
CS 763 F22 A. Lubiw, U. WaterlooLecture 3: Partitioning Polygons & Polyhedra

Recall

- every polygon can be triangulated

- there is an O(n log n) algorithm to triangulate polygons and polygonal regions

- this is best possible for polygonal regions

- polygons can be triangulated in O(n) via Chazelle’s hard algorithm

CS763-Lecture3 1 of 26

CS 763 F22 A. Lubiw, U. WaterlooLecture 3: Partitioning Polygons & Polyhedra

Optimizing Polygon Triangulations

We may have criteria to prefer one triangulation over another.
For meshing, angles are often the main issue — more on this later.

Minimum Weight Triangulation (“minimum ink”) — minimize the sum of the
lengths of the chords used. (length = Euclidean length)

Polynomial Time Algorithm for Min Weight Triangulation of a Polygon
(Klincsek 1980)

Idea: dynamic programming

Input: Polygon P on vertices 1, 2, . . . , n

general steps for dynamic programming:

CS763-Lecture3 2 of 26

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 3: Partitioning Polygons & Polyhedra

Polynomial Time Algorithm for Min Weight Triangulation of a Polygon

think top-down

subproblems

CS763-Lecture3 3 of 26

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 3: Partitioning Polygons & Polyhedra

Polynomial Time Algorithm for Min Weight Triangulation of a Polygon

dynamic programming O(n 3)

Open Problem. o(n 3) time algorithm for min weight triangulation.

Min weight triangulation of a point set is NP-hard.

Minimum-weight triangulation is NP-hard
W Mulzer, G Rote - Journal of the ACM (JACM), 2008 - dl.acm.org

https://doi.org/10.1145/1346330.1346336

and more generally, there are quite a few dynamic programming algorithms
that no one knows how to improve

CS763-Lecture3 4 of 26

https://doi.org/10.1145/1346330.1346336
Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 3: Partitioning Polygons & Polyhedra

Real RAM Model of Computation

The above algorithm assumed we can compute Euclidean lengths and compare
them at unit cost.

We used a test of the form:

OPEN: Measuring bit complexity, can this test be done in polynomial time?

CS763-Lecture3 5 of 26

CS 763 F22 A. Lubiw, U. WaterlooLecture 3: Partitioning Polygons & Polyhedra

Real RAM Model of Computation

real RAM — random access machine that operates on real numbers.

Allows arithmetic, including square root, at unit cost.
Sometimes also allow k-th roots, trigonometric functions, etc.

This is a basic model of computation used in computational geometry.
In practice, we must address issues of precision.

Finding Closed Quasigeodesics on Convex Polyhedra
ED Demaine, AC Hesterberg… - … Geometry (SoCG 2020), 2020 - drops.dagstuhl.de

For an interesting discussion of alternate models of computing
for computational geometry, see section 1.2 in:

https://drops.dagstuhl.de/opus/volltexte/2020/12191/

CS763-Lecture3 6 of 26

https://drops.dagstuhl.de/opus/volltexte/2020/12191/

CS 763 F22 A. Lubiw, U. WaterlooLecture 3: Partitioning Polygons & Polyhedra

Partitioning Polygons into Convex Pieces

Sometimes we don’t really need triangles — convex pieces will do.

Partitioning a polygon into a minimum number of convex pieces by adding chords.

O(n 3 log n) using dynamic programming. Keil 1985.

Careful — there can be exponentially many subpolygons.

Decomposing a polygon into simpler components
JM Keil - SIAM Journal on Computing, 1985 - SIAM

https://doi.org/10.1137/0214056

CS763-Lecture3 7 of 26

https://doi.org/10.1137/0214056

CS 763 F22 A. Lubiw, U. WaterlooLecture 3: Partitioning Polygons & Polyhedra

Partitioning Polygons into Convex Pieces

A faster approximation algorithm
Hertel and Mehlhorn 1983.

O(n log n) time and finds number of pieces ≤ 4 x min

Start with a triangulation

CS763-Lecture3 8 of 26

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 3: Partitioning Polygons & Polyhedra

Claim: number of pieces is ≤ 4 x min

CS763-Lecture3 9 of 26

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

CS 763 F22 A. Lubiw, U. WaterlooLecture 3: Partitioning Polygons & Polyhedra

Approximate convex decomposition of polygons
JM Lien, NM Amato - Computational Geometry, 2006 - Elsevier
We propose a strategy to decompose a polygon, containing zero or more holes, into
“approximately convex” pieces. For many applications, the approximately convex
components of this decomposition provide similar benefits as convex components, while the …

Approximate convex decomposition of polyhedra and its applications
JM Lien, NM Amato - Computer Aided Geometric Design, 2008 - Elsevier
Decomposition is a technique commonly used to partition complex models into simpler
components. While decomposition into convex components results in pieces that are easy to . . .

Practical algorithms to decompose into approximately convex pieces
https://doi.org/10.1016/j.comgeo.2005.10.005

https://doi.org/10.1016/j.cagd.2008.05.003

CS763-Lecture3 10 of 26

https://doi.org/10.1016/j.comgeo.2005.10.005
https://doi.org/10.1016/j.cagd.2008.05.003

Any two polygons of the same area have a
common dissection (1807).

CS 763 F22 A. Lubiw, U. WaterlooLecture 3: Partitioning Polygons & Polyhedra

TG Abbott, Z Abel, D Charlton, ED Demaine… - Discrete & …, 2012 - Springer
We prove that any finite collection of polygons of equal area has a common hinged
dissection. That is, for any such collection of polygons there exists a chain of polygons
hinged at vertices that can be folded in the plane continuously without self-intersection to …

Dissecting one polygon into another

https://en.wikipedia.org/wiki/Bolyai%E2%80%93Gerwien_theorem

Hinged Dissections Exist

Timothy G. Abbott
⇤

MIT Computer Science and
Artificial Intelligence Lab

32 Vassar St.
Cambridge, MA 02139, USA

tabbott@mit.edu

Zachary Abel
†

Dept. of Mathematics
Harvard University

1 Oxford Street
Cambridge, MA 02138, USA
zabel@fas.harvard.edu

David Charlton
Dept. of Computer Science

Boston University
111 Cummington St.

Boston, MA 02215, USA
charlton@cs.bu.edu

Erik D. Demaine
‡

MIT Computer Science and
Artificial Intelligence Lab

32 Vassar St.
Cambridge, MA 02139, USA

edemaine@mit.edu

Martin L. Demaine
MIT Computer Science and

Artificial Intelligence Lab
32 Vassar St.

Cambridge, MA 02139, USA
mdemaine@mit.edu

Scott D. Kominers
Dept. of Mathematics

Harvard University
1 Oxford Street

Cambridge, MA 02138, USA
kominers@fas.harvard.edu

ABSTRACT
We prove that any finite collection of polygons of equal area
has a common hinged dissection, that is, a chain of poly-
gons hinged at vertices that can be folded in the plane con-
tinuously without self-intersection to form any polygon in
the collection. This result settles the open problem about
the existence of hinged dissections between pairs of poly-
gons that goes back implicitly to 1864 and has been studied
extensively in the past ten years. Our result generalizes
and indeed builds upon the result from 1814 that polygons
have common dissections (without hinges). We also extend
our result to edge-hinged dissections of solid 3D polyhedra
that have a common (unhinged) dissection, as determined by
Dehn’s 1900 solution to Hilbert’s Third Problem. Our proofs
are constructive, giving explicit algorithms in all cases. For
a constant number of planar polygons, both the number of
pieces and running time required by our construction are
pseudopolynomial. This bound is the best possible even for
unhinged dissections. Hinged dissections have possible ap-
plications to reconfigurable robotics, programmable matter,
and nanomanufacturing.

⇤Partially supported by an NSF Graduate Research Fellow-
ship and an MIT-Akamai Presidential Fellowship.
†Corresponding author.
‡Partially supported by NSF CAREER award CCF-
0347776, DOE grant DE-FG02-04ER25647, and AFOSR
grant FA9550-07-1-0538.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’08, June 9–11, 2008, College Park, Maryland, USA.
Copyright 2008 ACM 978-1-60558-071-5/08/06 ...$5.00.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]:
Geometrical problems and computations

General Terms
Algorithms, Theory

1. INTRODUCTION

Figure 1: 4-piece dissec-
tion of Greek cross to
square from 1890 [25].

Around 1808, Wal-
lace asked whether ev-
ery two polygons of the
same area have a com-
mon dissection, that is,
whether any two equal-
area polygons can be
cut into a finite set
of congruent polygonal
pieces [18, p. 222]. Fig-
ure 1 shows a simple
example. Lowry [27]
published the first solution to Wallace’s problem in 1814,
although Wallace may have also had a solution at the time;
he published one in 1831 [36]. Shortly thereafter, Bolyai [4]
and Gerwien [20] rediscovered the result, causing this result
to be known sometimes as the Bolyai-Gerwien Theorem.

By contrast, Dehn [11] proved in 1900 that not all polyhe-
dra of the same volume have a common dissection, solving
Hilbert’s Third Problem posed in the same year [11]. Sydler
[35] showed that Dehn’s invariant in fact characterizes 3D
dissectability.

Lowry’s 2D dissection construction, as described by Fred-
erickson [18], is particularly elegant and uses a pseudopoly-
nomial number of pieces.1 A pseudopolynomial bound is
the best possible in the worst case: dissecting a polygon of

1In a geometric context, pseudopolynomial means polyno-
mial in the combinatorial complexity (n) and the dimensions
of the integer grid on which the input is drawn. Although
the construction does not require the vertices to have ratio-
nal coordinates, a pseudopolynomial analysis makes sense
only in this case.

Figure 2: Dudeney’s 1902 hinged dissection of a
square into a triangle [15].

diameter x > 1 into a polygon of diameter 1 (for example,
a long skinny triangle into an equilateral triangle) requires
at least x pieces. With this worst-case result in hand, at-
tention has turned to optimal dissections using the fewest
pieces possible for the two given polygons. This problem
has been studied extensively for centuries in the mathemat-
ics literature [31, 7, 18] and the puzzle literature [32, 25,
28, 26], and more recently in the computational geometry
literature [10, 24, 3].

Hinged dissections are dissections with an additional con-
straint: the polygonal pieces must be hinged together at ver-
tices into a connected assembly. The first published hinged
dissection appeared in 1864, illustrating Euclid’s Proposi-
tion I.47 [23]; see [19, pp. 4–5]. The most famous hinged dis-
section is Dudeney’s from 1902 [15]; see Figure 2. This sur-
prising construction has inspired many to investigate hinged
dissections; see, for example, Frederickson’s book [19].

Yet the fundamental problem of general hinged dissection
has remained open [14, 30]: do every two polygons of the
same area have a common hinged dissection? This problem
has been attacked in the computational geometry literature
[2, 12, 13, 17], but has been solved only in special cases.
For example, all polygons made from edge-to-edge gluings
of n identical subpolygons (such as polyominoes) have been
shown to have a common hinged dissection [12]. Perhaps
most intriguingly, Eppstein [17] showed that finding a com-
mon hinged dissection of any two triangles of equal area is
just as hard as the general problem.

Hinged dissections are intriguing from the perspec-
tives of reconfigurable robotics, programmable matter, and
nanomanufacturing. Recent progress has enabled chemists
to build millimeter-scale “self-working” 2D hinged dissec-
tions such as Dudeney’s [29]. An analog for 3D hinged dis-
sections may enable the building of a complex 3D structure
out of a chain of units; see [21] for one such approach. We
could even envision an object that can re-assemble itself into
di↵erent 3D structures on demand [13]. This approach con-
trasts existing approaches to reconfigurable robotics (see,
for example, [33]), where units must reconfigure by attach-
ing and detaching from each other through a complicated
mechanism.

Our results. We settle the hinged dissection open problem,
first formally posed in a CCCG 1999 paper [12] but implicit
back to 1864 [23] and 1902 [15]. Specifically, Section 3 proves
a universality result: any two polygons of the same area have
a common hinged dissection. In fact, our result is stronger,
building a single hinged dissection that can fold into any fi-
nite set of desired polygons of the same area. The analogous
multipolygon result for (unhinged) dissections is obvious—
simply overlay the pairwise dissections—but no such general
combination technique is known for hinged dissections. In-
deed, the lack of such a transitivity construction has been

the main challenge in constructing general hinged dissec-
tions.

Our construction starts from an arbitrary (unhinged) dis-
section, such as Lowry’s [27]. We show that any dissection
of a finite set of polygons can be subdivided and hinged so
that the resulting hinged dissection folds into all of the orig-
inal polygons. We give a method of subdividing pieces of
a hinged figure which e↵ectively allows us to “unhinge” a
portion of the figure and “re-attach” it at an alternate lo-
cation. This construction allows us to “move” pieces and
hinges around arbitrarily, at the cost of extra pieces. Thus
we are able to hinge any dissection.

This initial construction easily leads to an exponential
number of pieces, but we show in Section 5 that a more
careful execution of Lowry’s dissection [27] attains a pseu-
dopolynomial number of pieces for a constant number of
target polygons. As mentioned above, such a bound is es-
sentially best possible, even for unhinged dissections (though
we likely do not obtain the optimal constant exponent). This
more e�cient construction requires significantly more com-
plex gadgets for simultaneously moving several groups of
pieces at roughly the same cost as moving a single piece,
and relies on specific properties of Lowry’s dissection.

We also solve another open problem concerning the precise
model of hinged dissections. In perhaps the most natural
model of hinged dissections, pieces cannot properly overlap
during the folding motion from one configuration to another.
However, all theoretical work concerning hinged dissections
[2, 12, 13, 17] has only been able to analyze the “wobbly
hinged” model [19], where pieces may intersect during the
motion. Is there a di↵erence between these two models?
Again this problem was first formally posed at CCCG 1999
[12]. We prove in Section 4 that any wobbly hinged dissec-
tion can be subdivided to enable continuous motions without
piece intersection, at the cost of increasing the combinato-
rial complexity of the hinged dissection by only a constant
factor. This result builds on expansive motions from the
Carpenter’s Rule Theorem [9, 34] combined with the theory
of slender adornments from SoCG 2006 [8].

The following theorem summarizes our results in 2D:

Theorem 1. Any finite set of polygons of equal area have

a common hinged dissection which can fold continuously

without intersection between the polygons. For a constant

number of target polygons with vertices drawn on a ratio-

nal grid, the number of pieces is pseudopolynomial, as is the

algorithm to compute the common hinged dissection.

Finally, we generalize our results to 3D in Section 6. As
mentioned above, not all 3D polyhedra have a common dis-
section even without hinges. Our techniques generalize to
show that hinged dissections exist whenever dissections do:

Theorem 2. Any finite set of 3D polyhedra with the same

volume and Dehn invariant have a common hinged dissec-

tion.

2. TERMINOLOGY
A hinged figure F is a finite collection of simple, oriented

polygons (the links) hinged together at rotatable joints at
the links’ vertices so that the resulting figure is connected,
together with a fixed cyclic order of links around each hinge.
(Note that a hinge might exist at a 180� angle of a link,

Hinged dissections exist https://doi.org/10.1007/s00454-010-9305-9

CS763-Lecture3 11 of 26

https://link.springer.com/content/pdf/10.1007/s00454-010-9305-9.pdf
https://doi.org/10.1007/s00454-010-9305-9

CS 763 F22 A. Lubiw, U. WaterlooLecture 3: Partitioning Polygons & Polyhedra

Polyhedra

A polyhedron consists of a finite connected set of (plane) polygons called faces
such that

 1. if two faces intersect it is only at a common vertex or edge

 2. every edge of every face is an edge of exactly one other face

 3. the faces surrounding each vertex form a single circuit

https://en.wikipedia.org/wiki/Polyhedron

https://tinyurl.com/yy5tt439

https://doc.cgal.org/latest/Polyhedron/index.html

CS763-Lecture3 12 of 26

https://en.wikipedia.org/wiki/Polyhedron
https://www.google.ca/url?sa=i&url=https://www.amazon.com/Polyhedra-Peter-R-Cromwell/dp/0521664055&psig=AOvVaw1FWJSuvitgr31NbLGuocgI&ust=1597408060123000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCJDHzvKWmOsCFQAAAAAdAAAAABAD
https://www.google.ca/imgres?imgurl=http://eusebeia.dyndns.org/4d/img/platonic.png&imgrefurl=http://eusebeia.dyndns.org/4d/platonic&tbnid=kQzGiek8PBiDoM&vet=12ahUKEwitpoy6l5jrAhUIdqwKHXmbBeUQMyhaegUIARCvAQ..i&docid=-X3uFMESqJd_7M&w=388&h=224&q=polyhedron%20&hl=en&ved=2ahUKEwitpoy6l5jrAhUIdqwKHXmbBeUQMyhaegUIARCvAQ
https://www.google.ca/url?sa=i&url=https://doc.cgal.org/latest/Polyhedron/index.html&psig=AOvVaw12yHYGkgr0JA26nF5H9n5m&ust=1597408213102000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCLjc68-XmOsCFQAAAAAdAAAAABAO
https://tinyurl.com/yy5tt439
https://doc.cgal.org/latest/Polyhedron/index.html

CS 763 F22 A. Lubiw, U. WaterlooLecture 3: Partitioning Polygons & Polyhedra

A polyhedron consists of a finite connected set of (plane) polygons called faces
such that
 1. if two faces intersect it is only at a common vertex or edge
 2. every edge of every face is an edge of exactly one other face
 3. the faces surrounding each vertex form a single circuit

NOT Polyhedra

Mesh Materializer

Klein bottle

terrain

CS763-Lecture3 18 of 26

https://www.google.ca/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=0ahUKEwjns-GL85jPAhWh24MKHQ74DUoQjRwIBw&url=https://en.wikipedia.org/wiki/Klein_bottle&psig=AFQjCNHn1OfEjyt4ippxwF00P-f4Mot5Hw&ust=1474287490755768
https://www.google.ca/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=0ahUKEwiXs_7M85jPAhVs2oMKHf2IBXoQjRwIBw&url=http://forum.unity3d.com/threads/terrain-to-mesh.358472/&psig=AFQjCNHFKL7xSxECZdIdGjx2qps5QxlIdA&ust=1474287567653328
http://i.stack.imgur.com/qAS7t.jpg
https://www.google.ca/imgres?imgurl=http://www.onlinemathlearning.com/image-files/.cylinder-cone-sphere.png.jpg&imgrefurl=http://www.onlinemathlearning.com/3d-objects-grade3.html&docid=T4zB299XmY3JjM&tbnid=ppfv-SxujrXqtM:&w=457&h=142&bih=726&biw=1316&ved=0ahUKEwjusef99ZjPAhVM9YMKHSDPBQsQMwgcKAAwAA&iact=mrc&uact=8

CS 763 F22 A. Lubiw, U. WaterlooLecture 3: Partitioning Polygons & Polyhedra

Summary

- optimizing triangulations, dynamic programming technique

- partitioning polygons into convex pieces

- polyhedra

- partitioning polyhedra

References

- [O’Rourke] 2.5

- [Handbook] Chapter 30

Further topic

We only discussed partitioning. What about covering (the pieces are allowed
to overlap), or Boolean combinations?

CS763-Lecture3 26 of 26

deferred to next lecture

	CS 763 F20
	optimizing polygon triangulations
	contd
	optimizing polygon triangulations
	model of computing
	
	partitioning polygons into convex pieces
	partitioning polygons into convex pieces
	contd
	practical partioning into convex pieces
	polygon dissection
	partitioning polyhedra
	polyhedra
	polyhedra
	polyhedra
	convex polyhedra
	
	not polyhedra
	partitioning polyhedra
	not all polyhedra can be tetrahedralized
	number of tetra. not unique
	using Steiner points
	using Steiner points
	using Steiner points
	meshing
	Summary

