103 F22	Lecture 5. Farmoning Folygons & Folyneora	A. LUDIW, U. Walenoo
Recall		
- every po	olygon can be triangulated	
- there is	an O(<i>n</i> log <i>n</i>) algorithm to triangulate polygons and	d polygonal regions
- this is be	est possible for polygonal regions	
- polygon	s can be triangulated in O(n) via Chazelle's hard al	gorithm

CS 763 F22	Lecture 3: Partitioning Polygons & Polyhedra A. Lubiw, U. Waterloo
Optimizing P	Polygon Triangulations
We may have For meshing,	e criteria to prefer one triangulation over another. angles are often the main issue — more on this later.
Minimum We lengths of the	eight Triangulation ("minimum ink") — minimize the sum of the chords used. (length = Euclidean length)
Polynomial Ti (Klincsek 198	me Algorithm for Min Weight Triangulation of a Polygon
Idea: dynamic	c programming
Input: Polygo	n P on vertices 1, 2, , <i>n</i>
general steps – ແ	s for dynamic programming: shat are subproblems
	formula for solving a subproblems in terms of smaller ones
	order of solving subproblems.

CS 763 F22 Lecture 3: Partitioning Polygons & Polyhedra A. Lubiw, U. Waterloo
Polynomial Time Algorithm for Min Weight Triangulation of a Polygon
think top-down et 2 special edge e
and Try all possibilistics for
the triangle on e
subproblems

$$\forall i < j$$
 subpolygon vertex $i, i+1, \dots, j$ + chord ij 0 (n²)
 $M_{ij} = min. weight of triangulation of P_{ij}.$
 $= \begin{cases} 0 & if j = i+1 \\ Min \\ m$

CS 763 F22 Lecture 3: Partitioning Polygons & Polyhedra A. Lubiw, U. Waterloo

Polynomial Time Algorithm for Min Weight Triangulation of a Polygon

dynamic programming $O(n^3)$

Open Problem. $o(n^3)$ time algorithm for min weight triangulation.

and more generally, there are quite a few dynamic programming algorithms that no one knows how to improve

Min weight triangulation of a point set is NP-hard.

CS 763 F22 Lecture 3: Partitioning Polygons & Polyhedra A. Lubiw, U. Waterloo

Real RAM Model of Computation

The above algorithm assumed we can compute Euclidean lengths and compare them at unit cost.

We used a test of the form:

$$\sqrt{a_1} + \sqrt{a_2} + \cdots \sqrt{a_k} \stackrel{\circ}{\geq} \sqrt{b_1} + \sqrt{b_2} + \cdots \sqrt{b_k}$$

 \mathcal{O}

ai, bi integer,

OPEN: Measuring bit complexity, can this test be done in polynomial time?

A. Lubiw, U. Waterloo CS 763 F22 Lecture 3: Partitioning Polygons & Polyhedra **Real RAM Model of Computation** real RAM — random access machine that operates on real numbers. Allows arithmetic, including square root, at unit cost. Sometimes also allow k-th roots, trigonometric functions, etc. This is a basic model of computation used in computational geometry. In practice, we must address issues of precision. For an interesting discussion of alternate models of computing for computational geometry, see section 1.2 in: Finding Closed Quasigeodesics on Convex Polyhedra ED Demaine, AC Hesterberg... - ... Geometry (SoCG 2020), 2020 - drops.dagstuhl.de https://drops.dagstuhl.de/opus/volltexte/2020/12191/

Lecture 3: Partitioning Polygons & Polyhedra A. Lubiw, U. Waterloo CS 763 F22 **Partitioning Polygons into Convex Pieces** Sometimes we don't really need triangles — convex pieces will do. Partitioning a polygon into a minimum number of convex pieces by adding chords. $O(n^{3} \log n)$ using dynamic programming. Keil 1985. Decomposing a polygon into simpler components JM Keil - SIAM Journal on Computing, 1985 - SIAM d https://doi.org/10.1137/0214056

Careful — there can be exponentially many subpolygons.

CS 763 F22 Lecture 3: Partitioning Polygons & Polyhedra A. Lubiw, U. Waterloo that are lef Claim: number of pieces is $\leq 4 \times \min$ impossible for 3 (or more chards) to cause reflex angles. Cz - these are left. # chords < 2r r = treflex vertices # pieces < 2r+1 On the other hand, every reflex vertex needs at least one chord, and each chord can kill off at most 2 reflex vertices min # chords $\ge \left\lceil \frac{r}{2} \right\rceil$ min # pieces $\ge \frac{r}{2+1}$ # pieces = 2r+1 2r+4 = 4 minterpieces 6

CS763-Lecture3

Approximate JM Lien, NM We propose "approximate components	Computational Geometry, 200 a strategy to decompose a polygon, concept y convex" pieces. For many application s of this decomposition provide similar be	https://doi.org/10.1016/j.comgeo.2005 6 - Elsevier Intaining zero or more holes, into as, the approximately convex enefits as convex components, while	the	
Approximate JM Lien, NN Decomposite components	e convex decomposition of polyhedra an <u>A Amato</u> - Computer Aided Geometric D ion is a technique commonly used to par s. While decomposition into convex comp	d its applications d https://doi.or esign, 2008 - Elsevier tition complex models into simpler ponents results in pieces that are eas	g/10.1016/j.cagd.2008.05.003	
	JM. Lien, N.M.	Amato / Computational Geometry	35 (2006) 100–123	101
	(a)	(b)	(c)	

A. Lubiw, U. Waterloo CS 763 F22 Lecture 3: Partitioning Polygons & Polyhedra Dissecting one polygon into another Any two polygons of the same area have a common dissection (1807). https://en.wikipedia.org/wiki/Bolyai%E2%80%93Gerwien theorem Figure 1: 4-piece dissection of Greek cross to square from 1890 25. Figure 2: Dudeney's 1902 hinged dissection of a square into a triangle 15. Hinged dissections exist d https://doi.org/10.1007/s00454-010-9305-9 TG Abbott, Z Abel, D Charlton, ED Demaine... - Discrete & ..., 2012 - Springer We prove that any finite collection of polygons of equal area has a common hinged dissection. That is, for any such collection of polygons there exists a chain of polygons hinged at vertices that can be folded in the plane continuously without self-intersection to

CS 763 F22	Lecture 3: Partitioning Polygons & Polyhedr	a A. Lubiw, U. Waterloo
Polyhedra		
A polyhedro such that	on consists of a finite connected set of (plane) p	oolygons called <i>faces</i>
1. if two fac	ces intersect it is only at a common vertex or ed	lge
2. every ec	lge of every face is an edge of exactly one othe	r face
3. the face	s surrounding each vertex form a single circuit	
W https://en.wikipedia.o	rg/wiki/Polyhedron	
	O O Polyhedron Viewer	POLYHEDRA
		SALA P
	https://doc.cgal.org/latest/Polyhedron/index.html	
		https://tinyurl.com/yy5tt439
63-Lecture3		

CS 763 F22 Lecture 3: Partitioning Polygons & Polyhedra A. Lubiw, U. Waterloo

A *polyhedron* consists of a finite connected set of (plane) polygons called *faces* such that

- 1. if two faces intersect it is only at a common vertex or edge
- 2. every edge of every face is an edge of exactly one other face
- 3. the faces surrounding each vertex form a single circuit

CS 763	F22	Lecture 3:	Partitioni	ng Polygo	ons & Poly	yhedra	A. Lubiw, l	J. Waterloo
Su	mmary							
	optimizinę	g triangulation	ns, dynar	nic progra	amming te	echnique		
	• partitionir	ıg polygons iı	nto conve	ex pieces				
	polyhedra	1						
	· partitionir	ig polyhedra	deferre	d to next le	ecture			
Re	ferences							
	· [O'Rourke	e] 2.5						
	- [Handboo	k] Chapter 3	30					
Fu	rther topic	;						
1	We only di o overlap)	scussed parti , or Boolean	tioning. combinat	What abo ions?	out coverir	ng (the pie	eces are allov	wed