CS 763 E22	Lecture 16 [.] Shortest Paths	A Lubiw U Waterloo
00700122		

Shortest paths in the plane with polygonal obstacles

Given some polygons ("obstacles") in the plane, a start point s and end point t, find the shortest path from s to t that avoids the obstacles.

Note: most solutions actually allow us to find the shortest path from s to every t ("single source" shortest path problem).

CS 763 F22	Lecture 16: Shortest Paths	A. Lubiw. U. Waterloo

Shortest paths in the plane with polygonal obstacles via Visibility

Visibility graph:

Nodes are vertices of the polygonal obstacles plus S and T. Edge (a,b) if the line segment ab does not intersect the interior of any obstacle. weight (a,b) = Euclidean length of segment ab.

Problem becomes: find the shortest path from S to T in the visibility graph.

Use Dijkstra's shortest path algorithm. Run time $O(m + n \log n)$ m = #edges.

But m can be Theta(n²).

CS 763 F22	Lecture 16: Shortest Paths	A. Lubiw, U. Waterloo
Shortest paths	in the plane with polygonal obstacles v	via Visibility
Computing the	visibility graph.	
Obvious: O(n ³) Plane sweep: O(Line arrangemer	(n ² log n) nts: O(n ²)	
Output sensitive [Ghosh and Mou Huge efforts wer graph can have	: O(n log n + k), k = output size = number int, 1991]. It into this line of research, but the bottlen n ² edges.	of edges of vis. graph. eck is that the visibility
Next: the O(n ²) a (described for no	algorithm via line arrangements [Welzl, 19 on-degenerate disjoint line segments).	85]
	5 .	
	o t	
		here the line segments
CS763-Lecture16		(with polygonal obstacles, meet at point. 7 of 36

763 F22	Lecture 16: Shortest Paths	A. Lubiw, U. Waterloo
Computing the (described for no	visibility graph in O(n²). [Welzl, 1985] n-degenerate disjoint line segments).	
1. shoot a horizor segment it see O(n log n) via	ntal ray from every vertex to find which s to the right. vis(v) = segment it sees. plane sweep. ~ horiz. Line fop to bottom	
2. sweep the dire maintaining vis	ction vector cyclically,	
we will find a v direction vecto	isibility edge (a,b) when the b r is parallel to it.	
How to sweep	the direction vector:	
Visibilities only	change when the direction vector goes th	rough 2 vertices.
Find all (n cho	ose 2) lines through pairs of points and so we will see a faster way	rt by slope. O(n ² log n) using arrangements!

S 763 F22	Lecture 16: Shortest Paths	A. Lubiw, U. Waterloo
Computing the	visibility graph in O(n ²).	
Each update is C	0(1). Total cost of updates is O(n ²).	
The bottleneck is NO. We just nee the correct order.	O(n ² log n) to sort the slopes. Do we ne d that the n-1 lines through any one poin	eed to do that? t a must be handled in
Case 3 is crucial we handle directi correct order aro	 we need vis(b) to be correct when on ab. But that's ok if we have the und b. 	case 3. b is an endpoint of vis(a)
Plan. Take the d Vertices (points) Directions (lines	ual. become lines. through 2 points) becomes points.	$a = \frac{1}{\sqrt{b}} b$ vis(a)
X J	Tline-for vertex a	
And	/ we want to deal with the points o	on line a in order.
Compute the arra	angement. $O(n^2)$. Direct edges left to rig	ht.

This gives a directed acyclic graph. Now use a "topological order" of the graph. This avoids sorting.

Lecture 16: Shortest Paths A. Lubiw, U. Waterloo CS 763 F22 Recall Shortest paths in the plane with polygonal obstacles S Two main approaches: 1. find a shortest path in the visibility graph using Dijkstra's shortest path algorithm. $O(n^2)$ because the graph may have many edges. 2. "continuous" Dijkstra approach Note: real-RAM model of computation, since we compare sums of square roots.

5763 F16	Lecture 16: Shortest Paths	A. Lubiw, U. Waterloo
Reminder of Dij single source sho	kstra's algorithm ortest paths for non-negative edge weights	S.
S	d(v) = shor using vertice	test path from s to v ces in S plus one edge to v
shortest path k	enour VS	
Initialize: S =	null d(s) = 0 d(u) = infinity for all other	· u
update step:		
pick v in V - add v to S for edge (v,	S to minimize $d(v)$ u), u in V - S	
u(u) <	()	
line (*) takes C Total time O(D(m) in total. Use a priority queue to store m + n log n)	d(v) values.

CS 763 E22	Lecture 16: Shortest Paths	A. Lubiw. U. Waterloo
0010012		

Geometric visualization of Dijkstra's algorithm — imagine paint flowing along edges

a approach. es: ents where the wave front changes c occurs next (use a priority queue)	ombinatorially
es: ents where the wave front changes c occurs next (use a priority queue)	ombinatorially
ents where the wave front changes c occurs next (use a priority queue)	ombinatorially
occurs next (use a priority queue)	
r that event	
O(n ² log n).	
n) by Hershberger, Suri	
ng space and wavefront	
is a lower bound	(b) chreiber & Sharir
	ng space and wavefront is a lower bound

6	763	E 22
00	105	F22

Lecture 16: Shortest Paths

A. Lubiw, U. Waterloo

Shortest paths in 3D with polyhedral obstacles

Note that a shortest path does not have to travel on segments between vertices.

CS 763 F22	Lecture 16: Shortest Paths	A. Lubiw, U. Waterloo

Shortest paths in 3D with polyhedral obstacles

Exact PSPACE algorithm. Canny '88. Uses decidability theory of real closed fields.

Approximation algorithm. Papadimitriou '85;

idea: put many points along each edge and use Dijkstra (on graph)

details are a bit tricky:

- points are placed in geometric progression along edges (not placed uniformly)
- this divides the edge into *segments* which become the vertices of the graph

Main Claim. If S and T are at distance *d* then the approximate path has length

 $\leq (1+\epsilon)d$

In 2000, Choi, Sellen, Yap, found and corrected an error caused by mixing the algebraic model, where we compute distance using \sqrt, with the bit model used in approximation analysis

CS 763 F22	Lecture 16: Shortest Paths	A. Lubiw. U. Waterloo

Shortest paths on a polyhedral surface

Surface is made up of polygons (usually triangles) joined at edges. Paths may cut across faces.

CS 763 F22	Lecture 16: Shortest Paths	A. Lubiw, U. Waterloo
includes sho	ortest paths on surface of polyhedron	
	Fast Exact and Approximate Geodesics on SIGRAPH 2005 thtps://doi.org/10.1145/1073204.1073228	
CS763-Lecture16		22

S 763 F22	Lectu	ure 16: Shortest Paths	A. Lubiw, U. Waterloo
Shortest path on	a polyhed	ral surface	
shortest paths a obstacles in the	among ⊆ e plane	shortest paths on a polyhedral surface	⊆ shortest paths among obstacles in 3D
	<i>s</i>		
		Т	

CS 763 F22	Lecture 16: Shortest Paths	A. Lubiw, U. Waterloo
Shortest paths	on a polyhedral surface	
History		
O(n ⁵) O'Rourke a	and students, '85	
O(n ² log n) Mitch	nell, Mount, Papadimitriou, '87 — using co	ontinuous Dijkstra approach
O(n ²) Chen and	Han, '96	
-O(n log² n) Kapc	or '99 - no longer believed	
O(n log n) for the	e special case of a convex polyhedron. S	Schreiber, Sharir, 2006

CS 763 F22	Lecture 16: Shortest Paths	A. Lubiw, U. Waterloo
Chen and Han	algorithm to find shortest paths on a po	olyhedral surface
Input: polyhedra (every non-bour n = # triangles.	al surface made up of triangles in 3-space, dary edge is in 2 triangles). Source point	, joined edge-to-edge s, destination point t.
First consider a	convex surface.	
Then a shortest	path will not go through any vertices.	
Claim 1. Shorte	est paths unfold to straight lines.	
Claim 2. A shor	test path does not enter a face twice (or v	we could short-cut).
Claim 3. Two sh	ortest s-t paths do not intersect (except at	s and t).
Idea. Start unfo	Iding from the triangle containing s.	2
- at each edge the - triangles may a	nere is a unique "next" triangle to glue on appear multiple times	5 Trz
- the target t ma - the unfolding w	vill self-overlap in general	Le another Copy of Ta

CS763-Lecture16

CS 763 E22	Lecture 16: Shortest Paths	A Lubiw U Waterloo
00700122		

Chen and Han algorithm to find shortest paths on a polyhedral surface

Build a tree. Nodes are the segments.

Initial tree Each node has one or two children

Lemma. After depth n, the tree contains all shortest paths from s to any point.

Proof.

A shortest path does not repeat a face So it gees through <= n faces (= triangles).

Then just compare all straight line paths from s to a copy of t in the tree to find the shortest.

well, ok — but this is exponential size and time!

CS 763 F22	Lecture 16: Shortest Paths	A. Lubiw, U. Waterloo
Chen and Han a	algorithm to find shortest paths on a	polyhedral surface
How to prune the Lemma. ("one ve cases, a segmen four children.	e segment tree: ertex one cut") Suppose triangle T appe nt splits at vertex v in triangle T. Then w	ears twice and in both ve can discard one of the
S T	segments s_1 and s_2 both split at vertex v in copies of triangle T	$\frac{12}{5_1}$
Sz S	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S overlaying the copies of T
Consequence.	$d_2 < d_1$ then s_{12} can be discarded (it needs the segment tree is $O(n^2)$:	ever gives shortest paths).
There a because	one ((n) leaves in the t 2 the pair U, T (0	(n) pairs)
S763-Lecture 16	ntes just one branch in	the tree 31 of 3

CS 763 F22	Lecture 16: Shortest Paths	A. Lubiw. U. Waterloo
00,00,122		

Chen and Han algorithm to find shortest paths on a polyhedral surface

More precisely, if $d_2 < d_1$ then s_{12} can be discarded (it never gives shortest paths).

Proof.

Let σ_1 be the path from s to v through segment s_1 Let σ_2 be the path from s to v through segment s_2

Then $|\sigma_1| = d_1$ and $|\sigma_2| = d_2$.

Consider a path σ through s₁₂ σ crosses σ_2 at x

Notation: $\sigma_2(s,x) = \text{subpath of } \sigma_2 \text{ from s to } x$

Claim. $|\sigma(s,x)| > |\sigma_2(s,x)|$. Thus s_{12} never gives shortest paths. **Proof.**

$$\begin{aligned} |\sigma(s, x)| + |\sigma_2(x, v)| &= dz \\ > |\sigma_1(s, v)| &= |\sigma_1| > |\sigma_2| (by assumption) \\ &= |\sigma_2(s, x)| + |\sigma_2(x, v)| \end{aligned}$$

>っ

CS 763 F22

Application of shortest paths on convex polyhedron: unfolding problem

Durer, 1498

Open problem: can every convex polyhedron be cut on its edges to a planar unfolding?

CS 763 F22	Lecture 16: Shortest Paths	A. Lubiw, U. Waterloo
Summary		
- shortest path	hs:	
- polygons - polygonal - 3D NP-ha - polyhedra	O(n) domains O(n log n) ard al surfaces O(n ²)	
References		
- [CGAA] Cha	apter 15	
63-Lecture16		36 0