CS 763 F22	Lecture 17: Motion Planning	A. Lubiw. U. Waterloo
	g	· · · · · · · · · · · · · · · · · · ·

Moving objects in space with obstacles/constraints.

Objects = robots, vehicles, jointed linkages (robot arm), tools (e.g. on automated assembly line), foldable/bendable objects. Objects need not be physical (e.g. "fly-through" animation).

We will concentrate on moving from one position to another, though visiting a sequence of positions is also very interesting.

CS 763 F22	Lecture 17: Motion Planning	A. Lubiw, U. Waterloo
Translational m	otion	
	a polygon tra among polyg	anslating gonal obstacles.
Start with a poin Then we can use	2	s lecture.
But we do not re	ally need the shortest path.	

CS763-Lecture17

CS 763 F22	Lecture 17: Motion Planning	A. Lubiw, U. Waterloo

A point moving among polygonal obstacles

How to find if there is *some* path from point s to point t among polygonal obstacles.

the blue graph is called a *roadmap*

- construct trapezoidal map of space outside obstacles

- construct dual graph (in blue above)
- check if Trapezoid(s) and Trapezoid(t) are connected in the dual graph
- time O(n log n)

CS763-Lecture17

CS 763 F22	Lecture 17: Motion Planning	A. Lubiw, U. Waterloo
A point moving	among polygonal obstacles	
An alternative ro	admap: the Voronoi diagram of the obstac	les.
	• q _{start}	
Then, for a giver	route, the point stays as far as possible fr	rom the obstacles.
702 1 + 17		

CS 763 F22	Lecture 17: Motion Planning	A. Lubiw, U. Waterloo
Minkowski sum		
Let A and B be set	ts of points in the plane.	
Definition. The M	linkowski sum of A and B is	
A⊕ E	$B = \{ x + y : x \in A, y \in B \}$ as vector addition of points	
$x_0 \oplus B = \{x_0 \\ so A \oplus B =$	+ y : y \in B } = translate B by vector x_0 translate B by all possible points in A	
Let P = polygon, D Then P \oplus D = uni) = disc centered at (0,0) on of copies of D placed at each point of l	
\square		
P	D P⊕D	
762 Locturo17		

CS 763 F22	Lecture 17: Motion Planning	A. Lubiw, U. Waterloo
Can polygon R polygonal obsta	move (via translations) from initial to fin icles?	al position among
High level idea		
1. compute the	e Minkowski sum P \oplus (–R) for each obstac	le P
2. take the uni	on, to obtain new polygonal obstacles	
3. test if a poir among the	nt (the reference point) can move from initia new enlarged obstacles	al to final position
What we will co	ver:	
- the case whe	ere obstacles and R are convex	
- computing - computing	the Minkowski sum of two convex polygor the union of convex Minkowski sums	IS
- the idea of ha	andling non-convex polygons	

CS 763 F22	Lecture 17: Motion Planning	A. Lubiw, U. Waterloo
The Minkowski	sum of two convex polygons	
Theorem . If P a $P \oplus R$ is convex	and R are convex polygons with n and m e with at most n+m edges and can be found	dges, respectively, then d in O(n+m) time.
Proof Let P ha	ve vertices p ₁ , p ₂ , p _n . Let R have verti	ces r ₁ , r ₂ , , r _m .
Claim. Vertices Stronger Claim the extreme point P	of P ⊕ R have the form p _i + r _j . The vertex (extreme point) of P ⊕ R in contrast of P and R in direction d.	lirection d is the sum of
How to find P \oplus	R	
rotate	direction d	
Each -	ime the extreme vertex (o	of Por R) changes,
output	corresponding vertex of	POR.

CS 763 F22	Lecture 17: Motion F	Planning	A. Lubiw	, U. Waterloo
How to deal with	non-convex obstacles			
Cut them into triar	ngles. (We assume R is co	onvex.)		
$P \oplus R = Union \{$	$T_{P} \oplus R : T_{P}$ a triangle of	P }		
T _P ⊕ R is a o	onvex Minkowski sum, an	d we know how to	take their u	nion.
Examples of more	complicated Minkowski su	ums:		
P non-convex		P non-convex		
R convex	<i>P</i> + <i>R</i>	R non-convex		
Figure 83: Mink	owski sum of O(nm) complexity.			
22 Looturo17				

	Lecture 17. Motion Fiamming	A. LUDIW, O. Waterio
Completing the	e plan.	
Suppose obstac	les have total size n and the robot is conve	ex of fixed size.
Forbidden space	ce = union of enlarged convex polygons = omplement of forbidden space.	U { P \oplus (–R): P an obstacle
Forbidden space	e has size O(n) by Theorems 1 and 2.	
FA(, I' Forninger	n space can be complited in U(n log n) time	
Then the problem	n space can be computed in O(n log n) time O(n log ² n) time divide and conquer algorith A]. m is reduced to finding a path for a point in	a polygonal region
Then the problem of size O(n).	n space can be computed in O(n log n) time O(n log ² n) time divide and conquer algorith A]. m is reduced to finding a path for a point in	a polygonal region
Then the problem of size O(n).	n space can be computed in O(n log n) time O(n log ² n) time divide and conquer algorith A].	a polygonal region
Then the problem of size O(n).	n space can be computed in O(n log n) time O(n log ² n) time divide and conquer algorith A]. m is reduced to finding a path for a point in	a polygonal region
Then the problem of size O(n).	n space can be computed in O(n log n) time O(n log ² n) time divide and conquer algorith A]. m is reduced to finding a path for a point in	a polygonal region

CS 763 F22	Lecture 17: Motion Planning	A. Lubiw, U. Waterloo
Translational mot	ion planning in higher dimensions	
in 2D O(n log n)	by above method (for convex robot of	fixed size)
in 3D O(n ² log ² (Note that this fin	n) by similar method (for convex robot nds a path, not necessarily a shortest p	of fixed size) bath.)
General road ma degrees of freed	ap algorithm of Canny O(n ^d log n) when om — this applies to rotational motion	re d is the number of as well.

CS 763 F22	Lecture 17: Motion Planning	A. Lubiw, U. Waterloo
Robot Arm Mot	tion (Linkages)	
The study of link linear motion	ages is old, e.g. Peaucellier linkage to cor	nvert rotary motion to
		Q
2 https://	as P moves on a circle, Q moves on a	line
We will just look Input is a polygo angles between	at a chain (not a general graph, which get onal chain where the segments ("links") hav successive links may change.	s into "rigidity theory"). ve fixed lengths and the
Two models:		
- intersection each link is s	of links allowed, e.g. above, where linkage slightly higher (in 3rd dimension) than prev	e is essentially planar, but ious
- intersections	s forbidden, e.g. protein folding, robot arm	in 3D

CS 763 F22	Lecture 17: Motion Planning	A. Lubiw, U. Waterloo
Theorem . Given in the plane, the r	a chain v ₀ , , v _n with link lengths L reachability region of v _n is an annulus v	₁ , , L _n and with v ₀ pinned with
outer radius	$= S = \Sigma L_i$	S = sum
inner radius :	$= \begin{cases} M - R, \text{ where } M = \max Li, R = S - \\ 0 \text{ if } R > M \end{cases}$	– M = max, R = the rest
Idea of proof		
General case by i The first n-1 links of the annulus an	induction on n. yield an annulus. Adding the last link, d a disc — which is an annulus.	gives the Minkowski sum
	The formulas for o	outer and inner radius
(b)	R are clear if L_1 is the set of the se	ne longest link,
	but note that the o	order does not matter!
	FI	
Deva	adoss and O'Rourke	
CS763-Lecture17		21 of 2

CS 763 F22	Lecture 17: Motion Planning	A. Lubiw, U. Waterloo
2. Given a linkag Forbid interse	ie, can we go from any configuration to an ctions.	y other?
In 3D, the answe	er is "not always".	t to scale Erik Demaine
	Biedl, T., Demaine, E., Der O'Rourke, J., Overmars, M Toussaint, G. and Whitesic Locked and unlocked polyg 2001	maine, M., Lazard, S., Lubiw, A., I., Robbins, S., Streinu, I., des, S., gonal chains in three dimensions.
Fig. 1. A locked, op	pen chain K with long "knitting needles" at the ends.	
OPEN. Can a cl	nain of unit length links be locked? relev	ant for protein chains.
OPEN. Find a po	olynomial time algorithm to test if a 3D poly	ygonal chain is locked.

(It is PSPACE-hard to test if we can get from one configuration to another.)

CS 763 E22	Lecture 17 [.] Motion Planning	A Lubiw U Waterloo
00100122		

Theorem. In 2D, any chain can be straightened. Any closed chain can be made convex.

Robert Connelly, Erik D. Demaine, and Günter Rote.

"Straightening Polygonal Arcs and Convexifying Polygonal Cycles." 2003

(Erik Demain's PhD thesis work)

This implies that a linkage can go from any configuration to any other.

initial config. \longrightarrow straight config. \longleftarrow final config.

idea of proof: they show that it suffices to use *expansive motions* — the distance between any two vertices never decreases.

S 763 F22	Lecture 17: Motion Planning	A. Lubiw, U. Waterloo
A better way to g intermediate stra	o from initial to final configuration — avoid aight/convex chain.	d going through
Hayley Iben, James F "Refolding planar poly	. O'Brien, and Erik D. Demaine. gons." 2009.	

Fig. 2 The *top row* demonstrates how using the vertex-position metric alone will, as expected, generate a sequence with self intersections. The *bottom row* illustrates how the collision-avoidance machinery alters the vertex motions to avoid self intersection. Computation times were less than one second

CS 763 F22	Lecture 17: Motion Planning	A. Lubiw, U. Waterloo
Summary		
- Motion plann	ing	
- convex rol - linkages	oot translating among 2D obstacles	
References	ntor 12	
	pier 13	
- [Zurich hotes	J Appendix D	