
A. Lubiw, U. WaterlooLecture 8: Planar Point Location

Planar point location: To answer, “Where am I?”
Given a planar subdivision (partition of the plane into disjoint regions by straight line
segments), preprocess to quickly locate a query point.

Example: the post office problem

CS 763 Computational Geometry
Post Office Problem: find the closest post office. O(n) ?

Voronoi Diagram

CS 763 Computational Geometry
Post Office Problem: find the closest post office. O(n) ?

CS 763 F22

post offices

query q

Compute the Voronoi diagram.
Query becomes: which Voronoi region
contains q?

A. Lubiw, U. WaterlooLecture 8: Planar Point Location

CS763-Lecture8 1 of 20

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

A. Lubiw, U. WaterlooLecture 8: Planar Point Location

Point location in 1D

use binary search in sorted array, or balanced binary search tree
(can handle dynamic case where points are added/deleted)

P = preprocessing time
S = space
Q = query time
(U = update time)

in 1D: P= O(n log n)
 S = O(n)
 Q = O(log n)

We can achieve the same bounds in 2D for planar point location.

1. slab method (not optimal)
2. persistence — I won’t give details.
3. Kirkpatrick’s triangulation refinement
4. trapezoidal map (expected good behaviour) — I won’t give details.

CS 763 F22 A. Lubiw, U. WaterlooLecture 8: Planar Point Location

CS763-Lecture8 2 of 20

A. Lubiw, U. WaterlooLecture 8: Planar Point Location

1. Slab method: A basic solution to planar point location

P =

S =

Q =

Divide into vertical slabs at vertices.
Each slab is a 1D problem.

CS 763 F22 A. Lubiw, U. WaterlooLecture 8: Planar Point Location

CS763-Lecture8 3 of 20

https://en.wikipedia.org/wiki/File:Point_location1.png
https://en.wikipedia.org/wiki/File:Point_location2.png
Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

A. Lubiw, U. WaterlooLecture 8: Planar Point Location

2. Persistence [Tarjan and Sarnak, 1986]

Observe that the binary search trees for successive slabs do not change much.

We know how to update binary search trees at O(log n) per insertion/deletion.

New issue: query may take place not in “current” tree but in any previous tree.

CS 763 F22 A. Lubiw, U. WaterlooLecture 8: Planar Point Location

CS763-Lecture8 4 of 20

https://en.wikipedia.org/wiki/File:Point_location2.png
Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

A. Lubiw, U. WaterlooLecture 8: Planar Point Location

Persistent data structure

Allow insertions and deletions over time (as in a usual dynamic data structure) BUT
allow queries in old versions. The query specifies the time.

Persistent search trees

Idea 1: make new tree share as much as
possible with old tree

Idea 2: give each node one extra
pointer to save making new copy

CS 763 F22

P= O(n log n)
S = O(n)
Q = O(log n)

achieve:

A. Lubiw, U. WaterlooLecture 8: Planar Point Location

CS763-Lecture8 5 of 20

http://staff.ustc.edu.cn/~csli/graduate/algorithms/book6/279_a.gif
http://cglab.ca/~cdillaba/comp5008/images/sarnak1.png

A. Lubiw, U. WaterlooLecture 8: Planar Point Location

3. Kirkpatrick’s triangulation refinement, 1983

First triangulate the planar subdivision in O(n log n) time.
Also add a big bounding triangle.

Idea: make rougher and rougher versions by deleting vertices, until we have only
the bounding triangle. Then search for query point starting backwards.

CS 763 F22

To make this efficient:

A. Lubiw, U. WaterlooLecture 8: Planar Point Location

CS763-Lecture8 6 of 20

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

A. Lubiw, U. WaterlooLecture 8: Planar Point LocationCS 763 F22

Plan: At each stage remove some vertices

A. Lubiw, U. WaterlooLecture 8: Planar Point Location

CS763-Lecture8 7 of 20

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 8: Planar Point Location

Assuming the plan is possible, here’s the analysis of h, S and Q

vertices in each triangulation:

Thus h = O(log n) triangulations in total

Total size of all triangulations:

Time per query:

triangulations
to go from triangulation Ti to Ti−1

Keep pointers from each triangle in Ti
to all d intersecting triangles in Ti−1
and check which one contains the query point

Thus S = O(n)

Thus Q = O(log n)

CS763-Lecture8 8 of 20

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 8: Planar Point Location

Lemma. There exist constants c, d, such that for any triangulation T on n vertices,
we can find, in O(n) time, a set of ≥ n /c vertices each of degree ≤ d that form an
independent set.

Proof.

CS763-Lecture8 9 of 20

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F16 A. Lubiw, U. WaterlooLecture 8: Planar Point Location

4. Trapezoidal decomposition (good expected case behaviour)

Recall we saw trapezoidization of a polygon. Same idea for planar subdivision.

extend a horizontal line left and right
of each point until we hit an edge

Randomized incremental algorithm to build trapezoidal decomposition (add
segments one by one in random order) AND point location data structure.

Note: To build the trapezoidal decomposition we use the point location structure.

size is O(n)

Note: if we can locate the trapezoid
containing a point, this gives the region
containing the point.

Can achieve expected bounds P= O(n log n)
S = O(n)
Q = O(log n)

CS763-Lecture8 10 of 20

https://en.wikipedia.org/wiki/File:Trapezoidal_decomposition.png
Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F16 A. Lubiw, U. WaterlooLecture 8: Planar Point Location

Summary on planar point location

P= O(n log n)
S = O(n)
Q = O(log n)

- persistence
- Kirkpatrick’s triangulation refinement
- trapezoidal map (expected case behaviour)

http://www.sciencedirect.com/science/article/pii/S0196677400911015

There are other methods.
Also, the constant inside the O(log n) query time can be made 1.

Seidel, Raimund, and Udo Adamy. "On the exact worst case query complexity of
planar point location." Journal of Algorithms 37.1 (2000): 189-217.

Dynamic planar point location. Support updates to the planar subdivision. In 1D,
balanced binary search trees support updates in O(log n), but it’s harder in 2D.

for possible projects, see [Handbook]

Localization. Problem from robotics/vision: Determine your coordinates from local
(visible) geometry.

OPEN. Achieve the above P, S, Q for point location in 3D.

CS763-Lecture8 11 of 20

http://www.sciencedirect.com/science/article/pii/S0196677400911015
Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 8: Planar Point Location

Other geometric data structures problems

We will touch on range searching.
Huge amount of practical and of theoretical work.

Handbook of Discrete and Computational Geometry [Handbook]:

CS763-Lecture8 12 of 20

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 8: Planar Point Location

Range Searching

Given points in R d preprocess to quickly answer a query of the form: given a
range, return the points in it.

Orthogonal range searching. A range is a rectangle.
E.g. in database query, find everyone between 30 and 40 years old making
between $50K and $90K.

query rectangle

As before, we care about
P = preprocessing time
S = space
Q = query time
(U = update time)

In 1D

a rectangle is an interval

P = O(n log n)
S = O(n)
Q = O(log n + t), t = output size
U = O(log n)

CS763-Lecture8 13 of 20

CS 763 F22 A. Lubiw, U. WaterlooLecture 8: Planar Point Location

Orthogonal range queries in 2D

Methods: quadtrees, kd trees, range trees

Quad trees

divide squares into 4 subsquares. Repeat until each square has 0 or 1 points.

https://en.wikipedia.org/wiki/Quadtree

P = O(n log n)
S = O(n)
Q = O(√n + t), t = output size
U = O(log n)

CS763-Lecture8 14 of 20

https://en.wikipedia.org/wiki/File:Point_quadtree.svg
https://en.wikipedia.org/wiki/Quadtree

CS 763 F22 A. Lubiw, U. WaterlooLecture 8: Planar Point Location

Orthogonal range queries in 2D

kd tree

Chapter 5
ORTHOGONAL RANGE SEARCHING

y-coordinate, then again on x-coordinate, and so on. More precisely, the process
is as follows. At the root we split the set P with a vertical line ! into two subsets
of roughly equal size. The splitting line is stored at the root. Pleft, the subset of
points to the left or on the splitting line, is stored in the left subtree, and Pright,
the subset to the right of it, is stored in the right subtree. At the left child of the

!

Pleft Pright

root we split Pleft into two subsets with a horizontal line; the points below or on
it are stored in the left subtree of the left child, and the points above it are stored
in the right subtree. The left child itself stores the splitting line. Similarly, the
set Pright is split with a horizontal line into two subsets, which are stored in the
left and right subtree of the right child. At the grandchildren of the root, we
split again with a vertical line. In general, we split with a vertical line at nodes
whose depth is even, and we split with a horizontal line at nodes whose depth is
odd. Figure 5.3 illustrates how the splitting is done and what the corresponding
binary tree looks like. A tree like this is called a kd-tree. Originally, the name

Figure 5.3
A kd-tree: on the left the way the plane

is subdivided and on the right the
corresponding binary tree

p4

p1

p5

p3

p2

p7

p9

p10

p6

p8

!1

!2

!3

!4

!5

!6

!7

!8

!9

p1 p2

!8

!4

!2

!1

!5

p3 p4 p5

p6 p7

p8 p9 p10

!7!6

!9

!3

stood for k-dimensional tree; the tree we described above would be a 2d-tree.
Nowadays, the original meaning is lost, and what used to be called a 2d-tree is
now called a 2-dimensional kd-tree.

We can construct a kd-tree with the recursive procedure described below.
This procedure has two parameters: a set of points and an integer. The first
parameter is the set for which we want to build the kd-tree; initially this is the
set P. The second parameter is depth of recursion or, in other words, the depth
of the root of the subtree that the recursive call constructs. The depth parameter
is zero at the first call. The depth is important because, as explained above,
it determines whether we must split with a vertical or a horizontal line. The
procedure returns the root of the kd-tree.

Algorithm BUILDKDTREE(P,depth)
Input. A set of points P and the current depth depth.
Output. The root of a kd-tree storing P.
1. if P contains only one point
2. then return a leaf storing this point
3. else if depth is even
4. then Split P into two subsets with a vertical line ! through the

median x-coordinate of the points in P. Let P1 be the set of100

alternately divide points in half vertically then horizontally

half the points to each side

P = O(n log n)
S = O(n)

CS763-Lecture8 15 of 20

CS 763 F22 A. Lubiw, U. WaterlooLecture 8: Planar Point Location

Section 5.2
KD-TREES

*p1 p2

p2

p1

p3
p3 p4

p4
p5

p5

p6

p6

p7

p7 p8

p8

p9

p9

p10

p10

p11
p11

p12

p12 p13

p13

Figure 5.5
A query on a kd-tree

procedure, which takes as arguments the root of a kd-tree and the query range R.
It uses a subroutine REPORTSUBTREE(ν), which traverses the subtree rooted
at a node ν and reports all the points stored at its leaves. Recall that lc(ν) and
rc(ν) denote the left and right child of a node ν , respectively.

Algorithm SEARCHKDTREE(ν ,R)
Input. The root of (a subtree of) a kd-tree, and a range R.
Output. All points at leaves below ν that lie in the range.
1. if ν is a leaf
2. then Report the point stored at ν if it lies in R.
3. else if region(lc(ν)) is fully contained in R
4. then REPORTSUBTREE(lc(ν))
5. else if region(lc(ν)) intersects R
6. then SEARCHKDTREE(lc(ν),R)
7. if region(rc(ν)) is fully contained in R
8. then REPORTSUBTREE(rc(ν))
9. else if region(rc(ν)) intersects R
10. then SEARCHKDTREE(rc(ν),R)

The main test the query algorithm performs is whether the query range R
intersects the region corresponding to some node ν . To be able to do this test
we can compute region(ν) for all nodes ν during the preprocessing phase and
store it, but this is not necessary: one can maintain the current region through
the recursive calls using the lines stored in the internal nodes. For instance, the
region corresponding to the left child of a node ν at even depth can be computed
from region(ν) as follows:

region(ν)

!(ν)

region(lc(ν))

!(ν)left

region(lc(ν)) = region(ν)∩ !(ν)left,

where !(ν) is the splitting line stored at ν , and !(ν)left is the half-plane to the
left of and including !(ν). 103

querying a kd-tree

touch these

return theseCan show Q = O(√n + t), t = output size

CS763-Lecture8 16 of 20

CS 763 F22 A. Lubiw, U. WaterlooLecture 8: Planar Point Location

Orthogonal range queries in 2D

Range Tree. Improve Q at the expense of S.
Make a balanced binary search tree. Leaves = points sorted by x-coordinate.

D(v) = descendants of node v
associated with slab from vl to vr

At node v, attach array A(v) — points in D(v) sorted by y-coordinate

S = O(n log n) — each point is in D(v) for (log n) v’s
P = O(n log n) — sort by x to make the tree; sort by y to make the lists A(v)

CS763-Lecture8 17 of 20

CS 763 F22 A. Lubiw, U. WaterlooLecture 8: Planar Point Location

Range Tree. How to query rectangle R R

- search the tree for x1 and x2
- the points we want are at the leaves
 between x1 and x2, but we must filter
 to get between y1 and y2

Look at nodes z
 - right children of nodes on search path to x1
 - left children of nodes on search path to x2

There are O(log n) of them. They give disjoint slabs with union [x1, x2].

- for each z (each slab) do binary search in A(z)
 to get points between y1 and y2

O(log n + output) per slab. Since the slabs are
disjoint, we don’t repeat output, so total is
Q = O(log2 n + t), t = output size.

CS763-Lecture8 18 of 20

CS 763 F22 A. Lubiw, U. WaterlooLecture 8: Planar Point Location

Range Tree. Fractional cascading.

How to improve Q from O(log2 n + t) to O(log n + t).

Idea: in each slab list A(z), we repeat the binary search for the same y1 and y2.
That’s wasteful!

Consider node z, child w

A(z) = 1, 3, 4, 7, 11, 12

A(w) = 1, 4, 7, 11

sorted y coordinates of points

- keep a pointer from each
element in A(z) to the
corresponding element (or next
higher) in A(w)

This gives Q = O(log n + t)
— we search once for y1 and y2 in A(root) and then follow pointers

CS763-Lecture8 19 of 20

CS 763 F22 A. Lubiw, U. WaterlooLecture 8: Planar Point Location

References

- [CGAA] Chapter 5

- [Handbook]

There are many possibilities for projects.

Summary

- planar point location

- range searching

CS763-Lecture8 20 of 20

	
	
	slab method
	persistence
	
	Kirkpatrick
	plan
	analysis
	proof
	trapezoidization
	summary
	geometric data structures
	Range searching
	quad tree
	kd tree
	kd tree
	range tree
	range tree
	range tree
	Summary

