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Polyhedra

A polyhedron consists of a finite connected set of (plane) polygons called faces 
such that

  1. if two faces intersect it is only at a common vertex or edge

  2. every edge of every face is an edge of exactly one other face

  3. the faces surrounding each vertex form a single circuit

https://en.wikipedia.org/wiki/Polyhedron

https://tinyurl.com/yy5tt439

https://doc.cgal.org/latest/Polyhedron/index.html

Recall
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A polyhedron consists of a finite connected set of (plane) polygons called faces 
such that
  1. if two faces intersect it is only at a common vertex or edge
  2. every edge of every face is an edge of exactly one other face
  3. the faces surrounding each vertex form a single circuit

NOT Polyhedra

Mesh Materializer

Klein bottle

terrain

Recall
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Polyhedra

icosahedral die, Roman, 2nd centurydice, Pompei, 1st century
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Polyhedra

cuboctahedron polycrystalline morphologyPentagonal
orthocupolarotunda

Platonic solids
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Lord Kelvin’s Bubble Problem

Weaire-Phelan structure, 1993

tetrakaidecahedron irregular dodecahedron

Kelvin structure, 1887
 (truncated octahedra)

Gabrielli's structure, 2009

2008 Beijing Olympics

Cells of equal volume with minimum surface area

https://en.wikipedia.org/wiki/Weaire–Phelan_structure
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Non-convex Polyhedra
convex

non-convex

David Eppstein

implement this technique, sufficient conditions for obtaining
a valid crease pattern are investigated. It is shown that the
conditions are represented by nonlinear equations and
inequalities.

1.4.2 Mapping and Edge Splitting

In this study, a novel algorithm has been developed to solve
the aforementioned conditions. The algorithm is based on
two-step mapping and edge splitting.

The first step of mapping fixes the rotations of the
polygons. This converts nonlinear equations into linear
equations, which are then precalculated. Under these
precalculated linear equations, the remaining inequalities
are solved by an iterative method. The precalculation
enables a fast computation for each iterative step, which
also allows a real-time human interaction.

Edge splitting is a recursively applicable procedure that
locally changes the crease pattern without changing the
original surface. This procedure decreases the number of
conditions to be solved. Mapping is performed under these
relaxed conditions, following which edge splitting is
performed recursively on the given pattern.

1.4.3 Interactive Design System
Our algorithm was implemented as an interactive system
for origami design. The system automatically generates a
crease pattern from an input polyhedral surface while
allowing users to edit the topology of the three-dimensional
mesh and modify the resulting crease pattern. These tools
are designed to be consistent with the required disk
topology and the conditions for origamization.

2 METHOD OVERVIEW

2.1 Description of the Problem

In this paper, the origamization of a polyhedral surface is
defined as obtaining a crease pattern of origami that
constructs a polyhedral surface with hidden tucks, instead
of constructing only the exact surface.

Let S and V ð" SÞ denote a set of all points on the given
polyhedral surface and the solid enclosed by S, respec-
tively. Then, the goal is to create the crease pattern on a
planar convex polygon P so that the folded state F ðP Þ is
contained in V and S is contained in F ðP Þ. S can be an
orientable manifold with a boundary that does not
completely enclose a volume, in which case V is given to
indicate a finite region hidden behind S.

Note that the planar convex polygon P can be obviously
folded from a square containing P by folding and hiding
the unnecessary area behind. The minimum size of such a
square paper is used when measuring the efficiency of the
model (Section 9.2.3).

2.2 Procedure

2.2.1 Cutting to a Disk
The first step toward origamizing a surface not home-
omorphic to a disk is to construct a polygonal schema,
which is a polyhedral surface homeomorphic to a disk that
covers the original surface. A polygonal schema is
represented by cutlines along the edges of the surface
which correspond to the boundary of the disk. Several
algorithms are proposed to obtain “nice” polygonal
schemata [31], [32], [33], and in the system proposed, a
combination of flooding and modification by the user is
adopted, as discussed later in Section 8.1.

2.2.2 Mapping Surface Polygons
The next major step is to separate individual polygons of the
given polyhedral mesh and map each of them congruently
on a plane. The problem here is to obtain a folding that folds
the mapped polygons properly back to S and the gap
between the polygons to V nS. The shape of the gap, defined
by the layout of the polygons, determines whether such a
folding is possible or not, the conditions on which are
investigated in Section 4. The layout is determined by
solving these conditions, as shown in Section 6.

2.2.3 Generating a Crease Pattern

In order to tuck fold the gap to make it completely hidden
behind the surface, the gap is subdivided into simple
polygons with crease patterns termed as tucking molecules,
as described in Section 3. The crease pattern on a tucking
molecule is created such that it “glues” separated vertices or

300 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. 2, MARCH/APRIL 2010

Fig. 1. (a) Desired polyhedral model (Stanford Bunny) and the created
crease pattern. (b) World’s first origami Stanford Bunny.

Fig. 2. Origamization is achieved by creating a crease pattern
representing F ðP Þ such that F ðP Þ $ V and F ðP Þ " S. The convex
polygon P can be further folded from a square.

Tomohiro Tachi

Figure 6: Adding cubes to Fig. 2.

Figure 7: An orthogonal polygon that folds to the nonorthogonal polyhedron in
Fig. 6.

6

Donoso & O’Rourke
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Unfolding Polyhedra—Durer 1400’s

Durer, 1498
snub cube

Maybe later in the course we will talk about unfolding polyhedra.  

CS763-Lecture4 7 of 24



CS 763  F22 A. Lubiw, U. WaterlooLecture 4: Partitioning Polyhedra + Convex Hulls

A tetrahedron is a polyhedron with 4 triangular faces.  (aka a simplex)

To tetrahedralize a polyhedron means to partition its interior into disjoint tetrahedra 
whose vertices are vertices of the polyhedron.

A polyhedron consists of a finite connected set of (plane) polygons called faces 
such that

  1. if two faces intersect it is only at a common vertex or edge

  2. every edge of every face is an edge of exactly one other face

  3. the faces surrounding each vertex form a single circuit
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Not all polyhedra can be tetrahedralized

Schönhardt 1928

triangular prism with top face twisted,
produces reflex edge in each 
rectangular face

why no tetrahedralization?

A
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C
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0

B
0

C
0
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B
C

A
0

B
0

C
0

Figure 1: Examples of banded surfaces without Steiner points for two triangles P and P
0. (a) To construct

P and P
0, start with a triangular prism based on equilateral triangle P = ABC, and then rotate the top

triangle to obtain P
0 = A

0
B

0
C

0. (b) The Schönhardt polyhedron is a banded surface formed by bending each
original rectangular face inward to form two triangles, using the “right” chords AB

0, BC
0, CA

0. (c) Using
the outward or “left” chords, AC

0, CB
0, BA

0 also yields a banded surface (an antiprism when P
0 is rotated

by 60�). (d) An example of a triangulated surface that is not banded due to the lack of a path from A to A
0

disjoint from BB
0 and CC

0.

to X. (The fact that these cones do not self-intersect is proved in [9].) The condition that the surface is
monotone means that the surface provides a morph from P to P

0, specifically, take P t, for t 2 [0, 1] to be the
intersection of the surface with the plane z = t. Our condition on vertex disjoint paths means that edges of
the polygon are maintained throughout this morph in the sense that an edge may become a polygonal path
in P

t, but it never collapses to a point.
The best bound we know on the number of Steiner points required for a banded surface is O(n2). For

most of our results we concentrate on the case where no Steiner points are allowed. Understanding this case
may lead to more general solutions where we design S in layers using intermediate polygons (made of Steiner
points) at a succession of z values, and build surfaces without additional Steiner points between successive
layers.

When no Steiner points are allowed we must use the edges (pi, p0i), and our only choice is how to triangulate
each quadrilateral pi, pi+1, p

0
i+1, p

0
i. There are two possible chords for each quadrilateral: the right chord

(pi, p0i+1) or the left chord (pi+1, p
0
i). The di↵erence between these two choices can be seen in Figure 1(b)

and (c), and also in Figure 2. An example of two triangles with no banded surface is shown in Figure 3(a).

Our Results. We prove the following:

1. For P and P
0 on n vertices, there exists a banded surface with O(n2) Steiner points.

2. There is a polynomial time algorithm (using 2-SAT) to decide the banded surface reconstruction
problem when no Steiner points are allowed.

3. The existence of a banded surface without Steiner points is preserved by translating P
0.

4. If P and P
0 are convex and the linear morph from P to P

0 preserves planarity (these terms are defined
below) then there is a banded surface without Steiner points between P and P

0. This no longer holds
if P and P

0 are non-convex.

5. In the other direction, the existence of a banded surface without Steiner points does not imply that
the linear morph preserves planarity, not even when P and P

0 are triangles. See Figure 3(b).

2

On the difficulty of triangulating three-dimensional nonconvex polyhedra 
J Ruppert, R Seidel - Discrete & Computational Geometry, 1992 - Springer
A number of different polyhedral decomposition problems have previously been studied, 
most notably the problem of triangulating a simple polygon. We are concerned with the 
polyhedron triangulation problem: decomposing a three-dimensional polyhedron into a set …

https://doi.org/10.1007/BF02187840
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The number of tetrahedra in a tetrahedralization is not unique

Example:

Exercise:  Show that a cube can be cut into 5 tetrahedra and into 6 tetrahedra.

There are examples where number of tetra. can be 

CS763-Lecture4 10 of 24
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Using Steiner points to partition a polyhedron into tetrahedra

Note: the output is no longer combinatorial — we need coordinates for Steiner points

Determining the min number of Steiner points for a given polyhedron is NP-hard.

Determining the minimum number of tetrahedra for a given polyhedron is NP-hard.
Even for convex polyhedra! (where min. number of Steiner points is 0)

Can adding Steiner points reduce the number of tetrahedra?  Yes.
 
Exercise: Find an example.  

Explore efficient algorithms to approximate the min number of Steiner points or 
tetrahedra to within some guaranteed ratio.

Minimal simplicial dissections and triangulations of convex 3-polytopes
A Below, U Brehm, JA De Loera… - Discrete & Computational …, 2000 - Springer

The complexity of finding small triangulations of convex 3-polytopes
A Below, JA De Loera, J Richter-Gebert - Journal of Algorithms, 2004 - Elsevier

https://link.springer.com/content/pdf/10.1007/s004540010058.pdf

https://doi.org/10.1016/S0196-6774(03)00092-0
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Fig. 1. Top: A saddle surface (a hyperbolic paraboloid). Bottom: The Chazelle
polyhedron [6] with three notches, i.e., N = 2, on the top and the bottom faces,
respectively.

makes this problem harder than the original convex decomposi-
tion problem that has been studied before [11]. This requirement
stems from a crucial step in finite element mesh generation—
the boundary recovery problem [18–20,16], in which a given set
of constraints (edges or faces) must be entirely preserved in the
final meshes. Such constraints are required in various purposes,
such as to assign boundary conditions, to access the geometric
information, to match another partition sharing at the common
interface, to generate anisotropic meshes (whose elements are
aligned along certain directions), etc.

A classical method to handle this problem is to start with an
initial tetrahedralisation, like the Delaunay tetrahedralisation, of
the vertices of the polyhedron, and then to recover the missing
constraints by locally modifying the mesh through a set of local
mesh transformation operations, such as edge and face flips, vertex
insertion and deletion. All these operations take an input of a cavity
which is a 3d polyhedron formed by the union of a set of existing
tetrahedra and return a set of new tetrahedra that fills the interior
of the cavity without modifying its outer boundary. The shape of
the cavity is a 3d polyhedron which is not necessarily convex. In
many cases, the presented cavity has a simple shape so that a
missing constraint can be easily recovered by only performing flips.
However, if a cavity is an indecomposable polyhedron, interior
Steiner points are needed in order to complete the tetrahedrali-
sation process.

Since it is difficult to detectwhether a cavity is tetrahedralisable
in advance, many heuristics methods are developed. Most of the
approaches first try using flips asmuch as possible, then try adding
Steiner points [18], or interchange these two operations [19,20,16].
In practice, all these approaches worked very well. However, it is

not surprising that they may fail unexpectedly on some special
inputs.

A theoretical difficulty in these algorithms is due to the fact that
there is a lack of knowledge about the geometry and combinatorial
structures of the whole family of 3d indecomposable polyhedra.
There are only few works [21–23,8,9] on these topics. In [4], we
proved the optimal number of interior Steiner points for some 3d
indecomposable polyhedrawhose geometric structures are under-
stood, such as the Schönhardt polyhedron, Bagemihl polyhedron,
and a more general class of them. This result provides useful
suggestion to design correct and efficient algorithms to tetrahe-
dralise such polyhedra. However, the geometry and combinatorial
structures of 3d indecomposable polyhedra are largely unknown.
Therefore, it is meaningful to consider these answers for some
specific types of indecomposable polyhedra, such as the Chazelle
polyhedra. Our goal is to gain knowledge of 3d indecomposable
polyhedra by understanding how to decompose Chazelle polyhe-
dra.

The remainder of this paper is organised as follows: In Sec-
tion 2 we briefly review the construction of the Chazelle poly-
hedron, and discuss its basic properties. In Section 3 we perform
a polyhedral reduction of the Chazelle polyhedron by removing
polyhedra which can be tetrahedralised. This leads to a 3d in-
decomposable polyhedron, which will be defined as the reduced
Chazelle polyhedron �N," with the two parameters N and ". We
then study how to tetrahedralise the reduced Chazelle polyhedron
by placing only interior Steiner points in Section 4. We first place
a set of N2 interior Steiner points in the interior of a reduced
Chazelle polyhedron �N," , and then we prove that there exists a
tetrahedralisation of �N," with this set of Steiner points. There is
a correspondence between a sequence of edge flips and a tetrahe-
dralisation of a 3d polyhedron. This allows us to transform our 3d
tetrahedralisation problem into a 2d triangulation transformation
problem. A difficulty is due to the non-convexity of the reduced
Chazelle polyhedron. We show that every edge flip generated by
our transformation algorithm corresponds to a valid tetrahedron
in �N," . Finally, we discuss some open issues in Section 6.

2. The chazelle polyhedron

The essential geometry of a Chazelle polyhedron is a saddle
surface, which is a hyperbolic paraboloid, specified by the equation
z = x2 � y2 or z = xy, see Fig. 1 Top. It is a doubly ruled surface
which means that it can be made by two different sets of lines.

The Chazelle polyhedron is constructed by cutting notches from
the twoopposite faces of a cube, see Fig. 1 Bottom. Place the bottom
face of the cube in the xy-plane and aligning its edges with the
x- and y-axis. Call the notches on top and bottom of the cube top
notches and bottomnotches, respectively. Let all the bottomnotches
be parallel to the y-axis and lie on the saddle surface z = xy,
and let all the top notches be parallel to the x-axis and lie on the
saddle surface z = xy + ", for a small positive constant " > 0. In
general, theremay be an arbitrary number of notches. This leads to
a family of such polyhedra which are parametrised by the number
of notches N and the thickness ".

Assume there are N +1 notches on each face of the cube, where
N � 1. Label the vertices of the top and bottomnotches as: ai, bi,↵i,
and �i, where i = 0, . . . ,N , respectively (see Fig. 1 Right). A choice
of the coordinates of these vertices given by Chazelle is:

ai := (�1, i, �i),
bi := (N + 1, i, i(N + 1)),
↵i := (i, �1, �i + "),
�i := (i,N + 1, i(N + 1) + "),

for integers 0  i  N . Therefore, the length of the top and bottom
faces of the cube is N +2. The lower face of the cube lies below the

Cut wedges from a cube so they
almost meet in the middle, and their lines form a hyperbolic paraboloid.
The lines cut the hyperbolic paraboloid into Theta(n 2 ) pieces, pairwise 
invisible, so Omega(n 2 ) convex pieces are needed in any partition.

CS 763  F22 A. Lubiw, U. WaterlooLecture 4: Partitioning Polyhedra + Convex Hulls

Using Steiner points to partition a polyhedron into tetrahedra

a lower bound:
There are polyhedra that require Omega(n 2 ) Steiner points even to partition into 
convex pieces.  Chazelle, 1980’s.

Hang Si & Nadja Goerigk

Convex partitions of polyhedra: a lower bound and worst-case optimal algorithm
B Chazelle - SIAM Journal on Computing, 1984 - SIAM
The problem of partitioning a polyhedron into a minimum number of convex pieces is known 
to be NP-hard. We establish here a quadratic lower bound on the complexity of this problem, 
and we describe an algorithm that produces a number of convex parts within a constant …
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Fig. 1. Top: A saddle surface (a hyperbolic paraboloid). Bottom: The Chazelle
polyhedron [6] with three notches, i.e., N = 2, on the top and the bottom faces,
respectively.

makes this problem harder than the original convex decomposi-
tion problem that has been studied before [11]. This requirement
stems from a crucial step in finite element mesh generation—
the boundary recovery problem [18–20,16], in which a given set
of constraints (edges or faces) must be entirely preserved in the
final meshes. Such constraints are required in various purposes,
such as to assign boundary conditions, to access the geometric
information, to match another partition sharing at the common
interface, to generate anisotropic meshes (whose elements are
aligned along certain directions), etc.

A classical method to handle this problem is to start with an
initial tetrahedralisation, like the Delaunay tetrahedralisation, of
the vertices of the polyhedron, and then to recover the missing
constraints by locally modifying the mesh through a set of local
mesh transformation operations, such as edge and face flips, vertex
insertion and deletion. All these operations take an input of a cavity
which is a 3d polyhedron formed by the union of a set of existing
tetrahedra and return a set of new tetrahedra that fills the interior
of the cavity without modifying its outer boundary. The shape of
the cavity is a 3d polyhedron which is not necessarily convex. In
many cases, the presented cavity has a simple shape so that a
missing constraint can be easily recovered by only performing flips.
However, if a cavity is an indecomposable polyhedron, interior
Steiner points are needed in order to complete the tetrahedrali-
sation process.

Since it is difficult to detectwhether a cavity is tetrahedralisable
in advance, many heuristics methods are developed. Most of the
approaches first try using flips asmuch as possible, then try adding
Steiner points [18], or interchange these two operations [19,20,16].
In practice, all these approaches worked very well. However, it is

not surprising that they may fail unexpectedly on some special
inputs.

A theoretical difficulty in these algorithms is due to the fact that
there is a lack of knowledge about the geometry and combinatorial
structures of the whole family of 3d indecomposable polyhedra.
There are only few works [21–23,8,9] on these topics. In [4], we
proved the optimal number of interior Steiner points for some 3d
indecomposable polyhedrawhose geometric structures are under-
stood, such as the Schönhardt polyhedron, Bagemihl polyhedron,
and a more general class of them. This result provides useful
suggestion to design correct and efficient algorithms to tetrahe-
dralise such polyhedra. However, the geometry and combinatorial
structures of 3d indecomposable polyhedra are largely unknown.
Therefore, it is meaningful to consider these answers for some
specific types of indecomposable polyhedra, such as the Chazelle
polyhedra. Our goal is to gain knowledge of 3d indecomposable
polyhedra by understanding how to decompose Chazelle polyhe-
dra.

The remainder of this paper is organised as follows: In Sec-
tion 2 we briefly review the construction of the Chazelle poly-
hedron, and discuss its basic properties. In Section 3 we perform
a polyhedral reduction of the Chazelle polyhedron by removing
polyhedra which can be tetrahedralised. This leads to a 3d in-
decomposable polyhedron, which will be defined as the reduced
Chazelle polyhedron �N," with the two parameters N and ". We
then study how to tetrahedralise the reduced Chazelle polyhedron
by placing only interior Steiner points in Section 4. We first place
a set of N2 interior Steiner points in the interior of a reduced
Chazelle polyhedron �N," , and then we prove that there exists a
tetrahedralisation of �N," with this set of Steiner points. There is
a correspondence between a sequence of edge flips and a tetrahe-
dralisation of a 3d polyhedron. This allows us to transform our 3d
tetrahedralisation problem into a 2d triangulation transformation
problem. A difficulty is due to the non-convexity of the reduced
Chazelle polyhedron. We show that every edge flip generated by
our transformation algorithm corresponds to a valid tetrahedron
in �N," . Finally, we discuss some open issues in Section 6.

2. The chazelle polyhedron

The essential geometry of a Chazelle polyhedron is a saddle
surface, which is a hyperbolic paraboloid, specified by the equation
z = x2 � y2 or z = xy, see Fig. 1 Top. It is a doubly ruled surface
which means that it can be made by two different sets of lines.

The Chazelle polyhedron is constructed by cutting notches from
the twoopposite faces of a cube, see Fig. 1 Bottom. Place the bottom
face of the cube in the xy-plane and aligning its edges with the
x- and y-axis. Call the notches on top and bottom of the cube top
notches and bottomnotches, respectively. Let all the bottomnotches
be parallel to the y-axis and lie on the saddle surface z = xy,
and let all the top notches be parallel to the x-axis and lie on the
saddle surface z = xy + ", for a small positive constant " > 0. In
general, theremay be an arbitrary number of notches. This leads to
a family of such polyhedra which are parametrised by the number
of notches N and the thickness ".

Assume there are N +1 notches on each face of the cube, where
N � 1. Label the vertices of the top and bottomnotches as: ai, bi,↵i,
and �i, where i = 0, . . . ,N , respectively (see Fig. 1 Right). A choice
of the coordinates of these vertices given by Chazelle is:

ai := (�1, i, �i),
bi := (N + 1, i, i(N + 1)),
↵i := (i, �1, �i + "),
�i := (i,N + 1, i(N + 1) + "),

for integers 0  i  N . Therefore, the length of the top and bottom
faces of the cube is N +2. The lower face of the cube lies below the

Chazelle

https://doi.org/10.1137/0213031
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a positive result:
Any polyhedron can be partitioned into O(n 2 ) tetrahedra using O(n 2 ) Steiner 
points.
Bern and Eppstein, “Mesh generation and optimal triangulation”, 1995

Idea — a bit like trapezoidization: 
- from each edge of the polyhedron, extend a vertical wall up and down.
- pieces are “generalized prisms”

- this gives O(n 2 ) pieces
- then tetrahedralize these pieces:
    - cut into triangular prisms by triangulating the top and bottom the same way
    - then add one Steiner point in each, making sure that tetrahedra match face-to-face

- vertical sides (each is a trapezoid)
- one top face, one bottom face
  (not necessarily parallel)

CS763-Lecture4 13 of 24
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Meshing piecewise linear complexes by constrained Delaunay tetrahedralizations
H Si, K Gärtner - Proceedings of the 14th international meshing …, 2005 - Springer
We present a method to decompose an arbitrary 3D piecewise linear complex (PLC) into a 
constrained Delaunay tetrahedralization (CDT). 

an approach from meshing (uses Delauany tetrehedralization, which we’ll cover 
later on)

https://doi.org/10.1007/3-540-29090-7_9
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Given points in d-dimensional space, find a good “container” = convex polytope.
Many applications, e.g. collision detection, pattern recognition, motion planning . . . 

In 2D, imagine putting a 
rubber band around the points In 3D, wrap with shrink-wrap

More formally:

In 2D, the convex hull of a set of points S is a convex polygon P with vertices in S
such that every point of S lies inside.
(definition in 3D and higher later on)

https://brilliant.org/wiki/convex-hull/
Newton Collision Convex Hull

NEW TOPIC: Convex Hulls
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Convex Hull Algorithms in 2D

Almost any algorithmic paradigm will work, so this problem is a great one for 
Algorithms courses.  See [Zurich notes, Chapter 4]. 

Incremental Algorithm — add points one by one in sorted order by x coordinate

Example
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Incremental Algorithm — add points one by one in sorted order by x coordinate

general situation

We have:
- Hi -1 = CH( p1, . . , pi -1 ) 

      as a doubly linked list
- pi -1 is a vertex of Hi -1

We want:
- add pi  to get Hi  
-  pi  is joined to:
    pu  by upper bridge
    pl  by lower bridge
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Incremental Algorithm — add points one by one in sorted order by x coordinate

- starting from pi -1 scan forward (clockwise) to find pl  

- starting from pi -1 scan backward (counterclockwise) to find pu   

invariant: the line segment from pi  to the current vertex is outside the CH
(true initially for line segment  pi pi -1 )

How to stop the scan 

currently at pr
next vertex is ps
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Run time

Adding one point 

Amortized analysis
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Graham’s Algorithm

Another sorting-base approach.  
1. Sort the points radially around some point X inside the convex hull.

To find X:

To sort the points radially around X:

Runtime: 

2.
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Divide and Conquer Algorithm

Divide the points in two by a vertical line (easy if we sort by x coordinate).
Recurse on each side.
Then combine the two sides.
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Runtime

Divide and Conquer Algorithm
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Lower Bound

There is an Omega(n log n) lower bound on computing the ordered convex hull 
in 2D on a RAM (Random Access Machine) with +,-,x.

Proof.  Reduce sorting to finding the convex hull. 

Note: even finding the (unsorted) CH vertices takes n log n (needs different proof)

input points we 
want to sort
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Summary

- partitioning polyhedra

- algorithms for convex hull in the plane

References

- [Handbook]  Chapter 30 for partitioning

For convex hulls:

- [CGAA] Section 1.1

- [Zurich notes] Chapter 4

- [O’Rourke] Chapter 3
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