CS 763 F22 Lecture 4: Partitioning Polyhedra + Convex Hulls  A. Lubiw, U. Waterloo

Recall
Polyhedra

A polyhedron consists of a finite connected set of (plane) polygons called faces
such that

1. if two faces intersect it is only at a common vertex or edge
2. every edge of every face is an edge of exactly one other face

3. the faces surrounding each vertex form a single circuit

W https://en.wikipedia.org/wiki/Polyhedron

POLYHEDRA

o https://doc.cgal.org/latest/Polyhedron/index.html

https://tinyurl.com/yy5tt439
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Recall
A polyhedron consists of a finite connected set of (plane) polygons called faces
such that
1. if two faces intersect it is only at a common vertex or edge
2. every edge of every face is an edge of exactly one other face y\é,f (X[(O e 0!&
3. the faces surrounding each vertex form a single circuit 7

NOT Polyhedra ‘L'—J
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cylinder cone sphere

Klein bottle

terrain

Mesh Materializer
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Polyhedra

dice, Pompei, 1st century icosahedral die, Roman, 2nd century
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Polyhedra

Platonic solids

Tetrahedron Octahedron Cube

Icosahedron Dodecahedron

Pentagonal
orthocupolarotunda

cuboctahedron polycrystalline morphology
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VT3 R ks
. REAR A AT
T Lord Kelvin’s Bubble Problem = : eS8
WA . . ; X+

iy Cells of equal volume with minimum surface area A et B S
N g t :

e Kelvin structure, 1887 Weaire-Phelan structure, 1993
R 0 (truncated Octahedra) W https:/en.wikipedia.org/wiki/Weaire—Phelan_structure

tetrakaidecahedron ;

~ &

Gabrielli's structure, 2009
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Non-convex Polyhedra non-convex

convex

Donoso & O’Rourke

CS763-Lectured 6 of 24
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Maybe later in the course we will talk about unfolding polyhedra.

Unfolding Polyhedra—Durer 1400’s

—

Durer, 1498

2

CS763-Lecture4

A. Lubiw, U. Waterloo
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A polyhedron consists of a finite connected set of (plane) polygons called faces
such that

1. if two faces intersect it is only at a common vertex or edge
2. every edge of every face is an edge of exactly one other face

3. the faces surrounding each vertex form a single circuit

A tetrahedron is a polyhedron with 4 triangular faces. (aka a simplex)

To tetrahedralize a polyhedron means to partition its interior into disjoint tetrahedra
whose vertices are vertices of the polyhedron.

CS763-Lectured 8 of 24
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Not all polyhedra can be tetrahedralized

Schénhardt 1928
why no tetrahedralization?

B o \ B +here 5 o é/g,@e,qt%mﬂ\e}/zgy\

o

&\_, . oach veiles, nodos ol ene o¥Ren
5 Ao »C'

C A % QAA

I
| - | C o
triangular prism with top face twisted,

[
produces reflex edge in each Wyeo VLQQO\ 4 ‘(Enolé/‘?ﬂ/\/\okfﬂ/\ﬂ? |

rectangular face UCNRN CoS -
c Bt no Sucll 2l -
N Aand. Holest i Poliednow. cam be tetalesralizeg -

On the difficulty of triangulating three-dimensional nonconvex polyhedra

J Ruppert, R Seidel - Discrete & Computational Geometry, 1992 - Springer
A number of different polyhedral decomposition problems have previously been studied,
most notably the problem of triangulating a simple polygon. We are concerned with the
polyhedron triangulation problem: decomposing a three-dimensional polyhedron into a set ...

d https://doi.org/10.1007/BF02187840
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The number of tetrahedra in a tetrahedralization is not unique

Example:
w
e
O
0o — . i) AL o ~ C
C
b b *
g
ﬁ W
AN w
IAS@@’F?% f C - C
wd

Exercise: Show that a cube can be cut into 5 tetrahedra and into 6 tetrahedra.

There are examples where number of tetra. canbe 2Y|-7/ oV~ (ﬂ£_2_>
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CS 763 F22 Lecture 4: Partitioning Polyhedra + Convex Hulls  A. Lubiw, U. Waterloo

Using Steiner points to partition a polyhedron into tetrahedra
Note: the output is no longer combinatorial — we need coordinates for Steiner points
Determining the min number of Steiner points for a given polyhedron is NP-hard.

Determining the minimum number of tetrahedra for a given polyhedron is NP-hard.
Even for convex polyhedra! (where min. number of Steiner points is 0)

= https:/link.springer.com/content/pdf/10.1007/s004540010058.pdf

Minimal simplicial dissections and triangulations of convex 3-polytopes
A Below, U Brehm, JA De Loera... - Discrete & Computational ..., 2000 - Springer

d https://doi.org/10.1016/S0196-6774(03)00092-0

The complexity of finding small triangulations of convex 3-polytopes
A Below, JA De Loera, J Richter-Gebert - Journal of Algorithms, 2004 - Elsevier

Can adding Steiner points reduce the number of tetrahedra? Yes.

Exercise: Find an example.

Explore efficient algorithms to approximate the min number of Steiner points or
tetrahedra to within some guaranteed ratio.

CS763-Lectured 11 of 24
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Using Steiner points to partition a polyhedron into tetrahedra

a lower bound:
There are polyhedra that require Omega(n 2) Steiner points even to partition into
convex pieces. Chazelle, 1980’s.

Chazelle

Hang Si & Nadja Goerigk

L
\

Cut wedges from a cube so they

almost meet in the middle, and their lines form a hyperbolic paraboloid.

The lines cut the hyperbolic paraboloid into Theta(n 2) pieces, pairwise

invisible, so Omega(n 2 ) convex pieces are needed in any partition.

d hitps://doi.org/10.1137/0213031

Convex partitions of polyhedra: a lower bound and worst-case optimal algorithm

B Chazelle - SIAM Journal on Computing, 1984 - SIAM

The problem of partitioning a polyhedron into a minimum number of convex pieces is known
to be NP-hard. We establish here a quadratic lower bound on the complexity of this problem,
and we describe an algorithm that produces a number of convex parts within a constant ...

CS763-Lectured 12 of 24
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a positive result:

Any polyhedron can be partitioned into O(n ?) tetrahedra using O(n ?) Steiner
points.

Bern and Eppstein, “Mesh generation and optimal triangulation”, 1995

ldea — a bit like trapezoidization:
- from each edge of the polyhedron, extend a vertical wall up and down.
- pieces are “generalized prisms”

- vertical sides (each is a trapezoid)
- one top face, one bottom face
(not necessarily parallel)

RN

- this gives O(n ?) pieces
- then tetrahedralize these pieces:
- cut into triangular prisms by triangulating the top and bottom the same way
- then add one Steiner point in each, making sure that tetrahedra match face-to-face

CS763-Lectured 13 of 24
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an approach from meshing (uses Delauany tetrehedralization, which we’ll cover
later on)

d https://doi.org/10.1007/3-540-29090-7_9

Meshing piecewise linear complexes by constrained Delaunay tetrahedralizations
H Si, K Gartner - Proceedings of the 14th international meshing ..., 2005 - Springer

We present a method to decompose an arbitrary 3D piecewise linear complex (PLC) into a
constrained Delaunay tetrahedralization (CDT).

CS763-Lectured 14 of 24
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NEW TOPIC: Convex Hulls

Given points in d-dimensional space, find a good “container” = convex polytope.
Many applications, e.g. collision detection, pattern recognition, motion planning . . .

In 2D, imagine putting a
rubber band around the points In 3D, wrap with shrink-wrap

Newton Collision Convex Hull

https://brilliant.org/wiki/convex-hull/

More formally: -

( - 5
In 2D, the convex hull of a set of points S is a convex polygon P with vertices in S
such that every point of S lies inside.
(definition in 3D and higher later on)

CS763-Lectured 15 of 24
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Convex Hull Algorithms in 2D

Almost any algorithmic paradigm will work, so this problem is a great one for
Algorithms courses. See [Zurich notes, Chapter 4].

Incremental Algorithm — add points one by one in sorted order by x coordinate

Example

CS763-Lectured 16 of 24
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Incremental Algorithm — add points one by one in sorted order by x coordinate

general situation

We have: We want:
-H._,=CH(py,..,p;j1) -adq p; 1o get H.
as a doubly linked list - p; is joined to:
- p;_¢is a vertex of H. , p, by upper bridge

p, by lower bridge

wrpes brfﬂfgﬁx

¢

L

Lovyen, [mio%&

P

CS763-Lectured 17 of 24
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Incremental Algorithm — add points one by one in sorted order by x coordinate

- starting from p; , scan forward (clockwise) to find p,
- starting from p; , scan backward (counterclockwise) to find p,,

invariant: the line segment from p; to the current vertex is outside the CH H
(true initially for line segment p;p; ;)

How to stop the scan

currently at p,
next vertex is p,

- 7 16 obove fine PP
o gt hose Lo wren b/urc’gg
?Z < P
—else scam wmoves o Ps

2 possi b ilihes
Sov hext U*U’#dx
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Run time
Adding one point o
C 2
Ut P CV\> ?zﬁ." =
7 c 2\ ¢ 7 o
* hound S @(meo $

each npal Poial 1S idded ence
wod deleded of wost swce af () GSt
50 W S 0 (n).
1+ St Oln fog n)
firngl H4fa2 O (v%aj "
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Graham’s Algorithm

Another sorting-base approach.
1. Sort the points radially around some point X inside the convex hull.

> Scam dow P (n odewrise arpen
r«a,?wkﬂtﬁﬁ Femore 200 ish
Joint (£ /FQ’TNV\g

A vedlosx ama@& ‘ 7

Tofindx: ke acerage of Hhew Jo on drew o
To sort the points radially around X: g o g;&L‘g/(ﬂ/v\ggg 4@% ,

Runtime: () (i ’Q% V\> + @(V\7

Sont Scan
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CS 763 F22 Lecture 4: Partitioning Polyhedra + Convex Hulls  A. Lubiw, U. Waterloo

Divide and Conquer Algorithm

Divide the points in two by a vertical line (easy if we sort by x coordinate).
Recurse on each side.
Then combine the two sides.

To combine
find uwppen & lewen bfu)ﬁza
Slant with §e¢6m&d/
drew WaxX L om L@:ﬁ'
b WM X m V\fg@%

EX. wWalk. L/L‘\?% T w en A
Show “Pﬁﬂd’«lﬂe‘uﬁ ‘. 36 | LT (gﬁ
X Y o lef /TRt Aowt — - louson

A0g5 ot av(wmyg Jlve “me 1S O (ﬁ\i ’{?ocw/\‘h HRaT ane
AP bnfdge s oved)

(éimia({ah “to ‘w\a\awx@v\«M>
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CS 763 F22 Lecture 4: Partitioning Polyhedra + Convex Hulls  A. Lubiw, U. Waterloo

Divide and Conquer Algorithm

Runtime
Combine slepy O (n)
Sert  Olndoy n) Combine slep

AN
T =2T(2)+ con

7Tl 1 (\F&CO&& LCwﬁ/\/\
| (VD 1 @GAX% ~) menge Sent
oR Prove b\/
Tnduest @91/\7 \
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CS 763 F22 Lecture 4: Partitioning Polyhedra + Convex Hulls  A. Lubiw, U. Waterloo

Lower Bound

There is an Omega(n log n) lower bound on computing the ordered convex hul
in 2D on a RAM (Random Access Machine) with +,-,x.

(recall Sevting is T2 (nlogn) en—tRat wmodel ). i m?b%ﬁm

Proof. Reduce sorting to finding the convex hull.

O potES o 2V conveox Aull
mop

2 7 (¢, 7C2‘7 Cbé;l
CQO"ML“

5

| ] ‘

l

/A 1
input points we o4 H__GL Ja

want to sort

Note: even finding the (unsorted) CH vertices takes n log n (needs different proof)
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CS 763 F22 Lecture 4: Partitioning Polyhedra + Convex Hulls  A. Lubiw, U. Waterloo

Summary
- partitioning polyhedra

- algorithms for convex hull in the plane

References
- [Handbook] Chapter 30 for partitioning
For convex hulls:
- [CGAA] Section 1.1
- [Zurich notes] Chapter 4

- [O’Rourke] Chapter 3
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