Equiprojective Polyhedra

Masud Hasan
Anna Lubiw

University of Waterloo

Equiprojective Polyhedra

convex polyhedron

orthographic projection
 = shadow
 size of shadow boundary

equiprojective $=$ constant size shadow boundary

The Cube is Equiprojective

this projection
doesn't count
the shadow of a cube always has 6 sides

The Octahedron is Not Equiprojective

4-sided

6-sided

The Octahedron is Not Equiprojective

The Tetrahedron is Not Equiprojective

3-sided

4-sided

Definition

Convex polyhedron P is k-equiprojective if all orthogonal projections, except those parallel to faces of P, are k-gons.

Any k-gonal prism is
$(k+2)$-equiprojective

History

Croft, Falconer, Guy, Unsolved Problems in Geometry, 1991.

History

G.C. Shephard, Twenty problems on convex polyhedra. II, Mathematical Gazette 52, 359-367, 1968.

Fig. 7

History

G.C. Shephard, Twenty problems on convex polyhedra. II, Mathematical Gazette 52, 359-367, 1968.

Some convex polyhedra P have the remarkable property that every regular projection of P is an n-gon for some fixed value of n. For example, every regular projection of a cube is a hexagon, and every regular projection of a right triangular prism is a pentagon. Such convex polyhedra, which are called equiprojective, are easy to construct, but the following problem (which is probably not very difficult) is unsolved:
IX. Devise a method for constructing every equiprojective convex polyhedron.

Results

- a characterization of equiprojective polyhedra
- a linear time recognition algorithm

Projections

Is P equiprojective?
Could try all combinatorially distinct projections.
How many? $\mathrm{O}\left(n^{2}\right)$
H. Plantinga and C.R. Dyer, Visibility, occlusion, and the aspect graph, International J. Computer Vision, 1990.

Open. Is there a fast algorithm to find projections with min and max number of edges?

Idea of Our Characterization

Crucial rotation: when one face becomes parallel to the projection

edge e on face f compensated by edge e ' on face f
edge g on face f compensated by edge g ' on face f

Idea of Our Characterization

Crucial rotation: when one face becomes parallel to the projection

edge e on face f compensated by edge e^{\prime} on face f,
edge a on face f compensated by edge a^{\prime} on face f^{\prime} edge b on face f compensated by edge b^{\prime} on face f,

Idea of Our Characterization

Crucial rotation: when one face becomes parallel to the projection

edges on face f don't compensate each other

Compensation

Definition. For edge e in face $f,(e, f)$ is an edge-face duple.
Definition. Edge-face duples (e, f) and $\left(e^{\prime}, f^{\prime}\right)$ are parallel if e is parallel to e ' and f is parallel to or equal to f^{\prime}.
 parallel to (a, f) :
(b, f)
(c, $\left.f^{\prime}\right)$
(d, f^{\prime})
parallel to (a, f) :
$\left(b, f^{\prime}\right)$

Number of parallel duples: $0,1,2$, or 3

Compensation

Definition. Parallel edge-face duples (e, f) and (e^{\prime}, f^{\prime}) compensate each other if their directions are opposite.

compensating (a, f) :

(b, f^{\prime})
Number of compensating duples: 0,1 , or 2

Our Characterization

Theorem. Convex polyhedron P is equiprojective iff its edge-face duples can be partitioned into compensating pairs.

Classifying Equiprojective Polyhedra

Simple: every edge-face duple compensated in the same face
Face-compensating: every edge-face duple compensated in an opposite parallel face

General: none of the above
simple $==$ every face consists of parallel pairs of edges
== zonohedron

Zonohedra

zonohedron: every face has parallel pairs of edges (equivalently, a Minkowski sum of vectors)

even prism

extended-rhombicdodecahedron

truncated octahedron

rhombic tricontahedron

Classifying Equiprojective Polyhedra

Simple: every edge-face duple compensated in the same face
Face-compensating: every edge-face duple compensated in an opposite parallel face

General: none of the above
simple $==$ zonohedron $==>$ face-compensating

Open: face-compensating ==> simple ?

Classifying Equiprojective Polyhedra

General: not simple or face-compensating
Construction I: chopping

Each face is compensated by itself or by a parallel face.

Classifying Equiprojective Polyhedra

General: not simple or face-compensating
Construction I: chopping

Each face is compensated by itself or by a parallel face.

Classifying Equiprojective Polyhedra

General: not simple or face-compensating
Construction II: abutting

Not
Each face is compensated by itself or by a parallel face.

Classifying Equiprojective Polyhedra

Classifying Equiprojective Polyhedra

Open: Is there an algorithm to generate all equiprojective polyhedra?

Algorithm to Recognize Equiprojective Polyhedra

Use

Theorem. Convex polyhedron P is equiprojective iff its edge-face duples can be partitioned into compensating pairs.

Algorithm to Recognize Equiprojective Polyhedra

1. find parallel faces, and parallel edge-face duples
2. try to partition each family of parallel edge-face duples into compensating pairs
3. can be done in linear time: need to overlay two planar maps corresponding to the generalized Gauss map and its negative
4. each family has $1,2,3$, or 4 duples, so this is easy

Proof of Theorem

Theorem. P is equiprojective iff its edge-face duples can be partitioned into compensating pairs.

Proof. <==
Suppose edge-face duples partitioned into compensating pairs.
Prove any two projections of P have the same size.
Claim. Can rotate such that we always have at most one face (and its parallel partner) parallel to projection direction.

Thus suffices to study case where one face (and its parallel partner) rotate through the projection direction.

Proof of Theorem

One face rotates through the projection direction.

for (e, f) and $\left(e^{\prime}, f\right)$ a compensating pair
e is in the shadow boundary iff e ' is not

Proof of Theorem

face f and parallel partner f^{\prime} rotate through projection direction

edges in shadow boundary
for (e, f) and ($\left.e^{\prime}, f^{\prime}\right)$ a compensating pair e is in the shadow boundary iff e, is not

Proof of Theorem

Theorem. P is equiprojective iff its edge-face duples can be partitioned into compensating pairs.

Proof. ==> (via contrapositive)
Suppose edge-face duples cannot be partitioned into compensating pairs.

Find two projections of P with different sizes.

Consider a family of parallel edge-face duples that cannot be partitioned into compensating pairs.

Proof of Theorem

Consider a family of parallel edge-face duples that cannot be partitioned into compensating pairs.

parallel family

compensating

Case 1
Case 2
Case 4
Case 5

Proof of Theorem

Find a direction d in plane of f

$$
c-\alpha \curvearrowleft \overbrace{}^{c} \curvearrowright c+\alpha
$$

Other cases similar.
Use $c-\boldsymbol{\alpha}$ or $c+\boldsymbol{\alpha}$
s.t. $\left|L_{d}(f)\right| \neq\left|U_{d}(f)\right|$

Non-Convex
Equiprojective Polyhedra

The End

The End

