CS 763 F22 Lecture 3: Partitioning Polygons \& Polyhedra A. Lubiw, U. Waterloo

Recall

- every polygon can be triangulated
- there is an $\mathrm{O}(n \log n)$ algorithm to triangulate polygons and polygonal regions
- this is best possible for polygonal regions
- polygons can be triangulated in O(n) via Chazelle's hard algorithm

Optimizing Polygon Triangulations

We may have criteria to prefer one triangulation over another. For meshing, angles are often the main issue - more on this later.

Minimum Weight Triangulation ("minimum ink") - minimize the sum of the lengths of the chords used. (length = Euclidean length)

Polynomial Time Algorithm for Min Weight Triangulation of a Polygon (Klincsek 1980)

Idea: dynamic programming
Input: Polygon P on vertices 1, 2, ..., n
general steps for dynamic programming:

$$
\begin{aligned}
& \text { - what are subproblems } \\
& \text { - formula for solving a subproblems in terms } \\
& \text { of smaller ones } \\
& \text { - order of solving subproblems. }
\end{aligned}
$$

Polynomial Time Algorithm for Min Weight Triangulation of a Polygon
think top-down

subproblems
$\forall i<j$ subpolygon $P_{i j}$ vertex $i, i+1 \ldots, j+$ chord $i j$ O $\left(n^{2}\right)$
$M_{i j}=$ min. weight of tirangulation of $P_{i j}$.

$$
=\left\{\begin{array}{c}
0 \text { if } j=i+1 \text { cadges don't count } \\
H_{+}^{+} \infty \text { if ij is not a chord. } \\
d_{i j}+\min _{k, i<k<j}\left\{M_{i k}+M_{k j}\right\}
\end{array}\right.
$$

T length of chord is
ordering: by $j-i=\Delta$

$$
\begin{aligned}
& \text { for } \Delta=2 \cdots n-1 \\
& \text { for }=1=1 \cdots n-\Delta \\
& j=i+\Delta
\end{aligned}
$$

Run Time: $O\left(n^{2}\right)$ subproblems $\times O(n)$ to solve one Total: $O\left(n^{3}\right)$

CS 763 F22 Lecture 3: Partitioning Polygons \& Polyhedra A. Lubiw, U. Waterloo

Polynomial Time Algorithm for Min Weight Triangulation of a Polygon

dynamic programming $\mathrm{O}\left(n^{3}\right)$

Open Problem. o $\left(n^{3}\right)$ time algorithm for min weight triangulation.
and more generally, there are quite a few dynamic programming algorithms that no one knows how to improve

Min weight triangulation of a point set is NP-hard.

Real RAM Model of Computation
The above algorithm assumed we can compute Euclidean lengths and compare them at unit cost.

$$
\begin{array}{ll}
\rho\left(Q_{x}, Q_{y}\right) & \text { Euclidean length } \\
{ }_{\left(P_{x}, P_{y}\right)} & \sqrt{\left(Q_{x}-P_{x}\right)^{2}+\left(Q_{y}-P_{y}\right)^{2}}
\end{array}
$$

$$
\begin{aligned}
& \text { We used a test of the form: } \\
& \qquad \sqrt{a_{1}}+\sqrt{a_{2}}+\cdots \sqrt{a_{k}} \stackrel{?}{\gtrless} \sqrt{b_{1}}+\sqrt{b_{2}}+\cdots \sqrt{b_{l}} \\
& a_{i} \text {, bi integer, }
\end{aligned}
$$

OPEN: Measuring bit complexity, can this test be done in polynomial time?

CS 763 F22 Lecture 3: Partitioning Polygons \& Polyhedra A. Lubiw, U. Waterloo

Real RAM Model of Computation

real RAM - random access machine that operates on real numbers.
Allows arithmetic, including square root, at unit cost.
Sometimes also allow k-th roots, trigonometric functions, etc.
This is a basic model of computation used in computational geometry. In practice, we must address issues of precision.

For an interesting discussion of alternate models of computing for computational geometry, see section 1.2 in:

Partitioning Polygons into Convex Pieces

Sometimes we don't really need triangles - convex pieces will do.
Partitioning a polygon into a minimum number of convex pieces by adding chords.
$\mathrm{O}\left(n^{3} \log n\right)$ using dynamic programming. Keil 1985.
Decomposing a polygon into simpler components
JM Keil - SIAM Journal on Computing, 1985 - SIAM
d https://doi.org/10.1137/0214056

Careful - there can be exponentially many subpolygons.

Partitioning Polygons into Convex Pieces
A faster approximation algorithm Hertel and Mehlhorn 1983.
$\mathrm{O}(n \log n)$ time and finds number of pieces $\leq 4 \times \mathrm{min}$
Start with a triangulation
-remove a chord if result
leaves convex pieces. How to get $O(n \log n)$? Ex. Claim \#pieces $\leq 4 . \mathrm{min}$.
Pf. Analyze \# chords
left (\#pieces $=1+$ \#chords kef)

if chord c cannot be removed then at one endpt. we have a reflex angle α
Next: argue: at most 2 chords point to same vertex.

Claim: number of pieces is $\leq 4 \times \mathrm{min}$
impossible for 3 (or more chords) to cause reflex angles.
\# chords $\leq 2 r \quad r=$ \#reflex vertices
\#pieces $\leq 2 r+1$
On the other hand, every reflex vertex weeds at least one chord; and each chord can kill off at most 2 reflex vertices

$$
\text { min \# chords } \geq\left\lceil\frac{r}{2}\right\rceil
$$

min \# pieces $\geq \frac{r}{2}+1$
$\#$ pieces $\leq 2 r+1 \leq 2 r+4 \leq 4$ min\#tieces

Practical algorithms to decompose into approximately convex pieces

Approximate convex decomposition of polygons d https://doi.org/10.1016/j.comgeo.2005.10.005 JM Lien, NM Amato - Computational Geometry, 2006 - Elsevier
We propose a strategy to decompose a polygon, containing zero or more holes, into
"approximately convex" pieces. For many applications, the approximately convex components of this decomposition provide similar benefits as convex components, while the

Approximate convex decomposition of polyhedra and its applications
d https://doi.org/10.1016/j.cagd.2008.05.003
JM Lien, NM Amato - Computer Aided Geometric Design, 2008 - Elsevier
Decomposition is a technique commonly used to partition complex models into simpler
components. While decomposition into convex components results in pieces that are easy to . .
J.-M. Lien, N.M. Amato / Computational Geometry 35 (2006) 100-123

Fig. 1. (a) The initial Nazca monkey has 1,204 vertices and 577 notches. The radius of the minimum bounding circle of this model is 81.7 units. Setting the concavity tolerance at 0.5 units, and not allowing Steiner points, (b) an approximate convex decomposition has 126 approximately convex components, an (c) a minimum convex decomposition has 340 convex components.

Dissecting one polygon into another

Figure 1: 4-piece dissection of Greek cross to square from 1890 [25].

Any two polygons of the same area have a common dissection (1807).
https://en.wikipedia.org/wiki/Bolyai\�\�\�Gerwien_theorem

Figure 2: Dudeney's 1902 hinged dissection of a square into a triangle 15].

EHinged dissections exist d https://doi.org/10.1007/s00454-010-9305-9
TG Abbott, Z Abel, D Charlton, ED Demaine ... - Discrete \& ..., 2012 - Springer
We prove that any finite collection of polygons of equal area has a common hinged dissection. That is, for any such collection of polygons there exists a chain of polygons
hinged at vertices that can be folded in the plane continuously without self-intersection to

Polyhedra

A polyhedron consists of a finite connected set of (plane) polygons called faces such that

1. if two faces intersect it is only at a common vertex or edge
2. every edge of every face is an edge of exactly one other face
3. the faces surrounding each vertex form a single circuit

W https://en.wikipedia.org/wiki/Polyhedron

- https://doc.cgal.org/latest/Polyhedron/index.html

W1 htps:/hinyur.com(y)5th39

A polyhedron consists of a finite connected set of (plane) polygons called faces such that

1. if two faces intersect it is only at a common vertex or edge
2. every edge of every face is an edge of exactly one other face
3. the faces surrounding each vertex form a single circuit

NOT Polyhedra

CS 763 F22 Lecture 3: Partitioning Polygons \& Polyhedra A. Lubiw, U. Waterloo

Summary

- optimizing triangulations, dynamic programming technique
- partitioning polygons into convex pieces
- polyhedra
- partitioning polyhedra deferred to next lecture

References

- [O’Rourke] 2.5
- [Handbook] Chapter 30

Further topic

We only discussed partitioning. What about covering (the pieces are allowed to overlap), or Boolean combinations?

