Planar point location: To answer, "Where am I?"
Given a planar subdivision (partition of the plane into disjoint regions by straight line segments), preprocess to quickly locate a query point.

Example: the post office problem aka nearest neighbour problem

Compute the Voronoi diagram. Query becomes: which Voronoi region contains q ?

Point location in 1D

use binary search in sorted array, or balanced binary search tree (can handle dynamic case where points are added/deleted)
$\mathrm{P}=$ preprocessing time
$\mathrm{S}=$ space
$\mathrm{Q}=$ query time
($\mathrm{U}=$ update time)
in 1D: $\mathrm{P}=\mathrm{O}(n \log n)$
$\mathrm{S}=\mathrm{O}(n)$
$\mathrm{Q}=\mathrm{O}(\log n)$
We can achieve the same bounds in 2D for planar point location.

1. slab method (not optimal)
2. persistence - I won't give details.
3. Kirkpatrick's triangulation refinement
4. trapezoidal map (expected good behaviour) - I won't give details.
A. Lubiw, U. Waterloo
5. Slab method: A basic solution to planar point location

Divide into vertical slabs at vertices.
Each slab is a 1D problem. - Store each
 slab
$P=O\left(n^{2}\right)$ sort but then $O\left(n^{2}\right)$ output size

$$
s=O\left(n^{2}\right)-n \text { slabs each of size } O(n)
$$

$$
Q=O(\log n+\log n)
$$

2. Persistence [Tarjan and Sarnak, 1986]

Observe that the binary search trees for successive slabs do not change much.

We know how to update binary search trees at $\mathrm{O}(\log n)$ per insertion/deletion. New issue: query may take place not in "current" tree but in any previous tree. \square

Persistent data structure

Allow insertions and deletions over time (as in a usual dynamic data structure) BUT allow queries in old versions. The query specifies the time.

Persistent search trees

Idea 1: make new tree share as much as possible with old tree

(a)

(b)

Idea 2: give each node one extra pointer to save making new copy

achieve:

$$
\begin{aligned}
& \mathrm{P}=\mathrm{O}(n \log n) \\
& \mathrm{S}=\mathrm{O}(n) \\
& \mathrm{Q}=\mathrm{O}(\log n)
\end{aligned}
$$

3. Kirkpatrick's triangulation refinement, 1983

First triangulate the planar subdivision in $\mathrm{O}(n \log n)$ time.
Also add a big bounding triangle.
Idea: make rougher and rougher versions by deleting vertices, until we have only the bounding triangle. Then search for query point starting backwards.

To make this efficient:
-went h small. $h=$ \# hiangulations = length of search sequence

- want each, step J_{i} to J_{i-1} to be efficient.
query
each tiangle J_{i} to intersect few triangles in J_{i-1}

Plan: At each stage remove some vertices

1. remove $\frac{n}{c}$ vertices, c constant then h (sequence length) is $O(\log n)$
2. only remove vertices of degree $\leq d$, d constant

add new edges to triangulate

- get d-2 triangles
each new triangle intersects at most d old triangles

3. remove independent set of vertices (no two joined by an edge)
So the regions to be ne-triangulated are disjoint.

Assuming the plan is possible, here's the analysis of h, S and Q
\# vertices in each triangulation:

$$
n \quad n\left(1-\frac{1}{c}\right) \quad n\left(1-\frac{1}{c}\right)^{2} \quad \ldots
$$

Thus $\underset{\sim}{h=O}(\log n)$ triangulations in total
Total size of all triangulations: $\quad O\left(n\left(\sum_{i=0}\left(1-\frac{1}{c}\right)^{i}\right)\right)=O(n) \quad$ Thus $\mathrm{S}=\mathrm{O}(n)$

Time per query:

\# triangulations
 to go from triangulation \boldsymbol{T}_{i} to \boldsymbol{T}_{i-1}

Keep pointers from each triangle in \boldsymbol{T}_{i} to all d intersecting triangles in \boldsymbol{T}_{i-1}

$$
\text { Thus } Q=O(\log n)
$$

Lemma. There exist constants c, d, such that for any triangulation \boldsymbol{T} on n vertices, we can find, in $\mathrm{O}(n)$ time, a set of $\geq n / c$ vertices each of degree $\leq d$ that form an independent set.
Proof. J has $\leq 3 n-6$ edges (Euler)
So average degree is $\frac{2(3 n-6)}{n}<6$
smallest degree is ≥ 2 (3 if no collinearities)
Thus $<\frac{n}{2}$ vertices have degree ≥ 10
Let $z=$ vertices of degree $\leq 9 \quad|z| \geq \frac{n}{2}$
use greedy algorithm to pick independent vertices $z^{\prime} \leq z$ pick $v \in Z$, delete v and neighbour (\leq a neighbours) repeat

$$
\left|z^{\prime}\right| \geq \frac{|z|}{10} \geq \frac{n}{20}
$$

\# vertices
< in σ
Get $c=20 \quad d=9$.
Time is $O(n)$
Total time: $O(n) \quad P \in O($ slogan $a)$
4. Trapezoidal decomposition (good expected case behaviour)

Recall we saw trapezoidization of a polygon. Same idea for planar subdivision.

extend a horizontal line left and right of each point until we hit an edge size is $\mathrm{O}(n)$

Note: if we can locate the trapezoid containing a point, this gives the region containing the point.

Randomized incremental algorithm to build trapezoidal decomposition (add segments one by one in random order) AND point location data structure.

Note: To build the trapezoidal decomposition we use the point location structure.
Can achieve expected bounds

$$
\begin{aligned}
& \mathrm{P}=\mathrm{O}(n \log n) \\
& \mathrm{S}=\mathrm{O}(n) \\
& \mathrm{Q}=\mathrm{O}(\log n)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{S}=\mathrm{O}(n) \\
& \mathrm{Q}=\mathrm{O}(\log n)
\end{aligned}
$$

skipping details.

Summary on planar point location

There are other methods.
Also, the constant inside the $\mathrm{O}(\log n)$ query time can be made 1 .
Seidel, Raimund, and Udo Adamy. "On the exact worst case query complexity of
planar point location." Journal of Algorithms 37.1 (2000): 189-217.

- http://www.sciencedirect.com/science/article/pii/S0196677400911015

Dynamic planar point location. Support updates to the planar subdivision. In 1D, balanced binary search trees support updates in O(log $n)$, but it's harder in 2D.
for possible projects, see [Handbook]

OPEN. Achieve the above P, S, Q for point location in 3D.
Localization. Problem from robotics/vision: Determine your coordinates from local (visible) geometry.

Other geometric data structures problems

Handbook of Discrete and Computational Geometry [Handbook]:
GEOMETRIC DATA STRUCTURES AND SEARCHING
$\checkmark 38$ Point location (J. Snoeyink)
39 Collision and proximity queries (Y. Kim, M.C. Lin, and D. Manocha)
$\checkmark 40$ Range searching (P.K. Agarwal)
41 Ray shooting and lines in space (M. Pellegrini)
42 Geometric intersection (D.M. Mount)
43 Nearest neighbors in high-dimensional spaces (A. Andoni and P. Indyk).

We will touch on range searching.
Huge amount of practical and of theoretical work.

Range Searching

Given points in R^{d} preprocess to quickly answer a query of the form: given a range, return the points in it.

Orthogonal range searching. A range is a rectangle.
E.g. in database query, find everyone between 30 and 40 years old making between $\$ 50 \mathrm{~K}$ and $\$ 90 \mathrm{~K}$.

As before, we care about
$\mathrm{P}=$ preprocessing time
$\mathrm{S}=$ space
$Q=$ query time
($\mathrm{U}=$ update time)
In 1D

$$
\begin{aligned}
& \mathrm{P}=\mathrm{O}(n \log n) \\
& \mathrm{S}=\mathrm{O}(n) \\
& \mathrm{Q}=\mathrm{O}(\log n+t), t=\text { output size } \\
& \mathrm{U}=\mathrm{O}(\log n)
\end{aligned}
$$

Orthogonal range queries in 2D

Methods: quadtrees, kd trees, range trees

Quad trees

divide squares into 4 subsquares. Repeat until each square has 0 or 1 points.

$$
\begin{aligned}
& \mathrm{P}=\mathrm{O}(n \log n) \\
& \mathrm{S}=\mathrm{O}(n) \\
& \mathrm{Q}=\mathrm{O}(\sqrt{ } n+t), t=\text { output size } \\
& \mathrm{U}=\mathrm{O}(\log n)
\end{aligned}
$$

Orthogonal range queries in 2D

kd tree

alternately divide points in half vertically then horizontally

$$
\begin{aligned}
& \mathrm{P}=\mathrm{O}(n \log n) \\
& \mathrm{S}=\mathrm{O}(n)
\end{aligned}
$$

querying a kd-tree

Can show $\mathrm{Q}=\mathrm{O}(\sqrt{ } n+t), t=$ output size return these

$$
\sqrt{n}=2^{(\log n) / 2}
$$

Orthogonal range queries in 2D

Range Tree. Improve Q at the expense of S.
Make a balanced binary search tree. Leaves = points sorted by x-coordinate.
$\mathrm{D}(v)=$ descendants of node v associated with slab from v_{l} to v_{r}

At node v, attach array $\mathrm{A}(v)$ - points in $\mathrm{D}(v)$ sorted by y-coordinate
$\mathrm{S}=\mathrm{O}(n \log n)-$ each point is in $\mathrm{D}(v)$ for $(\log n) v$'s
$\mathrm{P}=\mathrm{O}(n \log n)-$ sort by x to make the tree; sort by y to make the lists $\mathrm{A}(v)$

Range Tree. How to query rectangle R

- search the tree for x_{1} and x_{2}
- the points we want are at the leaves between x_{1} and x_{2}, but we must filter to get between y_{1} and y_{2}

Look at nodes z

- right children of nodes on search path to x_{1}
- left children of nodes on search path to x_{2}

There are $\mathrm{O}(\log n)$ of them. They give disjoint slabs with union $\left[x_{1}, x_{2}\right]$.

- for each z (each slab) do binary search in $\mathrm{A}(z)$ to get points between y_{1} and y_{2}
$O(\log n+$ output) per slab. Since the slabs are disjoint, we don't repeat output, so total is $\mathrm{Q}=\mathrm{O}\left(\log ^{2} n+t\right), t=$ output size.

Range Tree. Fractional cascading.
How to improve Q from $\mathrm{O}\left(\log ^{2} n+t\right)$ to $\mathrm{O}(\log n+t)$.
Idea: in each slab list $\mathrm{A}(z)$, we repeat the binary search for the same y_{1} and y_{2}.
That's wasteful!
Consider node z, child w
sorted y coordinates of points

- keep a pointer from each element in $\mathrm{A}(z)$ to the corresponding element (or next higher) in $\mathrm{A}(w)$

This gives $\mathrm{Q}=\mathrm{O}(\log n+t)$

- we search once for y_{1} and y_{2} in $\mathrm{A}($ root $)$ and then follow pointers

Summary

- planar point location
- range searching

References

- [CGAA] Chapter 5
- [Handbook]

There are many possibilities for projects.

