

CS 763 F22	Lecture 5: More on Convex Hulls	A. Lubiw, U. Waterloo
Recall		
Inree O(n log n)	time algorithms to find the Convex Hull of r	n points in 2D
- incremental - Graham's alg - divide and co	gorithm onquer	
Lower bound of	Omega(n log n)	

CS 763 F22 Lecture 5: More on Convex Hulls A. Lubiw, U. Waterloo How to "wrap" to find next-point affer pi like finden men Ocn to scan Schnough points to get To compare Pk, PR use sidedness test e.g. here Pe is below line PEPk so we prefer Pk Runtime of Gift Wrapping Algorithm: Time for one wrap step is O(n) Total in worst case O(n2) (n.h) As function of n and h time for Time for 1 one wrap of the wrap of Summery O(nlogn) vs O(n.h) last day

CS 763 F22 Lecture 5: More on Convex Hulls A. Lubiw, U. Waterloo
Time for one wrap step:
$$O(\frac{n}{m} \cdot \log m)$$

$p_0 \forall gens$
How many wrap steps should we do?
If we do all h wrap steps $(h is # pts on CH)$
then total time is $O(R \frac{m}{m} \cdot \log m) + O(n \log m)$
great if $m=h - we get O(n \log h)$
How do we find the right m ?
Try various values of $m - start small$,
Work wp .
Careful: if m is too small
then $O(h \frac{m}{m} \log m)$ can be too big, e.g. $O(hn)$
So stop giff-wrapping after m steps.
Then time to try m is $O(n \log m)$
Note. if we try $m \ge h$ then we find Ctt.

CS 763 F22
Lecture 5: More on Convex Hulls A. Lubiw, U. Waterloo
How do we find the right
$$m$$
?
Try an increasing sequence of values of m until we get one bigger than h (i.e., one
where the algorithm find the CH)
Try double $m = 1, 2, 4, 8, \cdots$ $m = 2^{i}$
Time $\int_{i=1}^{\log R} n \log 2^{i} = n \sum_{i=1}^{\log R} i = O(n \log^{2} R)$
 $i=1$
Too big 1
 $2^{i} \ge R$ $i \ge \log R$
Wart $O(n \log R)$
Time $\int_{i=1}^{\log \log R} n \log (2^{i}) = n \sum_{i=1}^{\log \log R} 2^{i} = O(n \log^{2} R)$
 $\sum_{i=1}^{\log \log R} n \log (2^{i}) = n \sum_{i=1}^{\log \log R} 2^{i} = O(n \log^{2} R)$
 $2^{i} \ge R$ $i \ge \log \log R$
 $\sum_{i=1}^{\log \log R} 2^{i} = O(n \log^{2} R)$

CS 763	F22	Lecture 5: More on Convex Hulls	A. Lubiw, U. Waterloo
Wh	at's next?		
-	definitions o	of convex hull in any dimension, and more a	bout convex polyhedra
-	divide and c	conquer for convex hull in 3D	
	randomized	algorithm for convex hull in any dimension	
		• • • •	

CS763-Lecture5

CS 763 F22	Lecture 5: More on Convex Hulls	A. Lubiw, U. Waterloo
Equivalence of	1 and 2 is proved using some version of Fa	arkas's Lemma
either p is OR	a convex combination of points of S	
there is a AND NOT	plane separating p from S BOTH	
This is a fundar	mental result for Linear Programming.	ps://en.wikipedia.org/wiki/Farkas%27_lemma
762 Looturo 5		

1. intersection	of all half-spaces containing S
2. all <i>convex c</i>	combinations of points in S
3. A convex po all points of	olyhedron P (polygon in 2D) with vertices from S and such that S are inside P
A convex polyhe	<i>edron</i> (in dimension <i>d</i>) is a bounded intersection of half-spaces
$\{x\in \mathbb{R}^d:$	$Ax \leq b\}, \ A = m imes d ext{ matrix}, b = m ext{ vector}$
Caution: the te different areas	erm "polyhedron" means different things in (convex/non-convex, bounded/unbounded)
A polyhedron h	has vertices, edges, faces,
	2D

Lecture 5: More on Convex Hulls

CS 763 F22

A. Lubiw, U. Waterloo

CS 763 F22	Lecture 5: More on Convex Hulls	A. Lubiw, U. Waterloo
Equivalent definiti	ions of <i>Convex Hull</i> of a set of points S	
1. intersection	of all half-spaces containing S	
2. all convex co	ombinations of points in S	
3. A <i>convex pol</i> all points of s	<i>lyhedron</i> P (polygon in 2D) with vertices fro S are inside P	om S and such that
Equivalence of Theorem [Mink bounded conve	these definitions proved using: <owski, all="" combi<br="" convex="" of="" set="" the="" weyl]="">ex polyhedron whose vertices are a subset</owski,>	inations of p1, , pn is a

