ASSIGNMENT 4

ACKNOWLEDGE YOUR SOURCES.

1. [5 marks] Please send your answer to this question as text in an email message, so I can easily and quickly approve or make suggestions.

Decide on your course project. Details about the project are now on the course web page. Please specify:
(a) which paper(s) you will present
(b) why you chose this paper (just a line or two)

Note: In case you wish to change your project topic later on, just send me a revised proposal and the reason or the change.

I will ask you to choose a presentation date on Piazza.
2. [10 marks] The farthest point Voronoi diagram of point set $P=\left\{p_{1}, \ldots, p_{n}\right\}$, in the plane, is the locus of points equally far from more than one site of P. More precisely, define the farthest region for p_{i} to be $\left\{x \in R^{2}: d\left(x, p_{i}\right) \geq d\left(x, p_{j}\right), \forall p_{j} \neq p_{i}\right\}$.
(a) Prove that the farthest region for p_{i} is convex.
(b) Characterize the sites with unbounded farthest regions.
(c) Characterize the sites with empty regions.
3. [5 marks] Show how to compute the Gabriel graph from the Delaunay triangulation in linear time.
4. [10 marks] Give an $O(n \log n)$ time algorithm for the following problem. The input is a set S of n points in the plane and a natural number k. Partition S into a set of k disjoint subsets $S_{1}, S_{2}, \ldots, S_{k}$ that are "as far from each other as possible" - to be precise, you must maximize the minimum distance between two point from different subsets. Keep your algorithm highlevel. You may use algorithms and results from class. Make sure you prove that your approach is correct.
HINT: this whole assignment is about Voronoi diagrams and Delaunay triangulations.

