

763 F22	Lecture 8: Planar Point Location	A. Lubiw, U. Waterloo
Point locat	ion in 1D	
	query	
	search in sorted array, or balanced binary search e dynamic case where points are added/deleted)	n tree
S = space	cessing time	
Q = query	time	
(U = updat	e time)	
in 1D: P:	= O(<i>n</i> log <i>n</i>)	
	= O(n)	
Q	$= O(\log n)$	
We can ac	hieve the same bounds in 2D for planar point lo	cation.
1. :	slab method (not optimal)	
	persistence – I won't give details.	
	Kirkpatrick's triangulation refinement	
1	rapezoidal map (expected good behaviour) — I v	von't aive detaile

1. Slab method: A basic solution to planar point location

S 763 F22	Lecture 8: Planar Point Locatio	on A. Lubiw, U. Waterloo
Persistent data	structure	
	and deletions over time (as in a usuable of the second second second second second second second second second s	
Persistent sear	ch trees	
Idea 1: make ner possible with old		Idea 2: give each node one extra pointer to save making new copy
4 r	r 4 4 r	0
8	3 8 8	
(a)	(b)	
S =	D(<i>n</i> log <i>n</i>) O(<i>n</i>) O(log <i>n</i>)	red node O black node black, red node O red, black node
	0(10977)	

CS 763 F22 Lecture 8: Planar Point Location A. Lubiw, U. Waterloo Plan: At each stage remove some vertices 1. remove $\frac{n}{c}$ vertices, c constant then h (sequence length) is O(legn) 2. only remove vertices of degree = d, d constant - 2 2 add new edges to triangulate ev1 - get d-2 triangles v has degree 5 each new triangle intersects at most d old triangles 3. remove independent set of vertices (no two joined by an edge) so the regions to be ne-triangulated are disjoint.

CS 763 F22 Lecture 8: Planar Point Location A. Lubiw, U. Waterloo

Lemma. There exist constants *c*, *d*, such that for any triangulation T on *n* vertices, we can find, in O(n) time, a set of $\ge n/c$ vertices each of degree $\le d$ that form an independent set.

Proof. J Ras <= 3n-6 edges (Enler) So average degree is $\frac{z(3n-6)}{n} < 6$ smallest degree is = 2 (3 if no collinearities) Thus < = vertices have degree = 10 Let Z = vertices of degree $\leq q$ $|Z| \geq \frac{1}{2}$ Use greedy algorithm to pick independent vertices Z'= Z pick vEZ, delete v and neighbours (= 9 neighbours) repeat $|Z'| \ge \frac{|Z|}{10} \ge \frac{h}{20}$ # vertices in J Time is O(n Total time: O(n) $\operatorname{Fet} c = 20 \quad d = 9.$ CS763-Lecture8

CS 763 F16	Lecture 8: Planar Point Location	A. Lubiw, U. Waterloo
		0.0, 0000

4. Trapezoidal decomposition (good expected case behaviour)

Recall we saw trapezoidization of a polygon. Same idea for planar subdivision.

extend a horizontal line left and right of each point until we hit an edge

size is O(n)

Note: if we can locate the trapezoid containing a point, this gives the region containing the point.

Randomized incremental algorithm to build trapezoidal decomposition (add segments one by one in random order) AND point location data structure.

Note: To build the trapezoidal decomposition we use the point location structure.

Can achieve expected bounds $P=O(n \log n)$ S=O(n) $Q=O(\log n)$ skipping details.

763 F16	Lecture 8: Planar Point Location	A. Lubiw, U. Waterloc	
Summary on pl	anar point location		
$P = O(n \log n)$	n)		
$S = O(n)^{\circ}$		Kirkpatrick's triangulation refinement	
$Q = O(\log r)$	ו) trapezoidal map (expe	- trapezoidal map (expected case behaviour)	
There are c	other methods.		
Also, the co	onstant inside the O(log <i>n</i>) query time ca	n be made 1.	
Seidel, Rair	nund, and Udo Adamy. "On the exact worst case query	y complexity of	
	t location." Journal of Algorithms 37.1 (2000): 189-217.		
Dynamic plana	r point location. Support updates to the	e planar subdivision. In 1D.	
	search trees support updates in O(log n	•	
for possible	projects, see [Handbook]		
OPEN. Achieve	the above P, S, Q for point location in 3D	D.	
Localization. P (visible) geomet	Problem from robotics/vision: Determine	your coordinates from local	

5763 F22	Lecture 8: Planar Point Location	A. Lubiw, U. Waterloo
Other geomet	ric data structures problems	
Handbook of D	iscrete and Computational Geometry [Handb	pook]:
GEOMET	TRIC DATA STRUCTURES AND SEARCHING	
✓ 38 Point l	ocation (J. Snoeyink)	
39 Collisio	on and proximity queries (Y. Kim, M.C. Lin, and D.	Manocha)
	searching (P.K. Agarwal)	
	ooting and lines in space (M. Pellegrini)	
	etric intersection (D.M. Mount)	
43 Neares	t neighbors in high-dimensional spaces (A. Andoni and A	nd P. Indyk).
We will touch c	on range searching.	
Huge amount o	of practical and of theoretical work.	
-Lecture8		1

S 763 F22	Lecture 8: Planar Point Loca	ation A. Lubiw, U. Water	loc
Range Tree.	Fractional cascading.		
How to improve	Q from O(log ² $n + t$) to O(log $n + t$)	<i>t</i>).	
Idea: in each sl That's wasteful!	ab list A(<i>z</i>), we repeat the binary s	search for the same y_1 and y_2 .	
Consider node	z, child w		
	sorted y coordinates of point	ts	
ZQ WO	$A(z) = \begin{bmatrix} 1, 3, 4, 7, 11, 12 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	- keep a pointer from each element in $A(z)$ to the corresponding element (or next higher) in $A(w)$	t
u	= O(log $n + t$) once for y_1 and y_2 in A(root) and the	hen follow pointers	
3-Lecture8			

5763 F22	Lecture 8: Planar Point Location	A. Lubiw, U. Waterloo
Summary		
- planar point	location	
- range searc	hing	
References		
- [CGAA] Cha	apter 5	
- [Handbook]		
There are ma	ny possibilities for projects.	