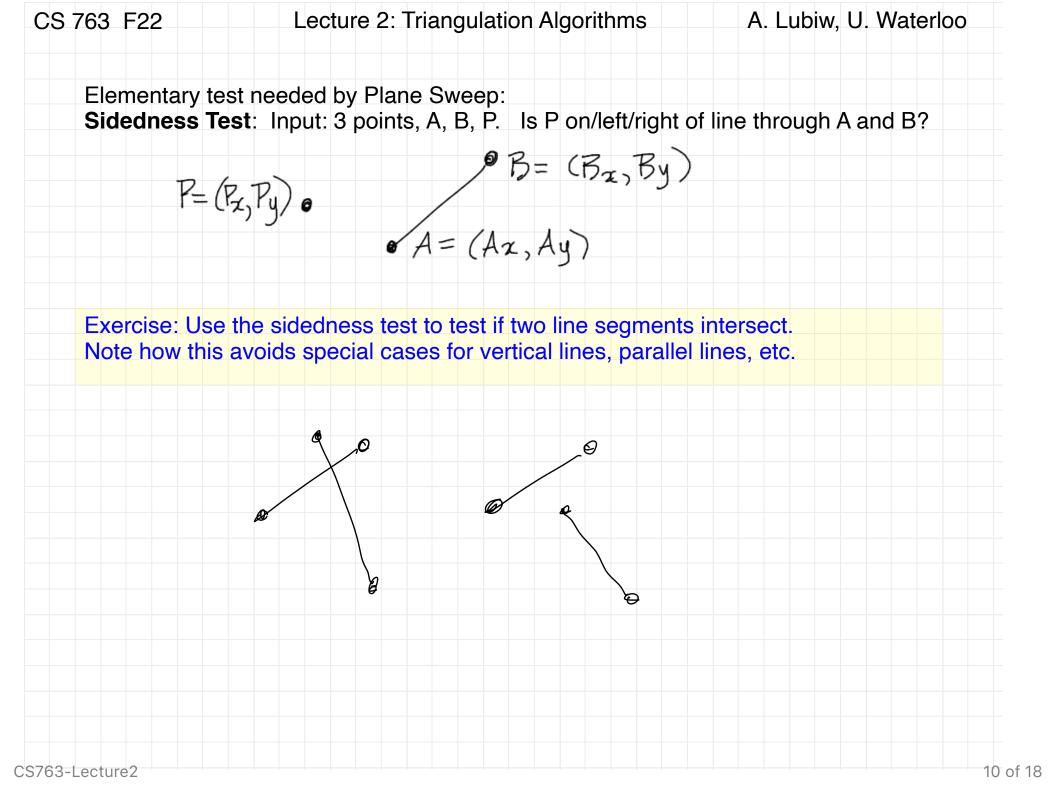
CS 763 F22	Lecture 2: Triangulation Algorithms	A. Lubiw, U. Waterloo
Recall Every	simple polygon can be triangulated.	
Following the p to <i>O</i> (<i>n</i> ²).	proof yields an obvious <i>O</i> (<i>n</i> ⁴) time algorithm, v	which can be improved
Today: practica	al <i>O</i> (<i>n</i> log <i>n</i>) time algorithm.	
- 1984. Simple <i>O</i> (<i>n</i> log - 1991. <i>O</i> (<i>n</i>) a	$O(n \log n)$ algorithm. Garey, Johnson, Prepara er. Fournier and Montuno. — this is what we log n) $O(n \log^* n)$ algorithm. Chazelle. But it is too complicated to g theorem, planar separator theorem, but no f	'll study to implement. (Uses
There is also a	n <i>O</i> (<i>n</i> log* <i>n</i>) randomized algorithm by Seidel	
CS763-Lecture2		1

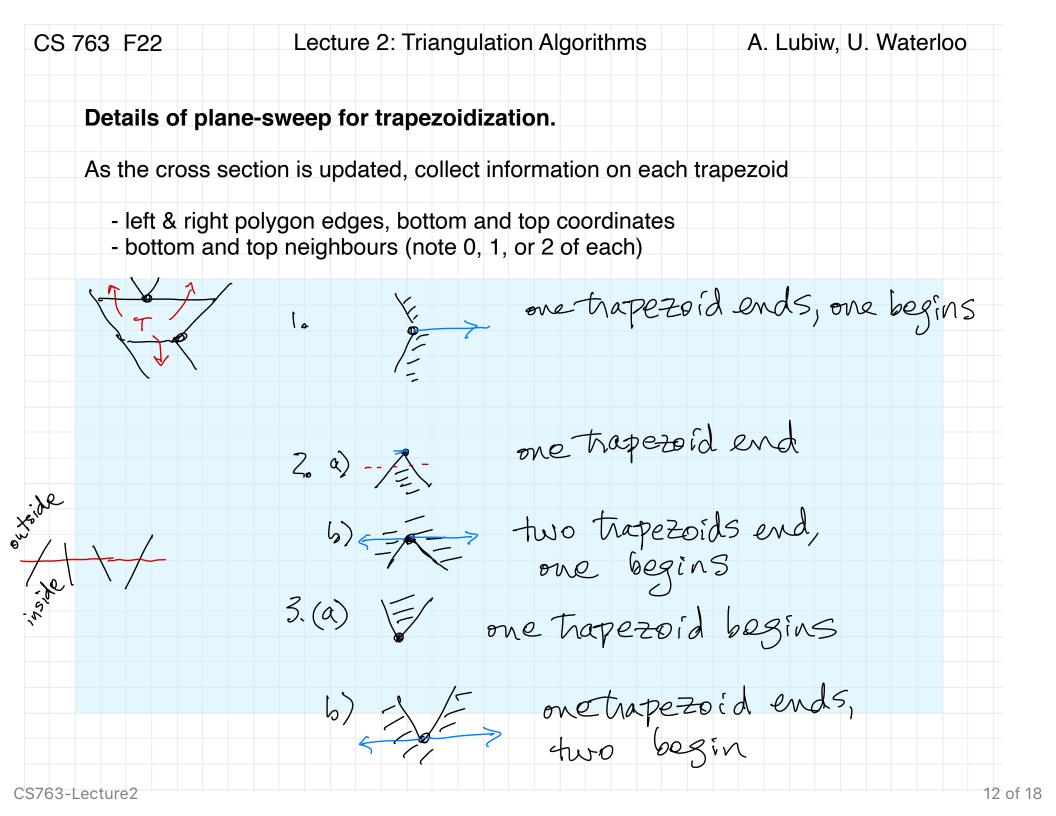
S 763 F22	Lecture 2: Triangulation Algorithms	A. Lubiw, U. Waterloo
Triangulation	Algorithm	
Assume points	have distinct y coordinates (else imagine tipp	ing slightly).
Note: degenera	acy and precision are big topics — we may co	ver some.
	t rapezoidization of the polygon — from each inside the polygon until it hits the boundary.	n vertex shoot a
	This divid partition into thapezoid ceach with hori	ns the polygon Is Zovial-top & bottom
	Note that a triangle is a	a degenerate trapezoid.
Step 2. From	the trapezoidization, compute a triangulation.	
	o(<i>n</i>) time. Mane-sweep, takes O(<i>n</i> log <i>n</i>). Ins make step 1 faster.	

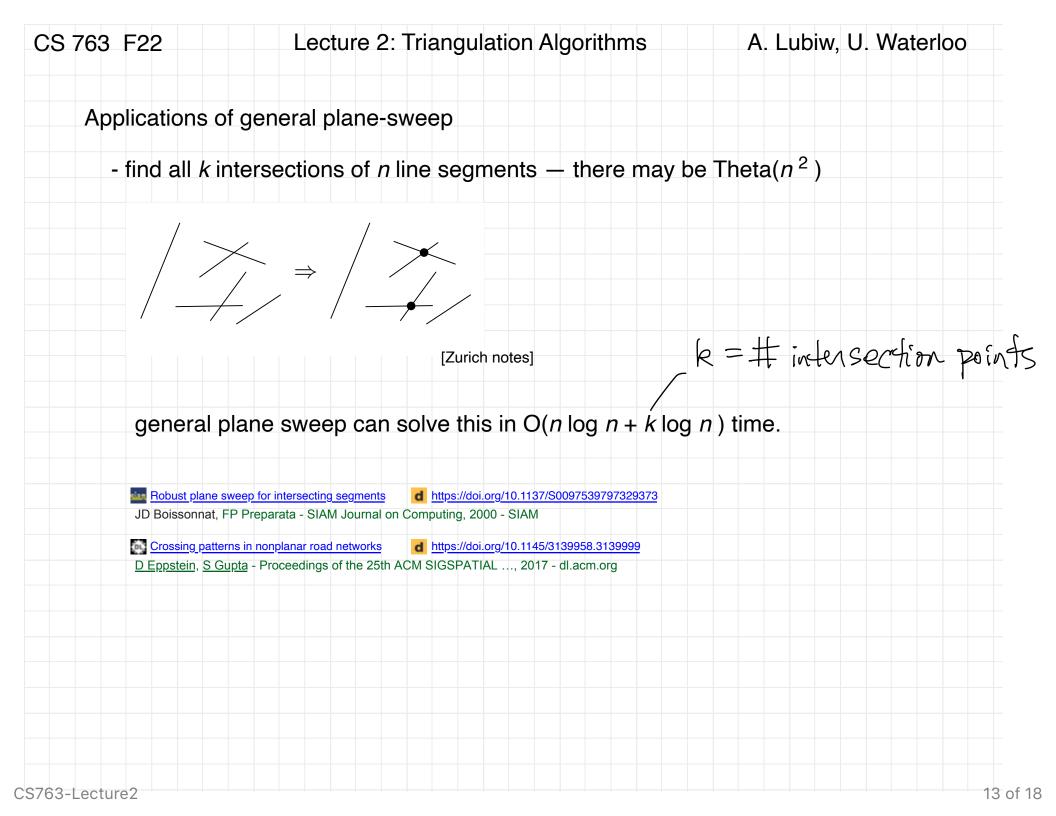
S 763 F22	Lecture 2: Triangulation Algorithms	A. Lubiw, U. Waterloo
Step 2. From	trapezoids to triangles.	
First join trape	zoids to form <i>unimonotone</i> polygons.	
	bottom a	apezoid has a vertex on the and on the top (exactly one, e assumed distinct inates).
		are not joined by an edge, d a chord.

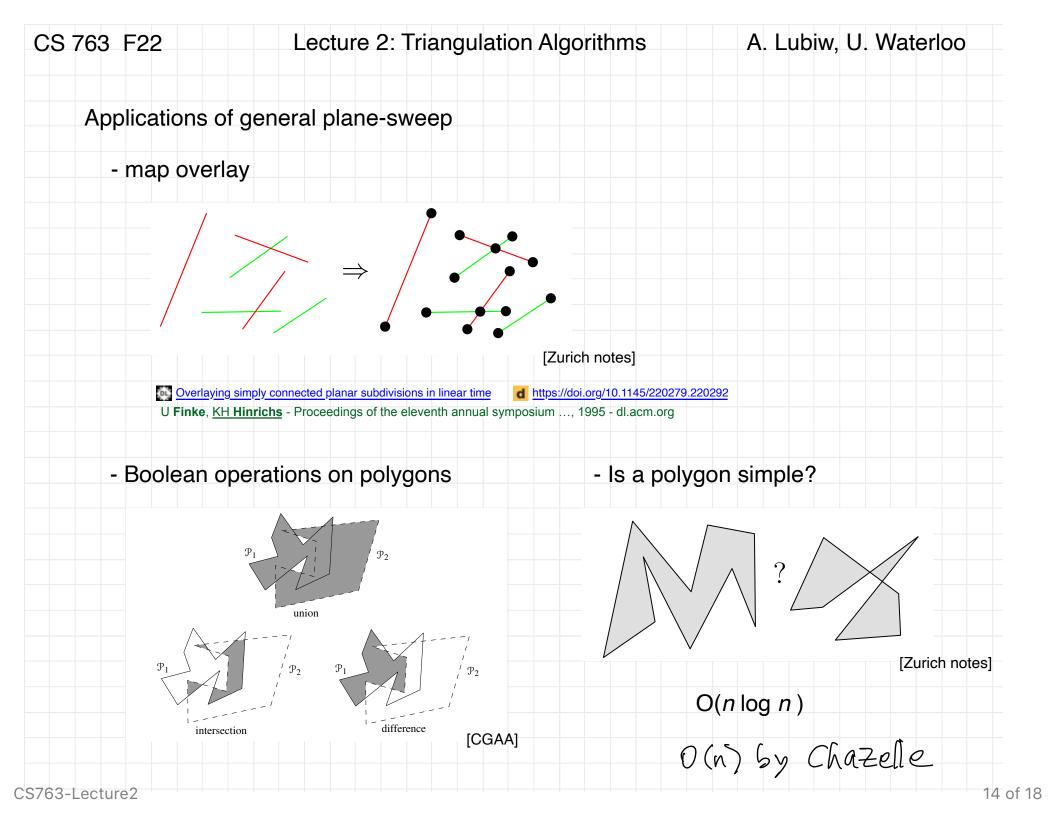
CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo Step 2. From trapezoids to triangles. definition Resulting pieces are *unimonotone* polygons — with vertices in order of y-coordinate. a unimonotone polygon 76 0P4 Proof. Every trapezoid not cut by a red chord is like this followed Cabove/below) followed Cabove/below) by another with vertices both on Same side CS763-Lecture2

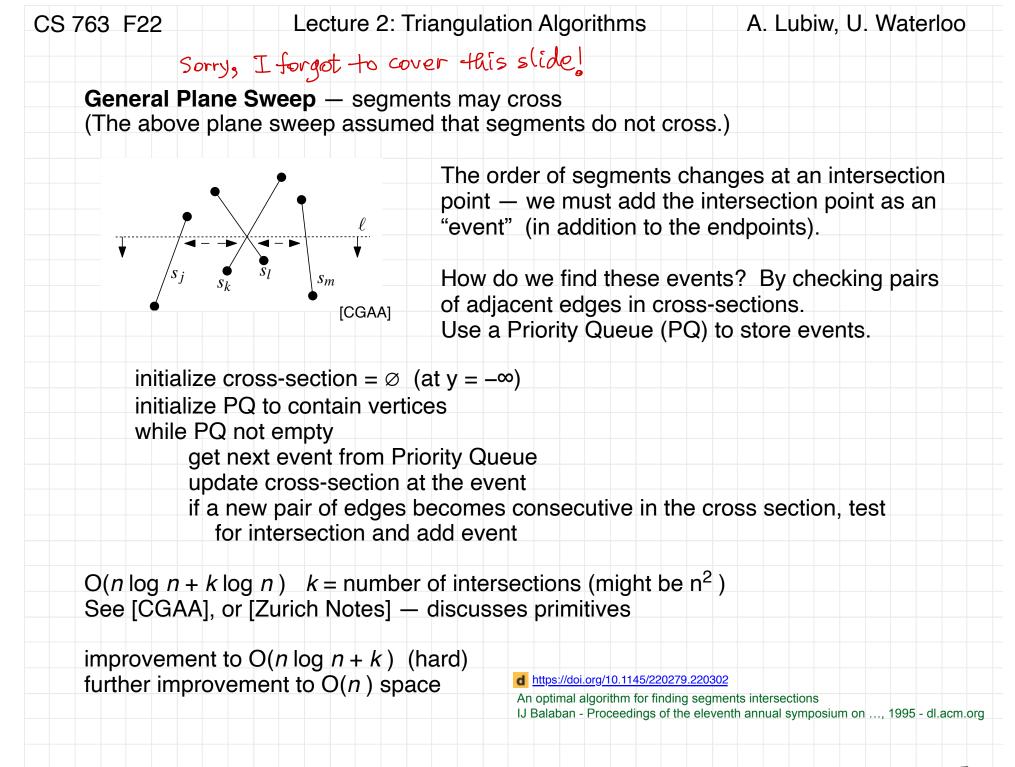


CS 763 F22	Lecture 2: Triangulation A	lgorithms	A. Lubiw, U. Water	loo
Step 1. Trape	zoidization.			
	eep, a basic technique in plana Bentley and Ottman, 1979 to find			
Plane Sweep	(as a general paradigm)			
-	ontal scan line across the plane -dimensional cross-sections and			
Cross-section	= list of edges that cross the sc	an line (left to rig	ht)	
A C6 es	ey e3 scan line - e2	07055-5e	ction is ordered ey e2	lest
The cross sec	tion only changes at vertices.			


CS 763 F22	Lecture 2: Triangulation Algorithms	A. Lubiw, U. Waterloo
Plane Sweep	Algorithm (for non crossing segments)	
order ver	tices by y coordinate (assume distinct)	
initialize	cross-section = \emptyset (at y = $-\infty$)	
for each	vertex p in order	
upd	ate cross-section at p	
possible upda	tes:	
	_ one edge replaces eno	sther
2. /	two edges deleted	
3.	V two edges added	
6763-Lecture2		


S 763 F22	Lecture 2: Triangulation Algorithms	s A. Lubiw, U. Waterloc
Plane Sweep A	Igorithm (for non crossing segments)	
how to update t	he cross-section at p	
locate p in the	e current cross section	
	nich situation (1, 2, or 3) applies and opriate update	
how to locate p	in the current cross section	
edges orde	ection contains	
U	pre these in a	
•	search tree)	
We need a	n elementary test:	
Does p lie	left/right of edge e	


CS 763 F22 Lecture 2: Triangulation Algorithms A. Lubiw, U. Waterloo Elementary test needed by Plane Sweep: **Sidedness Test**: Input: 3 points, A, B, P. Is P on/left/right of line through A and B? $PB = (B_x, B_y)$ P=(P2,Py) 0 A= (Az, Ay) How to solve this: - compute aquation of line y=asc+b? - division by 0 - precision issues Test signed area of $\triangle PAB = A$ 2A = Cross-product of B-A and P-A = $(B_{x} - A_{x})(P_{y} - A_{y}) - (P_{z} - A_{z})(B_{y} - A_{y})$ Note: integer arithmetic (if input is integers) two multiplications Pleft of AB ZZAZO right J ZZAZO on = 0



CS 763 F22	Lecture 2: Triangulation Algorithms	A. Lubiw, U. Waterloo
Data structure	for Plane Sweep	
maintain ord find, inser	ered list (the list of edges crossing the scan li t, delete	ne) to allow
useb	alanced search thee	
	AVL trees, red/black	-
O (log	gn) per find/insert/dele	ete,
Timing for Plan	e Sweep	
Sort	t O(nlogn)	
+ v	t O(nlogn) n updates at O(logn	n) each
	O(nlogn)	
CS763-Lecture2		11 of 18

P. 14.5

S 763 F22	Lecture 2: Triangulation Algorithms	A. Lubiw, U. Waterloo
Triangulating	a polygonal region.	
More general t	han polygon — <i>polygonal region</i> = polygon w	vith holes
K		
4	hole.	
	or non-crossing segments still works. O(<i>n</i> log did not require connectedness of the boundar	
But faster algo	rithms (e.g. Chazelle's linear time algorithm)	do not work.

763 F22	Lecture 2: Triangulation Algorithm	ns A. Lubiw, U. Waterloo
A lower bound	for triangulating a polygonal regior].
-	Pinter, 1986. m is as hard as sorting, so requires Or of the model of computation.	mega(<i>n</i> log <i>n</i>).
Reduce sortir Given <i>n</i> distir	ng to triangulation. The integers $x_1, x_2, \dots x_n$ to sort, const	ruct a polygonal region such
	ting gives the sorted order.	
polygonal reg	gion = rectangle with <i>n</i> square holes	
(min {22/2} - 1	$\frac{1}{2} \frac{1}{2} \frac{1}$	Any triangulation must link right side of hole for xi left side of next x links to get sorted ord
	Follows	left side of next x links to get sorted on a

S 763 F22	Lecture 2: Triangulation Algorithms	A. Lubiw, U. Waterloo
A lower bound	for triangulating a polygonal region.	
Note that this re	equires indirect addressing.	
-	a stronger model of computation than the co orting has an easy Omega(<i>n</i> log <i>n</i>) lower bou	•
Model: unit cos	t RAM (Random Access Machine) with	
- indirect add - branching b - arithmetic +	based on comparisons	
There is an Om (Paul and Simo	ega(<i>n</i> log <i>n</i>) lower bound for sorting on this n, 1982).	model
Thus tria	ngulating polygonal vegie	on takes
52	(nlogn) on this model	

5763 F22	Lecture 2: Triangulation Algorithms	A. Lubiw, U. Waterloo
Summary		
- plane swee	ep algorithm (basic tool in 2D)	
- O(<i>n</i> log <i>n</i>)	triangulation for polygons and polygonal regi	ons
- pay attentio	on to basic steps of geometric algorithms —	sidedness test
- pay attentio	on to model of computing for lower bounds	
References		
- [CGAA] Se	ctions 3.2, 3.3 (slightly different algorithm)	
- [Zurich not	es] Appendix A	
- [O'Rourke]	2.1 - 2.4	