CS 763 F22 Lecture 4: Partitioning Polyhedra + Convex Hulls A. Lubiw, U. Waterloo

Recall

Polyhedra
A polyhedron consists of a finite connected set of (plane) polygons called faces such that

1. if two faces intersect it is only at a common vertex or edge
2. every edge of every face is an edge of exactly one other face
3. the faces surrounding each vertex form a single circuit

W https://en.wikipedia.org/wiki/Polyhedron

https://doc.cgal.org/latest/Polyhedron/index.html

FINXL https://tinyurl.com/yy $5 \mathrm{tt439}$

CS 763 F22 Lecture 4: Partitioning Polyhedra + Convex Hulls A. Lubiw, U. Waterloo

Recall

A polyhedron consists of a finite connected set of (plane) polygons called faces such that

1. if two faces intersect it is only at a common vertex or edge
2. every edge of every face is an edge of exactly one other face
3. the faces surrounding each vertex form a single circuit

NOT Polyhedra

Mesh Materializer

Polyhedra

dice, Pompei, 1st century

Polyhedra

Platonic solids

Tetrahedron

Dodecahedron

cuboctahedron

Pentagonal orthocupolarotunda

polycrystalline morphology

Lord Kelvin's Bubble Problem

m $2 D$ $+H^{x}$ not

Cells of equal volume with minimum surface area

Kelvin structure, 1887
(truncated octahedra)

Gabrielli's structure, 2009

Weaire-Phelan structure, 1993
w https://en.wikipedia.org/wiki/Weaire-Phelan_structure

2008 Beijing Olympics

CS 763 F22 Lecture 4: Partitioning Polyhedra + Convex Hulls A. Lubiw, U. Waterloo Non-convex Polyhedra non-convex
convex

Tomohiro Tachi

David Eppstein

Donoso \& O'Rourke

CS 763 F22 Lecture 4: Partitioning Polyhedra + Convex Hulls A. Lubiw, U. Waterloo

Maybe later in the course we will talk about unfolding polyhedra.
Unfolding Polyhedra—Durer 1400's

Durer, 1498

CS 763 F22 Lecture 4: Partitioning Polyhedra + Convex Hulls A. Lubiw, U. Waterloo

A polyhedron consists of a finite connected set of (plane) polygons called faces such that

1. if two faces intersect it is only at a common vertex or edge
2. every edge of every face is an edge of exactly one other face
3. the faces surrounding each vertex form a single circuit

A tetrahedron is a polyhedron with 4 triangular faces. (aka a simplex)

To tetrahedralize a polyhedron means to partition its interior into disjoint tetrahedra whose vertices are vertices of the polyhedron.

CS 763 F22 Lecture 4: Partitioning Polyhedral + Convex Hulls

Not all polyhedra can be tetrahedralized

Schönhardt 1928

triangular prism with top face twisted, produces reflex edge in each rectangular face
why no tetrahedralization?
there is no single tetrahedron each vertex rules out one other

we need 4 "independent" vertices.
But no such set.
$N T^{2}$-hard to test if a polyhedron can be tetrahedralized:
On the difficulty of triangulating three-dimensional nonconvex polyhedra
J Ruppert, R Seidel - Discrete \& Computational Geometry, 1992 -Springer d https://doi.org/10.1007/BF02187840
A number of different polyhedral decomposition problems have previously been studied,
most notably the problem of triangulating a simple polygon. We are concerned with the
polyhedron triangulation problem: decomposing a three-dimensional polyhedron into a set ..

CS 763 F22 Lecture 4: Partitioning Polyhedral + Convex Hulls
A. Lubiw, U. Waterloo

The number of tetrahedra in a tetrahedralization is not unique
Example:

use spine ul

Exercise: Show that a cube can be cut into 5 tetrahedra and into 6 tetrahedra.
There are examples where number of tetra. can be $2 n-7$ or $\binom{n-2}{2}$

Using Steiner points to partition a polyhedron into tetrahedra

Note: the output is no longer combinatorial - we need coordinates for Steiner points
Determining the min number of Steiner points for a given polyhedron is NP-hard.
Determining the minimum number of tetrahedra for a given polyhedron is NP-hard. Even for convex polyhedra! (where min. number of Steiner points is 0)

```
# https://link.springer.com/content/pdf/10.1007/s004540010058.pdf
Minimal simplicial dissections and triangulations of convex 3-polytopes
A Below, U Brehm, JA De Loera... - Discrete & Computational ..., 2000 - Springer
d https://doi.org/10.1016/S0196-6774(03)00092-0
The complexity of finding small triangulations of convex 3-polytopes
A Below, JA De Loera, J Richter-Gebert - Journal of Algorithms, 2004 - Elsevier
```

Can adding Steiner points reduce the number of tetrahedra? Yes.
Exercise: Find an example.

Explore efficient algorithms to approximate the min number of Steiner points or tetrahedra to within some guaranteed ratio.

Using Steiner points to partition a polyhedron into tetrahedra

a lower bound:
There are polyhedra that require Omega $\left(n^{2}\right)$ Steiner points even to partition into convex pieces. Chazelle, 1980's.

Chazelle

Hang Si \& Nadja Goerigk
Cut wedges from a cube so they almost meet in the middle, and their lines form a hyperbolic paraboloid. The lines cut the hyperbolic paraboloid into Theta $\left(n^{2}\right)$ pieces, pairwise invisible, so Omega $\left(n^{2}\right)$ convex pieces are needed in any partition.

CS 763 F22 Lecture 4: Partitioning Polyhedra + Convex Hulls A. Lubiw, U. Waterloo
a positive result:
Any polyhedron can be partitioned into $\mathrm{O}\left(n^{2}\right)$ tetrahedra using $\mathrm{O}\left(n^{2}\right)$ Steiner points.

Bern and Eppstein, "Mesh generation and optimal triangulation", 1995
Idea - a bit like trapezoidization:

- from each edge of the polyhedron, extend a vertical wall up and down.
- pieces are "generalized prisms"

- vertical sides (each is a trapezoid)
- one top face, one bottom face (not necessarily parallel)
- this gives $\mathrm{O}\left(n^{2}\right)$ pieces
- then tetrahedralize these pieces:
- cut into triangular prisms by triangulating the top and bottom the same way
- then add one Steiner point in each, making sure that tetrahedra match face-to-face

CS 763 F22 Lecture 4: Partitioning Polyhedra + Convex Hulls A. Lubiw, U. Waterloo
an approach from meshing (uses Delauany tetrehedralization, which we'll cover later on)
d https://doi.org/10.1007/3-540-29090-7_9
Meshing_piecewise linear complexes by constrained Delaunay tetrahedralizations
H Si, K Gärtner - Proceedings of the 14th international meshing ..., 2005-Springer
We present a method to decompose an arbitrary 3D piecewise linear complex (PLC) into a
constrained Delaunay tetrahedralization (CDT).

CS 763 F22 Lecture 4: Partitioning Polyhedra + Convex Hulls A. Lubiw, U. Waterloo

NEW TOPIC: Convex Hulls

Given points in d-dimensional space, find a good "container" = convex polytope. Many applications, e.g. collision detection, pattern recognition, motion planning . . .

In 2D, imagine putting a rubber band around the points

https://brilliant.org/wiki/convex-hull/

In 3D, wrap with shrink-wrap

Newton Collision Convex Hull

More formally:
In 2D, the convex hull of a set of points S is a convex polygon P with vertices in S such that every point of S lies inside.
(definition in 3D and higher later on)

CS 763 F22 Lecture 4: Partitioning Polyhedra + Convex Hulls A. Lubiw, U. Waterloo

Convex Hull Algorithms in 2D

Almost any algorithmic paradigm will work, so this problem is a great one for Algorithms courses. See [Zurich notes, Chapter 4].

Incremental Algorithm - add points one by one in sorted order by x coordinate

Example

CS 763 F22 Lecture 4: Partitioning Polyhedra + Convex Hulls A. Lubiw, U. Waterloo

Incremental Algorithm - add points one by one in sorted order by x coordinate general situation

We have:
$-H_{i-1}=\mathrm{CH}\left(p_{1}, \ldots, p_{i-1}\right)$ as a doubly linked list

- p_{i-1} is a vertex of H_{i-1}

We want:

- add p_{i} to get H_{i}
- p_{i} is joined to:
p_{u} by upper bridge p, by lower bridge

CS 763 F22 Lecture 4: Partitioning Polyhedral + Convex Hulls
A. Lubiw, U. Waterloo

Incremental Algorithm - add points one by one in sorted order by x coordinate

- starting from p_{i-1} scan forward (clockwise) to find p_{l}
- starting from p_{i-1} scan backward (counterclockwise) to find p_{u}
invariant: the line segment from p_{i} to the current vertex is outside the $\mathrm{CH}_{,}+\mathrm{l}_{i-1}$ (true initially for line segment $p_{i} p_{i-1}$)

How to stop the scan

2 possibilities for next vertex
currently at p_{r} next vertex is p_{s}

- if p_{s} is above line $p_{i} p_{r}$ then we have lower bridge

$$
P_{l} \leftarrow p_{r}
$$

- else scanmoves to Ps

Run time
Adding one point
can take $\theta(n)$
? bound is $\theta\left(n^{2}\right)$??

Amortized analysis
each input point is added once
and deleted at most once at O (1) cost
So total is $O(n)$.

+ sort $O(n \log n)$
final total $O(n \log n)$.

Graham's Algorithm
Another sorting-base approach.

1. Sort the points radially around some point X inside the convex hull.
2. Scan from p_{1} in clockwise order repeatedly remove 2 nd last point if it forms a reflex angle.

remove P, then remove q. then go on from
To find X : take average of then
To sort the points radially around x : use sidedness tests.
Runtime: $O(n \log n)+O(n)$
sort scan.

Divide and Conquer Algorithm
Divide the points in two by a vertical line (easy if we sort by x coordinate).
Recurse on each side.
Then combine the two sides.

EX 。

Show that taking max y on leftright does not always give upper bridge!

To combine
Find upper a lower bridges start with segment from max x on left to $\min x$ on right Walk up to get upper bridge " down ...lower " Time is O (\# points that are removed)
(simitar to incremental)

Divide and Conquer Algorithm
Runtime
Combine step $O(n)$

$$
\begin{array}{r}
\text { Sort } O(n \log n) \\
T(n)=2 T\left(\frac{n}{2}\right)+\operatorname{combine~step.} \\
T(n)=O(n \log n) \quad \begin{array}{r}
\text { coral from } \\
\\
\text { merge sort } \\
\text { or } \\
\text { induction }) \\
\text { indue by }
\end{array}
\end{array}
$$

Lower Bound
There is an Omega($n \log n$) lower bound on computing the ordered convex hull, in 2D on a RAM (Random Access Machine) with +,-,x. recall sorting is Ω (nlogn) on that model). i.e. the polygon

Proof. Reduce sorting to finding the convex hull.

Note: even finding the (unsorted) CH vertices takes $\mathrm{n} \log \mathrm{n}$ (needs different proof)

CS 763 F22 Lecture 4: Partitioning Polyhedra + Convex Hulls A. Lubiw, U. Waterloo

Summary

- partitioning polyhedra
- algorithms for convex hull in the plane

References

- [Handbook] Chapter 30 for partitioning

For convex hulls:

- [CGAA] Section 1.1
- [Zurich notes] Chapter 4
- [O'Rourke] Chapter 3

