Next: Algorithms for convex hull in 3D and higher dimensions.

Given n points in 3D, find their convex hull, i.e. find the vertices, edges and faces of the convex hull.

What is the size of the convex hull?

In 3D, n vertices, how many edges and faces?

CS 763 F22 Lecture 6: Convex Hull in 3D and Beyond A. Lubiw, U. Waterloo 3D convex hull. n vertices, how many edges and faces? rise Euler's formula 5 - e + f = 2 g 5 - nvertices eages faces the graph is planar. * count # edge-face incidences 2e = 3f = use + that the graph comes $2e = 3f = \frac{2}{3}e = 5$ Z= J-e+f = J-e+= = J-== $e \leq 3(v-2) \leq 3(n-2)$ f $\leq 2(n-2)$ all of e, f are O(n) * converse: Steinitz's than: any 3-connected planar graph is the graph of a convex polyhedron. 2 of 20

A. Lubiw, U. Waterloo CS 763 F20 Lecture 6: Convex Hull in 3D and Beyond Size of convex hull of n points in d-dimensions McMullen's Upper bound Theorem For a convex polyhedron in *d* dimensions (*d* fixed) with *n* vertices the worst case number of faces is $\Theta(n^{\lfloor d/2
floor})$ The number of facets has the same bound (we get a 2^d constant appearing). In fact, McMullen gave more exact bounds — the above asymptotic bound is easier https://graphics.stanford.edu/courses/cs268-11-spring/notes/upper_bound_theorem.pdf to show For d = 2,3 bound is $\Theta(n)$. For d = 4,5 bound is $\Theta(n^2)$ d = 4 matters! One application of 4D convex hull is to find 3D Delaunay triangulations.

A. Lubiw, U. Waterloo CS 763 F20 Lecture 6: Convex Hull in 3D and Beyond The bound of $\Theta(n^{\lfloor d/2 \rfloor})$ is realized by a *cyclic polytope* — the convex hull of *n* points on the moment curve moment curve = $\{(t, t^2, \dots, t^d) : t \in \mathbb{R}\}$ Place *n* points on the moment curve. $t_1 \leq t_2 \leq \cdots \leq t_n$ **Claim.** The number of facets of their convex hull is $\Theta(n^{\lfloor d/2 \rfloor})$ in 2D in 4D Can prove: - every pair $t_i t_j$ gives an edge of the CH, so #edges is $\Theta(n^2)$ - every 4-tuple $t_i t_{i+1} t_j t_{j+1}$ gives a facet of the CH, so #facets is $\Theta(n^2)$

Removing hidden faces can be done in O(n) too.

Note that the cycle of "horizon" edges need not be simple

this "horizon" is a simple cycle

O'Rourke and Devadoss

Here the horizon

topology of the horizon

is not a simple cycle

O'Rourke, Comp. Geom. in C

Conventiona	I wisdom was that the divide a	and conquer algorithm	is hard to
implement			
e.g. see O'R	ourke's book, "Computational	Geometry in C", 1998.	
However, the	ere are now good implementa	tions	
e a "A Minim	alist's Implementation of the	3-d Divide-and-Conque	er Convex Hull
Algorithm" T	imothy Chan 2003	uwaterloo.ca/~tmchan/ch3d/ch3d.pdf	
Algonium, I	informy Chan, 2003.		
	Appendix: Complete Code	61 if $(n == 1)$ { A[0] = list->prev = list->next = NIL; return; } 62 for $(n = list = 0; i \leq n/2-1; n = n->next = i++)$;	
	<pre>// Into thy chain choice 1/02 5 a lower mult (H C+) // a simple implementation of the O(n log n) divide-and-conquer algorithm // a simple implementation of the O(n log n) divide-and-conquer algorithm</pre>	<pre>64 mid = v = u-next; 65 hull(list, n/2, B, A); // recurse on left and right sides 66 hull(vid, men/2, Ban/2*0).</pre>	
	5 // input: coordinates of points 6 // n x_0 y_0 z_0 x_{n-1} y_{n-1} z_{n-1}	67 67 68 for (;;) // find initial bridge	
	7 8 // output: indices of facets 9 // i_1 j_1 k_1 i_2 j_2 k_2	69 if (turn(u, v, v->next) < 0) v = v->next; 70 else if (turn(u->prev, u, v) < 0) u = u->prev; 71 else break;	
	10 11 // warning: ignores degeneracies and robustness 12 // space: uses 6n nointers	72 73 // merge by tracking bridge uv over time 74 for (i = k = 0, i = n/2*2, oldt = -INF: ; oldt = neut) {	
	13 14	<pre>75 t[0] = time(B[i]->prev, B[i], B[i]->next); 76 t[1] = time(B[j]->prev, B[j], B[j]->next);</pre>	
	15 #INClude (Stream.n) 16 17 struct Point {	<pre>// t[2] = time(u, u->next, V); 78 t[3] = time(u->prev, u, v); 79 t[4] = time(u, u->prev, v);</pre>	
	<pre>18 double x, y, z; 19 Point *prev, *next; 20 wid orf()</pre>	<pre>80 t[5] = time(u, v, v->next); 81 for (newt = INF, 1 = 0; 1 < 6; 1++) 82 if (f[1] > oldt #k f[1] < newt) { min] = 1: newt = t[1]; }</pre>	
	<pre>21 if (prev->next != this) prev->next = next->prev = this; // insert 22 else { prev->next = next; next->prev = prev; } // delete</pre>	83 if (new == INF) break; 84 switch (min1) {	
	23 } 24 }; 25	85 case 0: if (B[1]->x < u->x) A[k++] = B[1]; B[1++]->act(); b] 86 case 1: if (B[j]->x > v->x) A[k++] = B[j]; B[j++]->act(); b] 87 case 2: A[k++] = u = u->next; break;	reak; reak;
	<pre>26 const double INF = 1e99; 27 static Point nil = {INF, INF, INF, 0, 0}; c0 Dure avit = heil:</pre>	88 case 3: A[k++] = u; u = u->prev; break; 89 case 4: A[k++] = v = v->prev; break; 90 cose 5: A[k++] = v = u ->prev; break;	
	20 Fount *mil - anii; 29 30 inline double turn(Point *p, Point *q, Point *r) { // <0 iff cw	91 } 92 }	
	<pre>31 if (p == NIL q == NIL r == NIL) return 1.0; 32 return (q->x-p->x)*(r->y-p->y) - (r->x-p->x)*(q->y-p->y); 33 }</pre>	93 A[k] = NIL; 94 95 u->next = v; v->prev = u; // now go back in time to undate poir	nters
	34 35 inline double time(Point *p, Point *q, Point *r) { // when turn changes 26 if (n == NIL n == NIL n == NIL) x == NIL) x == NIL)	96 for $(k; k \ge 0; k)$ 97 if $(A[k] \rightarrow x <= u \rightarrow x A[k] \rightarrow x >= v \rightarrow x) $ { 98 $A[v] \rightarrow x <= u \rightarrow x$	
	<pre>37 return ((q->x-p->x)*(r->z-p->z) + (r->x-p->x)*(q->z-p->z)) / turn(p,q,r); 38 }</pre>	<pre>99 if (A[k] == u) u = u->prev; else if (A[k] == v) v = v->next; 100 }</pre>	
	39 40 Point *sort(Point P[], int n) { // mergesort 41	<pre>101 else i 102 u->next = A[k]; A[k]->prev = u; v->prev = A[k]; A[k]->next = 103 if (A[k]->x < mid->x) u = A[k]; else v = A[k];</pre>	v;
	42 Point *a, *b, *c, head; 43 44 if (n == 1) { P[0] next = NIL: return P. }	104 } 105 } 106	
	45 a = sort(P n/2); 46 b = sort(P+n/2, n-n/2);	107 main() { 108	
	<pre>47 c = &head 48 do 49 if (a->x < b->x) { c = c->next = a; a = a->next; }</pre>	109 Int n, 1; 110 cin >> n; 111	
	50 else { c = c->next = b; b = b->next; } 51 while (c != NIL); 52 return head.next;	<pre>112 Point *P = new Point[n]; // input 113 for (i = 0; i < n; i++) { cin >> P[i].x; cin >> P[i].y; cin >> P 114</pre>	[i].z; }
	53 } 54	<pre>115 Point *list = sort(P, n); 116 Point **A = new Point *[2*n], **B = new Point *[2*n]; 117 building = n = Pb.</pre>	
	<pre>po voiu mdii(Point *iist, int n, Point **A, Point **B) { // the algorithm 56 57 Delet on on order 57</pre>	117 multilst, m, m, b); 118 119 for (i = 0; A[i] != NIL; A[i++]->act()) // output	
	5/ POINC *U, *V, *MIU;	100 and so Afril Saman Disc II II so Afril Disc II II so Afril Saman Disc	Z = 0.
	5) Follt 41, **, *min; 58 double t[6], oldt, newt; 59 int i, j, k, l, min]; 60	120 cout < a[1]-prev-r << - < < a[1]-r << - < < a[1]-next-r << 121 delete A; delete B; delete P; 122 }	< ~\n_;

CS763-Lecture6

The Gift-wrapping algorithm extends to 3D, O(nh), h = # faces of the convex hull.

Use the same kind of "wrapping" we just saw for divide and conquer.

Timothy Chan's O(n log h) algorithm extends to 3D.

Recall it needs an O(n log n) algorithm (the divide and conquer algorithm) plus an O(nh) algorithm (the gift-wrapping algorithm).

The step of finding the "extreme" point in each of the smaller convex hulls needs more detail.

[Randomized] Incremental Convex Hull Algorithm

We will describe the algorithm for 3D though it does extend to general dimensions.

Assume no 4 points lie on a plane (this means that all faces will be triangles). See [CGAA] book for details on more general case.

Idea: Add the points one by one in random order.

CS 763 F22	Lecture 6: Convex Hull in 3D and Beyond	A. Lubiw, U. Waterloo
Algorithm		
1. take	a random order of the points $p_1 \dots p_n$	
2. form	a tetrahedron H_4 on $p_1 p_2 p_3 p_4$	
3. for <i>i</i> =	= 5 <i>n</i>	
4.	if p_i is inside H_{i-1} do nothing else	
5.	locate a face F lit by p_i	P _i
6.	find and delete all faces lit by p_i H_{i-1}	contracting in a
7.	for each horizon edge, make a new face to p_i	
Straight-forw	vard implementation and analysis:	
worst a	rse lines 4-7 take O(n)	
	otal is D(nz), and we so	w example
Ev. Find on	that give	$S \oplus (n^2) \mod Case$
Ex: Find an e	example (with bad ordering of points) where the a	igorithm takes $\Theta(n^2)$
CS763-Lecture6		14 of 20

Theorem. For points in random order the expected run time is $O(n \log n)$.

3. for *i* = 5 . . *n*

- 4. if p_i is inside H_{i-1} do nothing else
- 5. locate a face F lit by p_i
- 6. find and delete all faces lit by p_i
- 7. for each horizon edge, make a new face to p_i

Deal separately with lines 6 - 7 and lines 4 - 5.

Lines 6 - 7

6 find all lit faces using DFS (depth first search) starting from F time: O(# lit faces) - a face is deleted at most once, so work sperit on finding & deleting lit faces can be charged to cost of adding new faces Ai = # faces added in iteration i total work (steps 6-7) is ZAi

CS 763 F22 Lecture 6: Convex Hull in 3D and Beyond A. Lubiw, U. Waterloo Lemma. [Clarkson, Shor 1989] In 3D, if points are added in random order then the expected value of A_i is O(1). $A_i = \#$ faces added in iteration *i*. Proof. So expected value of ZAi = O(n) Backwards Analysis. Consider Hi = CH ({pi Pi}) # faces Ai = degree of Pi * Pi is equally likely to be any vertex of Hi So we need average degree of vertices of Hi Hi has planar graph (vertices & edges) Claim. Average vertex degree in planar graph is < 6 pf. (in case you don't know) sum of degrees is 2e e = Z(v-2) from previous slide Euler + fact that faces are triangles avg. degree $= \frac{6v}{v} = 6$

CS 763 F22	Lecture 6: Convex Hull in 3D and Beyond	A. Lubiw, U. Waterloo
Theorem.	For points in random order the expected run time is	s O(<i>n</i> log <i>n</i>).
3. for 4. 5. 6. 7.	i = 5 n if p_i is inside H_{i-1} do nothing else locate a face F lit by p_i find and delete all faces lit by p_i for each horizon edge, make a new face to p_i	
Deal separ Lines 6 - 7	rately with lines 6 - 7 and lines 4 - 5. : expected run time (over whole algorithm) is O(<i>n</i>)	I I
Lines 4 - 5 Various	: We must maintain some kind of search structure to approaches:	o get O(<i>n</i> log <i>n</i>) total.
- C	larkson, Shor 1989 — <i>conflict graph</i>	
- S	eidel 1991 — it's linear programming and for $d > 3$, olution but for $d = 3$ we get back to $O(n^2)$	this gives a good

CS 763 F20	Lecture 6: Convex Hull in 3D and Beyond A. Lubiw, U. Waterloo
Randomized In	ncremental Convex Hull Algorithm
- expected ru	in time O(<i>n</i> log <i>n</i>) in 3D
- expected ru	In time for $d >= 4$ is $O(n^{\lfloor d/2 \rfloor})$
and we	can use linear programming instead of the conflict graph
Recall: size of c	convex hull (facets or whole face lattice) is $~~\Theta(n^{\lfloor d/2 floor})$
Combining lower lower bound of	er bound for $d = 2$ and lower bound due to output size, we get $\Omega(n \log n + n^{\lfloor d/2 \rfloor})$ for d constant
So randomized case bound).	incremental algorithm is optimal (it achieves the lower worst
Is there a deter	ministic (non-randomized) algorithm?
Yes. Chazell points that ha	le '93 by derandomizing the above algorithm (choose an order of as the good properties of a random order).
Output sensitive Chan got O(<i>n</i> lo	e? Lower bound is $\Theta(h + n \log h)$. og <i>h</i>) for <i>d</i> = 2,3. Seidel '86 achieved $O(n^2 + h \log h)$ for fixed <i>d</i> .

763 F22	Lecture 6: Convex Hull in 3D and Beyond	A. Lubiw, U. Waterloo
Summary		
- divide an	d conquer 3D convex hull algorithm	
- randomiz O(<i>n</i> log <i>n</i>	ed incremental convex hull algorithm) in 3D; optimal $O(n^{\lfloor d/2 floor})$ in dimension d	
References		
- [CGAA] (Chapter 11	
- [O'Rourk	e] Chapter 4	