions in the past.

At the other extreme are specialized-client applications (SCAs, sometimes
referred to as ‘‘thick clients’’). SCAs would solve the BBA problems—since
they are not constrained by the browser—but if deployed as stand-alone
applications SCAs would not have the availability, platform independence,

Table 3 Further research in BBA usability: topics for empirical study

• The manifestation and severity of BBA usability problems
• The consequences of BBA usability problems
• User perceptions of BBA usability
• Reconciling perceived and actual BBA usability
• The development and diffusion of BBA work-arounds
• Usability issues surrounding inconsistencies across BBAs

390 Mark S. Silver

and seamlessness of today’s BBAs. Indeed, many organizations may believe
with good reason that continuing to provide their employees and customers
with platform-independent applications requiring no installation is
more important than offering more usable applications. Lack of platform-
independence and ready availability therefore pose significant barriers to
SCA adoption.

The most promising approach could be ‘‘hybrids’’ that retain the role of
the browser but include the power to produce applications with all the fea-
tures of SCAs. A hybrid approach would need to produce applications that
(1) provide the full features—functionality and interface—of an SCA, (2) can
be launched from the browser, (3) are downloadable dynamically, requiring
no installation, and (4) are platform-independent. Here are some possible
hybrid approaches:

– Someweb sites launch Java applets from the browser to leverage the benefits
of browsers while avoiding their constraints. This is largely why Java was
invented: to provide a full-featured programming language while using the
browser rather than the operating system as a platform. Combining Java
with XML to produce applications is an even more powerful step in this
direction (Bosak 1997). But users are sometimes confused to find themselves
using the browser to interact with an applet rather than with a web page.

– Plug-ins such as Macromedia’s Flash could be used to provide runtime
environments for applications. The applications would run on top of the
plug-in rather than directly on top of the browser. Thus they would still be
running in the browser but they could take advantage of the plug-in’s
functionality and interface. Various companies have recently used Flash to
build such specialized applications (Nielsen 2002). While these applica-
tions are not constrained by the browser’s limitations, they are limited by
what the plug-in environment can support, require installation of the plug-
in, and may confuse users who expect to interact with these applications as
they would with a web page.

– Microsoft’s .NET initiative can facilitate the development and deployment
of Internet Applications by using such features as .NET Windows Forms,
.NET Web Services, and the .NET Framework (Platt 2001; Landgrove
2003). This approach could retain much of the availability and seamlessness
that makes BBAs popular while providing the functionality and interface of
an SCA. In particular, the applications could be launched from a browser,
without requiring prior installation. And they could be coded in various
programming languages. But they would not actually run inside the
browser and would depend onMicrosoft’s .NET Framework as a platform.

We need not be limited by existing technologies. New languages could be
invented to meet the various needs of Internet Applications. Bos (2004), for
instance, offers an interesting proposal for a light-weight web-application
language that could run on top of the browser or on some other user agent.
The ‘‘W3C Workshop on Web Applications and Compound Documents
(2004)’’ site (http://www.w3.org/2004/04/webapps-cdf-ws/) contains a vari-
ety of proposals for the future of web applications.

Browser-based applications: popular but flawed? 391

Each approach—improving BBAs, replacing them with SCAs, or a hybrid
technology—has its benefits and limitations. The hybrid approaches seem
most promising, given the tensions and trade-offs between pure-BBAs and
SCAs. But, of course, not all hybrid approaches are equally desirable. The
first task in designing the next generation of Internet Applications must be to
specify a clear set of requirements. Based on the discussion here, Table 4
provides a starting point for this endeavor. Given a set of requirements, each
candidate technology must be fully elaborated and its benefits and limita-
tions assessed. While the technical merits of each candidate solution are
important, so is its likelihood of adoption. Given such widespread current
deployment of BBAs, how easy will it be for those who deploy, and those
who employ, today’s BBAs to migrate to the proposed alternative? And how
likely are they to do so? No matter how desirable the proposed technology,
altering the status quo is likely to be a considerable challenge.

5 Conclusion

In recent years, much of the technical attention concerning Internet Appli-
cations has focused more on the server-side or back-end of the application.
However important and technically challenging the server-side may be, we
must not lose sight of the front-end, the client-side of the interaction. Past
choices in the development of applications—deliberate or not—have brought
us an Internet where BBAs dominate. These BBAs possess a number of
strengths, including user comfort, availability (no installation required),
platform independence, and seamlessness. But as we have seen, the weak-
nesses of the browser as a platform—its statelessness, page-orientation, and
limited local computation—as well as the piggy-backing of one application
on top of another—lead to numerous usability problems for BBAs (Tables 1,
2). As we look to the future of Internet Applications, we must be more
deliberate in pursuing a course that will rid us of the problems that plague
today’s BBAs, through some combination of improving and replacing the

Table 4 Initial requirements for the next generation of Internet Applications

Retain BBA strengths
• Availability (no installation required)
• Platform independence
• Perceived usability
• Seamlessness
• Good browsing

Remedy BBA weaknesses
• Support more granular information exchanges
• Expand local computation
• Provide statefulness
• Offer a better GUI (with direct manipulation and without piggy-backing problems)

Offer a viable (attractive) migration path to the new technology

392 Mark S. Silver

browser as a platform. The immediate challenges facing us are twofold: (1) to
understand more fully the practical consequences of today’s BBAs and (2) to
propose and assess viable technological solutions that can remedy the BBA
problems while retaining their strengths. We need to be aware, as well, that
the degree of investment—financial and psychological—in the current
browser-based approach and the concomitant cost and difficulty of depart-
ing from it may pose a nearly insurmountable barrier to improvement.

Acknowledgment I appreciate the helpful comments made by Lynne Markus, Amjad
Umar, Sidne Ward, Burt Swanson, Michael Shaw, and two anonymous reviewers on
earlier versions of this paper

References

Bos B (2004) Setting the scope for light-weight web-based applications, World Wide Web
Consortium. http://www.w3.org/People/Bos/webapps.html

Bosak J (1997) XML, Java, and the future of the Web, Sun Microsystems. http://sun-
site.unc.edu/pub/sun-info/standards/xml/why/xmlapps.html

Fielding RT, Taylor RN (2002) Principled design of the modern web architecture. ACM
Transact Internet Technol 2:115–150

Graham P (2004) Hackers and painters: big ideas from the computer age. O’Reilly Media,
Sebastopol

Landgrove T (2003) Web front-ends versus Windows. TechRepublic, ZDNet
Nielsen J (2000a) Designing web usability: the practice of simplicity. New Riders

Publishing, Indianapolis
Nielsen J (2000b) Reset and cancel buttons, Alertbox. http://www.useit.com/alertbox. Cited

16 April 2000
Nielsen J (2000c) Finally progress in Internet client design, Alertbox. http://www.useit.com/

alertbox. Cited 30 April 2000
Nielsen J (2002) Flash usability and web-based applications, Alertbox. http://www.

useit.com/alertbox. Cited 15 November 2002
Platt DS (2001) Introducing Microsoft.NET. Microsoft Press, Redmond
Shneiderman B, Lazar J, Ivory M (2003) Introduction: web navigation. IT Soc 3(1):i–vii
Silver MS, Ward SG (2004) Browser-based applications: positive or negative transference?

In: Proceedings of the 10th Americas conference on information systems, New York, pp
3169–3176

Tognazzini B, Nielsen J (2001) Beyond the browser, eWeek. http://www.eweek.com/
article2/0,4149,1252468,00.asp. Cited 26 March 2001

W3C Workshop on Web Applications and Compound Documents (2004) http://
www.w3.org/2004/04/webapps-cdf-ws/

Wroblewski L, Rantanen EM (2001) Design considerations for web-based applications. In:
Proceedings of the 45th annual meeting of the Human Factors and Ergonomics Society,
Santa Monica

Browser-based applications: popular but flawed? 393

	Browser-based applications: �popular but flawed?
	Abstract
	Understanding BBAs, their strengths, and their weaknesses
	The practical problems of BBAs
	Delays and discontinuities
	Fig1
	Confusion and errors
	Button banging
	The ldquo Back rdquo button
	The ldquo Stop rdquo button
	Updating the server
	Bookmarking
	Fig2
	Multiple browser windows
	Clumsy interfacing and limited functionality
	Limited interfacing techniques and capabilities
	Piggybacking applications
	Limited functionality
	Browser incompatibilities
	Cookies
	General clumsiness
	Printing
	Fig3
	Personal electronic filing
	Summation
	Tab1
	Tab2
	Understanding BBA popularity
	The future of Internet Applications: research challenges
	Studying actual and perceived BBA usability
	Improving the situation
	Tab3
	Conclusion
	Tab4
	Acknowledgment
	References
	CR1
	CR2
	CR3
	CR4
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	CR11
	CR12
	CR13
	CR14
	CR15

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

