

CS 763 F22	Lecture 9: Voronoi Diagrams	A. Lubiw, U. Waterloo
History	https://en.wikipedia.org/wiki/Voronoi_diagram	Alling
Georgy Voron	oy, 1908, Russian/Ukrainian mathematician	
but Voronoi di	agrams were used before that:	
- Dirichlet 1 unique rec	850, "Dirichlet tessellation" - used to prove ducibility of quadratic forms	
also used in - crystallogr form Voror - epidemiole infected w - geography - condensee - natural sci polygon, u - aviation, te	raphy - crystals growing outward from "seeds noi regions ogy, 1854, mapping cholera by proximity to vater pump in London y and meteorology - "Thiessen polygons" 191 d matter physics - " Wigner–Seitz cells" iences - "Blum's transform" = medial axis of used to describe shapes o identify nearest airfield	
dual structure	: Delaunay triangulation	
Boris Delone ((but used French transliteration "Delaunay"),	1934

CS763-Lecture9

CS 763 F22	Lecture 9: Voronoi I	Diagrams	A. Lubiw, U. Waterloo
Properties of V	oronoi diagram		
$V(p_i)$ is unbound	ded iff p_i is on the convex h	ull of the sites	
	- this ray c is in V(pi)	Pi Ri	suppose this ray E VGi)
all sites on this side of l There are < 20	Voronoi vertices and $< 3n$	AS >C->~ Pi With	b get a line through thall Pj on the farside.
Enler :	2 = v - e + f	f=#sites=n	Pi on Convex hull.
but some e	udges are rays —	imagine they	all meet at a point
every ver	tex has degree = 3		at infinity
2e =	Edegree = 35	U -	2(n-2)
Z = J-6	e+f ビー ライト V	e 4	3(n-2)

CS 763 F22	Lecture 9: Voronoi Diagrams	A. Lubiw, U. Waterloo
Delaunay triang	gulation	
The Voronoi diao (versus computir	gram can be captured by a purely combir ng coordinates of Voronoi vertices)	natorical structure
Given points <i>P</i> =	$\{p_1, \ldots, p_n\}$ in the plane, the Delauna	<i>r</i> triangulation $\mathcal{D}(P)$ is
a graph with ver	tices p_1, \ldots, p_n and edge (p_i, p_j) iff $V(p_i)$) and $V(p_j)$ share an edge.
$\mathcal{D}(P)$ is the plan	ar dual of $\mathcal{V}(P)$	
Delau	unay edges Voronoi edges	
	site	Note: a Voronoi edge and its corresponding
		Delaunay edge do not always cross.
763-Lecture9		

CS763-Lecture9

CS 763 F22	Lecture 9: Voronoi Diagrams	A. Lubiw, U. Waterloo
Delaunay triang	ulation $\mathcal{D}(P)$	
	elaunay edges Voronoi edge	
	site	
Properties		
- it is a triangulat	ion see next slide	<i>.</i> S
 edge/face iff en through those s 	npty circle sites	
- what is the bou	ndary? — the Convex hull	(to be-proved)

CS763-Lecture9

CS 763 F22	Lecture 9: Voronoi Diagrams	A. Lubiw, U. Waterloo
Properties of D	elaunay triangulations	
(p_i, p_j) is an edg	ge iff there is an empty circle through $p_i p_j$	
Proof	no sites inside	
(pi, pj) is	s an edge of D(P)	Fj
iff VG	ri) and V (pj) share	
a bou	ndary edge with point fi Lonit	4
iff cird	e centered at q	
is e	mpty cincle through Fi an	d Pi
762-Locturo9		

CS 763 F22 Lecture 9: Voronoi Diagrams A. Lubiw, U. Waterloo **Properties of Delaunay triangulations** Sites form a face iff there is an empty circle through them i.e., (since we assumed no 4 sites on a circle) $p_i p_j p_k$ form a face iff there is an empty circle through them Proof Suppose empty circle by previous, get 3 edges Pk P; and nothing inside since no edges cross. Pi Pj take circle, through Pi Pj Fk 9 2 Can there be a site q in C? Then Z empty circle through PiPk (for this 2)

CS /63 E22	Lecture 9: Voronoi Diagrams	A. Lubiw. U. Waterloo

Properties of Delaunay triangulations

The boundary of the Delaunay triangulation is the convex hull of the sites

Proof i.e. a Delaunay edge has no hiangle on one side iff the edge is on CH of sites. hv on CH is center of empty circle ଚ => no triangle on that side it's empty sircle (it would have to go through another site) ୧ => follow same proof backwards.

CS 763 F22	Lecture 9: Voronoi Diagrams	A. Lubiw. U. Waterloo

Application of Delaunay triangulations: finding all nearest neighbours

Given n points in the plane find, for each point, its nearest neighbour — gives *nearest neighbour graph*, a directed graph of out-degree 1.

CS 763	F22		Lecture	9: Voror	noi Diag	rams		Α.	Lubiw	, U.	Wat	erloo
Su	mmary											
	- Vorono definiti	i diagram a ons, relatio	nd Delaur nships, pro	nay triar operties	gulatio	n						
Re	ferences	S										
	- [CGAA] Chapters	7, 9									
······································	- [Zurich	notes] Cha	pters 5, 7	(they s	tart witl	n Delau	nay)					
······································	- [O'Rou	rke] Chapte	er 5									
······································	- [Devad	loss-O'Rour	ke] Chapt	er 4.								