How to measure the distance/similarity between two sets/objects in the plane


## Hausdorff distance



$$
\begin{aligned}
& d_{X Y}=\max _{x \in X} \min _{y \in Y} d(x, y) \\
& d_{Y X}=\max _{y \in Y} \min _{x \in X} d(x, y)
\end{aligned}
$$



Hausdorff distance $=\max \left\{\mathrm{d}_{\mathrm{XY}}, \mathrm{d}_{\mathrm{YX}}\right\}$

GC https://structseg2019.grand-challenge.org/Evaluation/

Hausdorff distance can be a bad measure for curves

every point is close to the other curve, but the curves are not similar (a curve is more than a set of points!)

## A better distance measure for curves: Fréchet distance

Walking your dog


The Fréchet distance between the curves is the minimum
leash length that permits such a walk Shripad Thite
A curve is a continuous map $[0,1] \rightarrow R^{2}$ (map time $[0,1]$ to points along the curve) There can be many different parameterizations (corresponding to different speeds).

Definition. The Fréchet distance of two curves $A$ and $B$ is


## Algorithm for Fréchet distance between two polygonal curves in the plane

 Alt and Godeau, 1995d https://doi.org/10.1142/S0218195995000064
The algorithm has two steps:

1. a decision procedure to see if the distance is $\leq \varepsilon$
2. a search to find the $\min \varepsilon$

## Step 1. Testing if the Fréchet distance is $\leq \varepsilon$

 use the free-space diagram : points $\left(\mathrm{t}_{\mathrm{a}}, \mathrm{t}_{\mathrm{b}}\right)$ such that $\mathrm{d}\left(\mathrm{a}\left(\mathrm{t}_{\mathrm{a}}\right), \beta\left(\mathrm{t}_{\mathrm{b}}\right)\right) \leq \varepsilon$


Günter Rote

Lemma. The Fréchet distance is $\leq \varepsilon$ iff there is path from $(0,0)$ to $(1,1)$ in the free space that is monotone in $t_{a}$ and $t_{b}$.

## Step 1. Testing if the Fréchet distance is $\leq \varepsilon$

 How to construct the free space:



Lemma. For two line segments, the free space is [part of] an ellipse (possibly degenerating to a strip if the line segments are parallel).

We can compute the intervals of the free space along each grid line.


Then we can compute the subintervals reachable from $(0,0)$ via a monotone path.

CS 763 F22 Lecture 18: Curves, Trajectories, Fréchet distance A. Lubiw, U. Waterloo

Algorithm for Fréchet distance between two polygonal curves in the plane
The algorithm has two steps:

1. a decision procedure to see if the distance is $\leq \varepsilon$
2. a search to find the $\min \varepsilon$

From the above, Step 1 can be done in time $O(n m)$ for two polygonal curves with $n$ and $m$ edges, respectively.


## Step 2. Finding the minimum $\varepsilon$

Note that the free space grows as $\varepsilon$ increases.
At critical values of $\varepsilon$ there are significant changes to the free space:

1. when $\varepsilon=d(a(0), \beta(0))$ - then the free space contains $(0,0)$
2. when $\varepsilon=\mathrm{d}(\mathrm{a}(1), \beta(1))$ - then the free space contains $(1,1)$
3. when an interval of free space opens up between two cells
4. when a new horizontal or vertical passage opens up
(1) and (2) are single distances
(3) is the distance between a vertex of one curve

a horizontal passage opens and an edge of the other curve, so $\mathrm{O}(\mathrm{nm})$ events.
(4) involves two vertices of one curve and an edge of the other curve, so $O\left(n^{2} m+n m^{2}\right)$ events.

These events can be found in time $O(1)$ each.
Sort the events $\mathrm{O}\left(\left(n^{2} m+n m^{2}\right) \log (n m)\right)$.
Do binary search to find minimum $\varepsilon$.
Total time: $\mathrm{O}\left(\left(\mathrm{n}^{2} \mathrm{~m}+\mathrm{nm} \mathrm{m}^{2}\right) \log (\mathrm{nm})\right)$


## Algorithm for Fréchet distance between two polygonal curves in the plane

 The algorithm has two steps:1. a decision procedure to see if the distance is $\leq \varepsilon$
2. a search to find the $\min \varepsilon$

From above, Step 2 can be done in time $\mathrm{O}\left(\left(n^{2} m+n m^{2}\right) \log (n m)\right)$. It can be improved to $O(n m \log (n m))$ using "parametric search", a technique due to Megiddo.
We can write this bound as $\mathrm{O}\left(\mathrm{n}^{2} \log \mathrm{n}\right)$ where n is total input size.

## A lower bound for Fréchet distance

There is no subquadratic algorithm assuming the Strong Exponential Time Hypothesis (SETH)

SETH says that 3-SAT has no subexponential time algorithm. This is stronger than assuming $\mathrm{P} \neq \mathrm{NP}$. w whtos:len.wikipedia.orgwiwikiExponential time _Iypoothesis

Karl Bringmann. "Why walking the dog takes time: Frechet distance has no strongly subquadratic algorithms unless SETH fails." In 2014 IEEE 55 th Annual Symposium on Foundations of Computer Science d 10.1109/FOCS.2014.76

## Fréchet distance in practice

## Variants on Fréchet distance

the leashes provide a way of morphing one curve to another

but the intermediate curves might not be simple even if the originals are

Efrat, Alon, Leonidas J. Guibas, Sariel Har-Peled, Joseph SB Mitchell, and T. M. Murali. "New Similarity Measures between Polylines with Applications to Morphing and Polygon Sweeping." (2002).
d https://doi.org/10.1007/s00454-002-2886-1

when the leash must stay inside the region bounded by the input curves, the intermediate curves are simple

## Polyline simplification.

Given a polyline, delete points while keeping the curve "close" to the original. Important in cartography.

Douglas-Peucker Algorithm [1973] Input: $p_{1}, \ldots, p_{n}$, error $\varepsilon$
call Test(1, n)
Test (i, j)
If all points $p_{k}, i<k<j$ are within distance $\varepsilon$ of line segment $p_{i} p_{j}$, then delete all $p_{k}$ Else
let $p_{k}$ be the farthest point Test( $\mathrm{i}, \mathrm{k}$ ), , Test(k,j)

## Properties:



- output has Hausdorff distance $\leq \varepsilon$
- may not give the min number of points $\longrightarrow$
- may not keep the curve simple

Runtime $\mathrm{O}\left(\mathrm{n}^{2}\right)$, can be improved


David Legland, Marie-Françoise Devaux, Fabienne Guillon
may keep the curvesimpl


Douglas-Peucker


Optimal

## Polyline simplification.

Given a polyline, delete points while keeping the curve "close" to the original.

Imai-Iri Algorithm [1988]
Input: $p_{1}, \ldots, p_{n}$, error $\varepsilon$


Construct graph G with edge ( $\mathrm{i}, \mathrm{j}$ ) if all points $\mathrm{p}_{\mathrm{k}}, \mathrm{i}<\mathrm{k}<\mathrm{j}$ are within distance $\varepsilon$ of line segment $p_{i} p_{j}$
Find a shortest path from 1 to $n$

## Properties:



- output has Hausdorff distance $\leq \varepsilon$
- may not give the min number of points
- does not always keep the curve simple

Runtime $\mathrm{O}\left(\mathrm{n}^{3}\right)$ can be improved to $\mathrm{O}\left(\mathrm{n}^{2}\right)$

both algorithms leave this curve intact

this smaller simplification has Hausdorff distance $\varepsilon$

## CS 763 F22 Lecture 18: Curves, Trajectories, Fréchet distance A. Lubiw, U. Waterloo

## Polyline simplification.

Given a polyline, delete points while keeping
the curve "close" to the original.

## Using the Fréchet distance rather than Hausdorff

Marc van Kreveld, Maarten Löffler, and Lionov Wiratma. "On Optimal Polyline Simplification using the Hausdorff and Fréchet Distance."

- http://dx.doi.org/10.4230/LIPIcs.SoCG.2018.56

Further reading

Agarwal, Pankaj K., Sariel Har-Peled, Nabil H. Mustafa, and Yusu Wang. "Near-linear time approximation algorithms for curve simplification." Algorithmica 42, no. 3-4 (2005): 203-219.
https://doi.org/10.1007/s00453-005-1165-y.

## Homotopic Paths

Two curves from s to $t$ in the presence of obstacles are homotopic if one can be deformed to the other without intersecting the obstacles.

blue paths are homotopic
$\mathrm{O}(\mathrm{n} \log \mathrm{n})$ to test if two simple paths are homotopic
Sergio Cabello, Yuanxin Liu, Andrea Mantler, and Jack Snoeyink. "Testing homotopy
for paths in the plane." Discrete \& Computational Geometry 31, no. 1 (2004): 61-81.
d https://doi.org/10.1007/s00454-003-2949-y.

Finding a shortest path homotopic to a given one
Alon Efrat, Stephen G. Kobourov, and Anna Lubiw. "Computing homotopic shortest paths efficiently." Computational Geometry 35, no. 3 (2006): 162-172.
d https://doi.org/10.1016/j.comgeo.2006.03.003
Combining homotopic and Fréchet distance
Chambers, Erin Wolf, Eric Colin De Verdiere, Jeff Erickson, Sylvain Lazard, Francis Lazarus, and Shripad Thite. "Homotopic Fréchet distance between curves or, walking your dog in the woods in polynomial time."
Computational Geometry 43, no. 3 (2010):
295-311.


[^0]
## Self-Overlapping Curves

A self-overlapping curve is formed by stretching a disk. Overlapping is allowed. Twisting in 3D is not.


Uddipan Mukherjee

two different immersions of "Milnor's doodle"


An $\mathrm{O}\left(\mathrm{n}^{3}\right)$ time dynamic programming algorithm to detect self-overlapping curves

> Peter W. Shor, and Christopher J. Van Wyk. "Detecting and decomposing selfoverlapping curves." Computational Geometry 2, no. 1 (1992): 31-50. $\quad$ d https://doi.org/10.1016/0925-7721(92)90019-0

[^1]CS 763 F22 Lecture 18: Curves, Trajectories, Fréchet distance A. Lubiw, U. Waterloo

The unknot problem.
Given a knot diagram, does it represent the unknot?

two diagrams of the unknot

the trefoil knot

is this the unknot?
1999. The unknot problem is in NP. d $\frac{10.1145 / 301970.301971}{}$
2016. The unknot problem is in co-NP.
https://arxiv.org/abs/1604.00290
OPEN. Is there a polynomial time algorithm for the unknot problem?

## CS 763 F22 Lecture 18: Curves, Trajectories, Fréchet distance A. Lubiw, U. Waterloo

Summary

- curves
- Fréchet distance
- curve simplification
- self-overlapping curves
- knots

References

- on slides


[^0]:    d https://doi.org/10.1016/j.comgeo.2009.02.008

[^1]:    Evans, Parker, and Carola Wenk. "Combinatorial Properties of Self-Overlapping Curves and Interior Boundaries." (2020).arxiv:2003.13595

