Geometric Spanners

Given points in the plane, defining a complete graph G with Euclidean lengths, find a sparse subgraph H that approximates distances in G, i.e., we want

 $d_H(u,v) \leq t \ d_G(u,v) = t \ |uv| \quad orall u, v \in V$

the min t is called the **spanning ratio** or "stretch factor" of H. H is a **spanner**.

(More generally spanners can be defined for any edge-weighted graph G.)

Criteria for H:

- minimize the number of edges
- minimize the sum of edge weights
- make H "nice" bounded degree, planar, etc.
- fault-tolerance (*H* should be well-connected)

SURVEY Joseph SB Mitchell and Wolfgang Mulzer. "PROXIMITY ALGORITHMS." Chapter 32 in Handbook of Discrete and Computational Geometry, 2016. (see Lecture 1 slides for link to the Handbook in the library)

Geometric Spanners

Given points in the plane, defining a complete graph G with Euclidean lengths, find a sparse subgraph H that approximates distances in G, i.e., we want

 $d_H(u,v) \leq t \; d_G(u,v) = t \; |uv| \quad orall u,v \in V$

the min t is called the **spanning ratio** or "stretch factor" of H. H is a **spanner**.

Any thee can be split at some vertex

This gives at s u, v close in |uv| but far in the tree. 2 of 17

(More generally spanners can be defined for any edge-weighted graph.)

Can H be a tree?

The Minimum Spanning Tree (MST) has n-1 edges, and min sum of weights but its spanning ratio is Theta(n) in the worst case.

What about a tree of minimum spanning ratio (called the "minimum dilation spanning tree")? NP-hard even for points in the plane

Otfried Cheong, Herman Haverkort, and Mira Lee. "Computing a minimum-dilation spanning tree is NP-hard." *Computational Geometry* 41, no. 3 (2008): 188-205.

d https://doi.org/10.1016/j.comgeo.2007.12.001

The Yao graph — a bounded degree spanner

To construct Y_k : Make k equal-size cones around each point, and connect the point to the nearest neighbour in each cone.

Theorem. Y_k is a t-spanner for t = 1 + O(1/k)

This is easy to prove.

Lecture 19: Spanners, Routing, Networks A. Lubiw, U. Waterloo CS 763 F22 **Planar Spanners** For points in the plane, what is the min spanning ratio achievable by a planar spanner (in the worst case)? We cannot do better than $\sqrt{2}$ spanner: $d_{H}(u, v) = Z$ $d_{H}(u, v) = \sqrt{2}$ This lower bound was improved to 1.4308 in 2016. Best known upper bound is 1.998 — achieved by the Delaunay triangulation. **Theorem.** The Delaunay graph is a t-spanner for $1.5932 \le t \le 1.998$ [Xia 2011] a lower bound

Theorem. The Delaunay graph is a t-spanner for $1.5932 \le t \le 1.998$ The idea of proving that the Delaunay graph is a t-spanner (for a larger t).

Consider Voronoi regions cut by sey sequence of This gives path in Delaunay triangulation (in black) Replace each black edge by and on cincle (see blue and) bength (of black path) grows. and is \leq length of half cincle with diameter xywhich is $\Xi | xy |$

y

Bose and Smid

CS 763 F22	Lecture 19: Spanners, Routing, Networks	A. Lubiw, U. Waterloo
Planar Span	ners of bounded degree	
The Delauna	y triangulation may have unbounded degree	
There are bo	unded degree planar spanners:	
20-spar	nner of degree 4	
6-spanr	ner of degree 6	

Routing. Given a network whose nodes are points in the plane, find a path from source to target just using local information (= coordinates of nodes).

Greedy routing.

From the current node, go to the neighbour that is closest to the target.

Routing. Given a network whose nodes are points in the plane, find a path from source to target just using local information (= coordinates of nodes).

Compass routing.

From the current node, go to the neighbour in the best direction.

compass routing fails on this triangulation

Compass routing always succeeds for Delaunay triangulations (needs proof).

Routing in "ad hoc wireless networks"

A wifi node is a point in the plane. All nodes have the same range, a disc. Two nodes can communicate iff their disks intersect.

This is called a *unit disc graph*, UDG(P) of point set P.

Routing in a unit disc graph:

We can find a planar subgraph and use face routing.

Recall the *Gabriel Graph*, GG(P) — has an edge (u,v) if the circle with diameter uv is empty of other points. GG(P) is planar (it's a subgraph of the Delaunay triangulation).

Claim. If UDG(P) is connected then UDG(P) \cap GG(P) is connected — because it contains MST(P).

UDG(P)

 $UDG(P) \cap GG(P)$

W https://en.wikipedia.org/wiki/Unit_disk_graph

planar and connected

Frey, Ingelrest, Simplot-Ryl

CS 763 F22	Lecture 19: Spanners, Routing, Networks	A. Lubiw, U. Waterloo
Routing in a	network	
Routing is use	ually done via a routing table:	
R (cur	rrent node, destination) = next node to go to	
The size of ro	outing tables is a barrier to efficiency.	
Grand idea: A such that gree to store the vi	Associate each node with a point in the plane ("vir edy routing works. Then a routing table is not nee irtual coordinates.	tual coordinates") eded! You only need
Conjecture. greedy embe	[Papadimitriou and Ratajczak, 2005] Every 3-connected p dding.	lanar graph has a
Note: not eve triangulation!	ry 3-connected planar graph has an embedding a (If this was true, it would prove the conjecture.)	s a Delaunay

CS 763 F22 Lecture 19: Spanners, Routing, Networks A. Lubiw, U. Waterloo Routing in a network **Grand idea**: Associate each node with a point in the plane ("virtual coordinates") such that greedy routing works. Then a routing table is not needed! You only need to store the virtual coordinates. Conjecture. [Papadimitriou and Ratajczak, 2005] Every 3-connected planar graph has a d https://doi.org/10.1016/j.tcs.2005.06.022 greedy embedding. The conjecture was proved in 2010 (by several groups independently) but unfortunately, the number of bits required for the virtual coordinates is too large to make this practical. Furthermore, the number of bits MUST be large in the worst case: Angelini, Patrizio, Giuseppe Di Battista, and Fabrizio Frati. "Succinct greedy d https://doi.org/10.1002/net.21449 drawings do not always exist." Networks 59, no. 3 (2012): 267-274. There is a solution if you change the metric a bit: He, Xin, and Huaming Zhang. "On succinct greedy drawings of plane triangulations d https://doi.org/10.1007/s00453-012-9682-y and 3-connected plane graphs." Algorithmica 68, no. 2 (2014): 531-544.

S 763 F22	Lecture 19: Spanners, Routing, Networks	A. Lubiw, U. Waterloo
Summary s	o far:	
- spanner	s — sparse graphs approximately preserving dist	tances
- local rou bu	Iting in a given network It here we didn't care about the length of the path	that was found
Combining s and s.t. the	spanners and local routing: find a spanner that pe local route is within a constant of the Euclidean dis	ermits local routing, stance
Use the half	θ _e -graph	
There is a for t = 2.8	a local routing scheme that finds a uv-path with ler 86	ngth ≤ t Iuvl
And this is Which is i	s a lower bound for any local routing scheme in th nteresting since the graph is a 2-spanner.	e half θ ₆ -graph.
Bose, Prosenjit, F twenty-third annu	Rolf Fagerberg, André Van Renssen, and Sander Verdonschot. "Competitive routing in the ha al ACM-SIAM symposium on Discrete Algorithms, pp. 1319-1328. Society for Industrial and a	alf-θ 6-graph." In <i>Proceedings of the</i> Applied Mathematics, 2012.
d https://doi.org/10	0.1137/1.9781611973099.104	
A more prac	tical perspective:	
	idea I Quibea John Harshbargar Li Zhang, and An Zhu "Qaamatria anar	

Gao, Jie, Leonidas J. Guibas, John Hershberger, Li Zhang, and An Zhu. "Geometric spanners for routing in mobile networks." *IEEE journal on selected areas in communications* 23, no. 1 (2005): 174-185.

d 10.1109/JSAC.2004.837364

CS 763 F22	Lecture 19: Spanners, Routing, Networks	A. Lubiw, U. Waterloo
Summary		
- idea of sp	panners, some spanner constructions	
- idea of lo	cal routing, some approaches	
References -	see papers listed in slides	
\$762 Locture10		17