
CS 763 F22 A. Lubiw, U. WaterlooLecture 6: Convex Hull in 3D and Beyond

What is the size of the convex hull?

In 3D, n vertices, how many edges and faces?

Next: Algorithms for convex hull in 3D and higher dimensions.

Given n points in 3D, find their convex hull, i.e. find the vertices, edges and faces
of the convex hull.

CS763-Lecture6 1 of 20

https://www.google.ca/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=&url=http://cset.mnsu.edu/mathstat/courses/&psig=AFQjCNGI6a-vX1M9AqUd1AoewuZK881zMw&ust=1474850850102583

CS 763 F22 A. Lubiw, U. WaterlooLecture 6: Convex Hull in 3D and Beyond

3D convex hull. n vertices, how many edges and faces?

CS763-Lecture6 2 of 20

https://www.google.ca/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=&url=http://cset.mnsu.edu/mathstat/courses/&psig=AFQjCNGI6a-vX1M9AqUd1AoewuZK881zMw&ust=1474850850102583
Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F20 A. Lubiw, U. WaterlooLecture 6: Convex Hull in 3D and Beyond

The face lattice of a convex polyhedron

Recall

CS763-Lecture6 3 of 20

https://en.wikipedia.org/wiki/File:Hypercube.svg
https://en.wikipedia.org/wiki/File:Hexahedron.svg

CS 763 F20 A. Lubiw, U. WaterlooLecture 6: Convex Hull in 3D and Beyond

Size of convex hull of n points in d-dimensions

McMullen’s Upper bound Theorem
For a convex polyhedron in d dimensions (d fixed) with n vertices the worst case
number of faces is

The number of facets has the same bound (we get a 2d constant appearing).

In fact, McMullen gave more exact bounds — the above asymptotic bound is easier
to show https://graphics.stanford.edu/courses/cs268-11-spring/notes/upper_bound_theorem.pdf

d = 4 matters! One application of 4D convex hull is to find 3D Delaunay triangulations.

For d = 2,3 bound is Θ(n).
For d = 4,5 bound is Θ(n2)

CS763-Lecture6 4 of 20

https://graphics.stanford.edu/courses/cs268-11-spring/notes/upper_bound_theorem.pdf

CS 763 F20 A. Lubiw, U. WaterlooLecture 6: Convex Hull in 3D and Beyond

The bound of is realized by a cyclic polytope — the convex hull of n
points on the moment curve

moment curve =

Place n points on the moment curve.

Claim. The number of facets of their convex hull is

in 2D in 4D

Can prove:

- every pair gives an edge of the CH,
 so #edges is

- every 4-tuple gives a facet of the CH,
 so #facets is

CS763-Lecture6 5 of 20

CS 763 F22 A. Lubiw, U. WaterlooLecture 6: Convex Hull in 3D and Beyond

3D Convex Hull Algorithms

Some of the 2D algorithms extend to 3D.

Exercise: Does the incremental algorithm extend? Is it O(n log n)?

Divide and Conquer.

Basically the only known O(n log n) 3D convex hull algorithm.
Preparata and Hong 1977.

- sort points by x coordinate

- divide by orthogonal plane at median x coordinate into two sets of size n/2

- recurse on each side to find convex hulls A and B

- combine A and B into one convex hull

If we combine in O(n)
we get T(n) = 2T(n/2) + O(n)
which yields T(n) = O(n log n)

Introduction Complexity Gift wrapping Divide and conquer Incremental algorithm References

Divide and conquer

The same idea of the 2d algorithm.
1 Split the point-set P in two sets.
2 Recursively split, construct CH, and merge.

Merge takes O(n) ∆ Algorithm complexity O(n log n).

Slides by: Roger Hernando Covex hull algorithms in 3D

O’Rourke, Comp. Geom. in C

A
B

CS763-Lecture6 6 of 20

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 6: Convex Hull in 3D and Beyond

How to combine two disjoint convex hulls in O(n)Introduction Complexity Gift wrapping Divide and conquer Incremental algorithm References

Merge

Determine a supporting line of the convex hulls, projecting the
hulls and using the 2D algorithm.
Use wrapping algorithm to create the additional faces in order
to construct a cylinder of triangles connecting the hulls.
Remove the hidden faces hidden by the wrapped band.

Slides by: Roger Hernando Covex hull algorithms in 3D

O’Rourke, Comp. Geom. in C

we must find the “band” of faces
that cross our dividing plane
and then discard “hidden” faces

Introduction Complexity Gift wrapping Divide and conquer Incremental algorithm References

Merge in detail

Merge can be performed in linear time O(n), because the circular
order that follow vertex on intersection of new convex hull edges,
with a separating plane H0.

Slides by: Roger Hernando Covex hull algorithms in 3D

A

B

1. find an edge ab of the convex hull,
a in A, b in B and a plane through ab
with A and B to one side.

2. pivot the plane through ab
to find a face of the convex hull band

3. repeat until we wrap back to ab

4. remove hidden faces

CS763-Lecture6 7 of 20

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 6: Convex Hull in 3D and Beyond

Introduction Complexity Gift wrapping Divide and conquer Incremental algorithm References

Merge in detail

1 Obtain a common tangent(AB) which can be computed just
as in the two-dimensional case.

Slides by: Roger Hernando Covex hull algorithms in 3D

Introduction Complexity Gift wrapping Divide and conquer Incremental algorithm References

Merge in detail

2 We next need to find a triangle ABC whose vertex C must
belong to either the left hull or the right hull. Consequently,
either AC is an edge of the left hull or BC is an edge of the
right hull.

Slides by: Roger Hernando Covex hull algorithms in 3D

Introduction Complexity Gift wrapping Divide and conquer Incremental algorithm References

Merge in detail

3 Now we have a new edge AC that joins the left hull and the
right hull. We can find triangle ACD just as we did ABC.

Slides by: Roger Hernando Covex hull algorithms in 3D

Step 1. Project to 2D and find lower bridge

a b

b

a

c

Details and Timing

Step 2.
Lemma. The next point, c, is a neighbour of a or b.

So, find “best” neighbour of a and “best” neighbour of b.

Lemma. If the next point, c, is a neighbour of b, then
the next “best” neighbour of a remains the same.

Total time: Sum of all vertex degrees. This is O(n)
because we have a planar graph.

b

a
c

d

1. find an edge ab of the convex hull,
a in A, b in B and a plane through ab
with A and B to one side.

2. pivot the plane through ab
to find a face of the convex hull band

3. repeat until we wrap back to ab

4. remove hidden faces

Roger Hernando

CS763-Lecture6 8 of 20

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 6: Convex Hull in 3D and Beyond

Note that the cycle of “horizon”
edges need not be simple

Introduction Complexity Gift wrapping Divide and conquer Incremental algorithm References

Merge

The curves bounding the two convex hulls do not have to be
simple.

Slides by: Roger Hernando Covex hull algorithms in 3D

O’Rourke, Comp. Geom. in C

O’Rourke and Devadoss

topology of the horizon

Removing hidden faces can be done in O(n) too.

CS763-Lecture6 9 of 20

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 6: Convex Hull in 3D and Beyond

Conventional wisdom was that the divide and conquer algorithm is hard to
implement
e.g. see O’Rourke’s book, “Computational Geometry in C”, 1998.

However, there are now good implementations
e.g. “A Minimalist’s Implementation of the 3-d Divide-and-Conquer Convex Hull
Algorithm”, Timothy Chan, 2003. https://cs.uwaterloo.ca/~tmchan/ch3d/ch3d.pdf

Appendix: Complete Code

1 // Timothy Chan "ch3d.cc" 12/02 3-d lower hull (in C++)

2

3 // a simple implementation of the O(n log n) divide-and-conquer algorithm

4

5 // input: coordinates of points

6 // n x_0 y_0 z_0 ... x_{n-1} y_{n-1} z_{n-1}

7

8 // output: indices of facets

9 // i_1 j_1 k_1 i_2 j_2 k_2 ...

10

11 // warning: ignores degeneracies and robustness

12 // space: uses 6n pointers

13

14

15 #include <stream.h>

16

17 struct Point {

18 double x, y, z;

19 Point *prev, *next;

20 void act() {

21 if (prev->next != this) prev->next = next->prev = this; // insert

22 else { prev->next = next; next->prev = prev; } // delete

23 }

24 };

25

26 const double INF = 1e99;

27 static Point nil = {INF, INF, INF, 0, 0};

28 Point *NIL = &nil;

29

30 inline double turn(Point *p, Point *q, Point *r) { // <0 iff cw

31 if (p == NIL || q == NIL || r == NIL) return 1.0;

32 return (q->x-p->x)*(r->y-p->y) - (r->x-p->x)*(q->y-p->y);

33 }

34

35 inline double time(Point *p, Point *q, Point *r) { // when turn changes

36 if (p == NIL || q == NIL || r == NIL) return INF;

37 return ((q->x-p->x)*(r->z-p->z) - (r->x-p->x)*(q->z-p->z)) / turn(p,q,r);

38 }

39

40 Point *sort(Point P[], int n) { // mergesort

41

42 Point *a, *b, *c, head;

43

44 if (n == 1) { P[0].next = NIL; return P; }

45 a = sort(P, n/2);

46 b = sort(P+n/2, n-n/2);

47 c = &head;

48 do

49 if (a->x < b->x) { c = c->next = a; a = a->next; }

50 else { c = c->next = b; b = b->next; }

51 while (c != NIL);

52 return head.next;

53 }

54

55 void hull(Point *list, int n, Point **A, Point **B) { // the algorithm

56

57 Point *u, *v, *mid;

58 double t[6], oldt, newt;

59 int i, j, k, l, minl;

60

11

61 if (n == 1) { A[0] = list->prev = list->next = NIL; return; }

62

63 for (u = list, i = 0; i < n/2-1; u = u->next, i++) ;

64 mid = v = u->next;

65 hull(list, n/2, B, A); // recurse on left and right sides

66 hull(mid, n-n/2, B+n/2*2, A+n/2*2);

67

68 for (; ;) // find initial bridge

69 if (turn(u, v, v->next) < 0) v = v->next;

70 else if (turn(u->prev, u, v) < 0) u = u->prev;

71 else break;

72

73 // merge by tracking bridge uv over time

74 for (i = k = 0, j = n/2*2, oldt = -INF; ; oldt = newt) {

75 t[0] = time(B[i]->prev, B[i], B[i]->next);

76 t[1] = time(B[j]->prev, B[j], B[j]->next);

77 t[2] = time(u, u->next, v);

78 t[3] = time(u->prev, u, v);

79 t[4] = time(u, v->prev, v);

80 t[5] = time(u, v, v->next);

81 for (newt = INF, l = 0; l < 6; l++)

82 if (t[l] > oldt && t[l] < newt) { minl = l; newt = t[l]; }

83 if (newt == INF) break;

84 switch (minl) {

85 case 0: if (B[i]->x < u->x) A[k++] = B[i]; B[i++]->act(); break;

86 case 1: if (B[j]->x > v->x) A[k++] = B[j]; B[j++]->act(); break;

87 case 2: A[k++] = u = u->next; break;

88 case 3: A[k++] = u; u = u->prev; break;

89 case 4: A[k++] = v = v->prev; break;

90 case 5: A[k++] = v; v = v->next; break;

91 }

92 }

93 A[k] = NIL;

94

95 u->next = v; v->prev = u; // now go back in time to update pointers

96 for (k--; k >= 0; k--)

97 if (A[k]->x <= u->x || A[k]->x >= v->x) {

98 A[k]->act();

99 if (A[k] == u) u = u->prev; else if (A[k] == v) v = v->next;

100 }

101 else {

102 u->next = A[k]; A[k]->prev = u; v->prev = A[k]; A[k]->next = v;

103 if (A[k]->x < mid->x) u = A[k]; else v = A[k];

104 }

105 }

106

107 main() {

108

109 int n, i;

110 cin >> n;

111

112 Point *P = new Point[n]; // input

113 for (i = 0; i < n; i++) { cin >> P[i].x; cin >> P[i].y; cin >> P[i].z; }

114

115 Point *list = sort(P, n);

116 Point **A = new Point *[2*n], **B = new Point *[2*n];

117 hull(list, n, A, B);

118

119 for (i = 0; A[i] != NIL; A[i++]->act()) // output

120 cout << A[i]->prev-P << " " << A[i]-P << " " << A[i]->next-P << "\n";

121 delete A; delete B; delete P;

122 }

12

CS763-Lecture6 10 of 20

https://cs.uwaterloo.ca/~tmchan/ch3d/ch3d.pdf
Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 6: Convex Hull in 3D and Beyond

The Gift-wrapping algorithm extends to 3D, O(nh), h = # faces of the convex hull.

Use the same kind of “wrapping” we just saw for divide and conquer.

Timothy Chan’s O(n log h) algorithm extends to 3D.

Recall it needs an O(n log n) algorithm (the divide and conquer algorithm)
plus an O(nh) algorithm (the gift-wrapping algorithm).

The step of finding the “extreme” point in each of the smaller convex hulls needs
more detail.

Subhash Suri UC Santa Barbara

Illustration

q1

q2

q3

q4

pk−1

pk

Subhash Suri

CS763-Lecture6 11 of 20

CS 763 F20 A. Lubiw, U. WaterlooLecture 6: Convex Hull in 3D and Beyond

[Randomized] Incremental Convex Hull Algorithm

We will describe the algorithm for 3D though it does extend to general dimensions.

Assume no 4 points lie on a plane (this means that all faces will be triangles).
See [CGAA] book for details on more general case.

Idea: Add the points one by one in random order.

[CGAA]

pi

pi

Hi-1

Hi

new facehorizon
edge

Goal: Give details and prove expected runtime is O(n log n).

CS763-Lecture6 12 of 20

CS 763 F20 A. Lubiw, U. WaterlooLecture 6: Convex Hull in 3D and Beyond

Idea: Add the points one by one in random order.

[CGAA]

pi

pi

Hi-1

Hi

new facehorizon
edge

Imagine the new point pi as a light source.
Some faces are lit — we remove those.
Some faces are dark — we keep those.

A horizon edge is incident to one lit face and one dark face.
New faces join pi to horizon edges.

Note that pi is not in the plane of a face of Hi -1 by our general position assumption.

CS763-Lecture6 13 of 20

CS 763 F22 A. Lubiw, U. WaterlooLecture 6: Convex Hull in 3D and Beyond

Algorithm

1. take a random order of the points p1 . . . pn

2. form a tetrahedron H4 on p1 p2 p3 p4

3. for i = 5 . . n

4. if pi is inside Hi -1 do nothing else

5. locate a face F lit by pi

6. find and delete all faces lit by pi

7. for each horizon edge, make a new face to pi

Straight-forward implementation and analysis:

Ex: Find an example (with bad ordering of points) where the algorithm takes Θ(n2)

CS 763 F20 A. Lubiw, U. WaterlooLecture 6: More on Convex Hull

[Randomized] Incremental Convex Hull Algorithm

We will describe the algorithm for 3D though it does extend to general dimensions.

Assume no 4 points lie on a plane (this means that all faces will be triangles).
See [CGAA] book for details on more general case.

Idea: Add the points one by one in random order.

[CGAA]

pi

pi

Hi-1

Hi

new facehorizon
edge

CS763-Lecture6 14 of 20

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 6: Convex Hull in 3D and Beyond

Deal separately with lines 6 - 7 and lines 4 - 5.

Lines 6 - 7

3. for i = 5 . . n
4. if pi is inside Hi -1 do nothing else
5. locate a face F lit by pi
6. find and delete all faces lit by pi
7. for each horizon edge, make a new face to pi

Theorem. For points in random order the expected run time is O(n log n).

CS763-Lecture6 15 of 20

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 6: Convex Hull in 3D and Beyond

Lemma. [Clarkson, Shor 1989] In 3D, if points are added in random order then the
expected value of Ai is O(1). Ai = # faces added in iteration i .

Proof.

CS 763 F20 A. Lubiw, U. WaterlooLecture 6: More on Convex Hull

[Randomized] Incremental Convex Hull Algorithm

We will describe the algorithm for 3D though it does extend to general dimensions.

Assume no 4 points lie on a plane (this means that all faces will be triangles).
See [CGAA] book for details on more general case.

Idea: Add the points one by one in random order.

[CGAA]

pi

pi

Hi-1

Hi

new facehorizon
edge

CS763-Lecture6 16 of 20

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 6: Convex Hull in 3D and Beyond

Deal separately with lines 6 - 7 and lines 4 - 5.

Lines 6 - 7: expected run time (over whole algorithm) is O(n)

Lines 4 - 5: We must maintain some kind of search structure to get O(n log n) total.

Various approaches:

- Clarkson, Shor 1989 — conflict graph

- Seidel 1991 — it’s linear programming and for d > 3, this gives a good
 solution but for d = 3 we get back to O(n2)

3. for i = 5 . . n
4. if pi is inside Hi -1 do nothing else
5. locate a face F lit by pi
6. find and delete all faces lit by pi
7. for each horizon edge, make a new face to pi

Theorem. For points in random order the expected run time is O(n log n).

CS763-Lecture6 17 of 20

CS 763 F22 A. Lubiw, U. WaterlooLecture 6: Convex Hull in 3D and Beyond

Test if point pi is inside/outside Hi -1 (and if outside, find a lit face F)

Maintain conflict graph

conflict = a face f of Hi -1 is lit by an unprocessed point p

Store conflicts as a bipartite graph

What’s left:
- how to update the conflict graph
- expected case analysis

Test if point pi is inside/outside Hi -1 (and if outside, find a lit face F)

CS763-Lecture6 18 of 20

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F20 A. Lubiw, U. WaterlooLecture 6: Convex Hull in 3D and Beyond

Randomized Incremental Convex Hull Algorithm

- expected run time O(n log n) in 3D

- expected run time for d >= 4 is

and we can use linear programming instead of the conflict graph

Recall: size of convex hull (facets or whole face lattice) is

Combining lower bound for d = 2 and lower bound due to output size, we get
lower bound of

So randomized incremental algorithm is optimal (it achieves the lower worst
case bound).

Is there a deterministic (non-randomized) algorithm?

Yes. Chazelle ’93 by derandomizing the above algorithm (choose an order of
points that has the good properties of a random order).

Output sensitive? Lower bound is Θ(h + n log h).
Chan got O(n log h) for d = 2,3. Seidel ’86 achieved O(n^2 + h log h) for fixed d.

for d constant

CS763-Lecture6 19 of 20

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 6: Convex Hull in 3D and Beyond

References

- [CGAA] Chapter 11

- [O’Rourke] Chapter 4

Summary

- divide and conquer 3D convex hull algorithm

- randomized incremental convex hull algorithm
 O(n log n) in 3D; optimal in dimension d

CS763-Lecture6 20 of 20

	CS 763 F22
	size of convex hull in 3D
	face lattice of a convex polyhedron
	size of convex hull
	
	divide and conquer
	
	
	
	
	
	randomized incremental convex hull algorithm
	randomized incremental convex hull algorithm
	worst case
	expected case
	Clarkson-Shor
	expected case
	conflict graph
	convex hull in higher dimensions
	Summary

