Recall

Recall a problem we considered before: given n points, are there 3 (or more) collinear
By duality (points $<->$ lines) this becomes: given n lines, do 3 of them intersect at a point.

To get an $\mathrm{O}\left(\mathrm{n}^{2}\right)$ algorithm, we study line arrangements.

A set of n lines in the plane partitions the plane into faces (cells), edges, vertices, called the arrangement.

Recall

How to update after adding line ℓ_{i} to the line arrangement:
To bound the run time we need the Zone Theorem

Definitions. Let A be an arrangment, and ℓ be a line not in A. The zone of ℓ in arrangement A is $Z_{A}(\ell)=\{$ faces of A cut by $\ell\}$.
The size of the zone is $z_{A}(\ell)=\Sigma\left\{\#\right.$ edges in face $f: f \in Z_{A}(\ell)$
$z_{n}=\max \left\{z_{A}(\ell)\right.$: over all possible ℓ, A of n lines $\}$
Zone Theorem. z_{n} is $\mathrm{O}(\mathrm{n})$.

Lecture 15: Arrangements continued
A. Lubiw, U. Waterloo

Recall

Arrangements in higher dimensions

For an arrangement of n hyperplanes in R^{d}

- the number of cells is $\mathrm{O}\left(\mathrm{n}^{\mathrm{d}}\right)$
- Zone Theorem. The zone of a hyperplane has complexity $\mathrm{O}\left(\mathrm{n}^{\mathrm{d}-1}\right)$

In 3D, for n planes, there are $O\left(n^{3}\right)$ cells, and a zone has complexity $O\left(n^{2}\right)$.

Application: Aspect Graph

What are all the combinatorially distinct viewpoints of an object?

Figure 7: Aspect graph of a cube. The front, left, right, back, top and under sides of the cube are denoted by the letters F, L, R, B, T and U respectively.

[^0]Lecture 15: Arrangements continued
A. Lubiw, U. Waterloo

area with same viewpoint = cell in arrangement of lines through pairs of visible points
n^{2} lines, so n^{4} cells
\checkmark can we really get $\Omega\left(n^{2}\right)$ lines convex polygon - $\theta(n)$ lines

Application: Aspect Graph

Aspect graph of convex polyhedron in 3D with n vertices
$\mathrm{O}(\mathrm{n})$ faces $\Rightarrow \mathrm{O}\left(\mathrm{n}^{3}\right)$ cells
for non-convex polyhedron Theta(n^{9}) cells
we need planes through every 3 points (in worst case)
so $\mathrm{O}\left(\mathrm{n}^{3}\right)$ planes $\Rightarrow \mathrm{O}\left(\mathrm{n}^{9}\right)$ cells

The aspect graph can be used to:

- find the viewpoint seeing the maximum number of faces
- find a "nice" projection
- figure out where a robot is, based on what it sees.

Recall Duality Map

$$
\text { point in } \mathbb{R}^{2} \quad{ }^{*} \longleftrightarrow \text { line in } \mathbb{R}^{2}
$$

$$
p=\left(p_{1}, p_{2}\right) \quad \longleftrightarrow \stackrel{*}{p_{0}}: y=p_{1} x-p_{2} \quad \text { (not defined for vertical lines) }
$$

parabola

Lemma. point p lies on/above/below line q^{*} iff point q lies on/above/below line p^{*}.
Corollary. Some points lie on a line iff their dual lines go through a point.

Properties of duality map
Lemma. point p lies on/above/below line q* af point q lies on/above/below line p*.
Corollary. Some points lie on a line jiff their dual lines go through a point.
Proof.

$$
\begin{array}{lll}
p=(a, b) & p^{*}: & y=a x-b \\
q=(c, d) & q^{*}: & y=c x-d
\end{array}
$$

above
p lies on q^{*}

$$
\left.\begin{array}{l}
b \geqq c a-d \\
d \geqq a c-b
\end{array}\right\}
$$

same.
same.

Application: Collinear points.

Given n points, are there 3 (or more) collinear?
Solution. Apply duality. There are 3 collinear points iff the dual has 3 lines through a point. Construct the arrangement, and check for this. $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Is there a faster algorithm? - see below

Any vertical line not through vertices orders the edges top to bottom.
Level $L_{1}=$ all edges that appear first (topmost) along such a vertical line: $L_{1} L_{2} L_{5} L_{7}$ Level $L_{i}=$ all edges that appear in i-th place along such a line

Claim. Levels can be constructed in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time.

Claim. Levels can be constructed in $O\left(n^{2}\right)$ time.
Compute arrangement $O \mathrm{Cn}^{2}$)
sort lines by slope - this gives edges in each $0(n \log n)$ level at $x=-\infty$
Trace line l through the arrangement

Total time $O\left(n^{2}\right)$.

Levels in an arrangement

Open problem: what is the complexity of level L_{k} ?
i.e. what is the worst case number of edges in level L_{k} ?

Dual: given a set of points, how many subsets of size k can be cut away with a line? For $\mathrm{k}=\mathrm{n} / 2$, how many halving lines can there be?

Best known bounds:

$\Omega(n \log k)$	1973, Erdös et al., raised a bit by Toth, 2001
$O\left(n k^{1 / 3}\right)$	Tamal Dey, 1997

Also: find level L_{k} (without constructing whole arrangement)

Application: Discrepancy problem.

Given n points in a unit square, do they provide a reasonable random sample?
discrepancy of half-plane $\mathrm{h}=\mid$ area of square below $\mathrm{h}-$ fraction of points below $\mathrm{h} \mid$

example:
7 points in shaded area; 13 points total so fraction of points below h is $7 / 13$

Given n points, find the maximum discrepancy of any half-plane.
Arrangements give an $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time algorithm for this.
nice presentation:
(道) http://www.ams.org/samplings/feature-column/fc-2011-12

Application: Discrepancy problem.
Lemma. Maximum discrepancy occurs

1. at line h through 2 points, or
2. at line h through 1 point and the point is the midpoint of the segment $h \cap$ unit square

Proof.

- if h goes through o points we can slide h up or down to increase discrepancy.
- if h goes through 1 point p

increase discrepancy by rotating h around P unless P is midpoint.

Solving the discrepancy problem via arrangements.

- type 2 lines h can be checked brute force

$O(n)$ per point
$O\left(n^{2}\right)$ total.
- type 1 points - h thru 2 points use dual arrangement
point h^{*} though 2 lines at "intersection of
test all vertices of arrangement
- the level gives \# points above.

Total $O\left(n^{2}\right)$ (area below h takes $O(12)$

Application: Ham sandwich theorem.

Theorem. Given a set of red points and a set of blue points in the plane, there exists a line that cuts both sets in half.

General Ham-Sandwich Theorem

 (from '30's - 40's). In R^{d}, any d measurable objects can be cut in half by one ($\mathrm{d}-1$) dimensional hyperplane.

For discrete version in plane, there is an $\mathrm{O}(\mathrm{n})$ time algorithm to find the halving line.

Can be viewed in terms of arrangements.

Theorem. Given a set of red points and a set of blue points in the plane, there exists a line that cuts both sets in half.

Standard proof idea uses a rotating line. In terms of duality and arrangements:

$$
\begin{aligned}
& \text { the two } \frac{n}{2} \text {-levels } \\
& \text { intersect at a point }
\end{aligned}
$$

\leftrightarrow halving line.
the $n / 2$ level of red lines
cements:

$\downarrow 8$
\rightarrow this point P
\Rightarrow line p^{*} is solution to ham

3-SUM hardness
Can we test for 3 collinear points (for point set in the plane) faster than $\mathrm{O}\left(\mathrm{n}^{2}\right)$?
It is a " 3 -SUM-hard" problem, one of a large class of "equivalent" problems that all seem(ed) to need $O\left(n^{2}\right)$ time.

3-SUM problem: Given n numbers, are there 3 that sum to 0 ? (repetition is allowed)
Exercise. Find an $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time algorithm for 3-SUM.
[This is not too hard. Start by sorting the points.]
Lemma. If we could test for 3 collinear points in $o\left(n^{2}\right)$, then we could solve $3-S U M$ in $o\left(n^{2}\right)$.

Proof. Given n numbers as input to 3-SUM, map each number x to the point $\left(x, x^{3}\right)$.
Claim. 3 numbers a,b,c sum to 0 iff the corresponding points are collinear.
points collinear if slopes $\left(a, a^{3}\right)$ to $\left(b, b^{3}\right)=$ slope $\left(b, b^{3}\right)$ to $\left(c, c^{3}\right)$

$$
\text { if } \frac{b^{3}-a^{3}}{b-a}=\frac{c^{3}-b^{3}}{c-b} \text { iff } b^{2}+a^{2}+a b=c^{2}+b^{2}+c b
$$

$$
\text { if } b(a-c)=c^{2}-a^{2} \text { inf } b=\frac{c^{2}-a^{2}}{c-a} \quad b=-(a+c)
$$

$$
\text { if } a+c+b=0
$$

recent breakthrough on 3-SUM:

an algorithm with run time $O\left(n^{2} /(\log n / \log \log n)^{2 / 3}\right)$

Grønlund, Allan, and Seth Pettie. "Threesomes, degenerates, and love triangles." Journal of the ACM, 2018. (conference version 2014)
d https://doi.org/10.1145/3185378
improved by Timothy Chan, 2018

very recent paper on "fine-grained" complexity lower bounds:

Hardness for Triangle Problems under Even
More Believable Hypotheses: Reductions
from Real APSP, Real 3SUM, and OV
TM Chan, VV Williams, Y Xu - arXiv preprint
arXiv:2203.08356, 2022 - arxiv.org

The 3-SUM hypothesis, the APSP hypothesis and SETH are the three main hypotheses in fine-grained complexity. So far, within the area, the first two hypotheses have mainly been about integer inputs in the Word RAM model of computation. The "Real APSP" and "Real 3-SUM" hypotheses, which assert that the APSP and 3-SUM hypotheses hold for realvalued inputs in a reasonable version of the Real RAM model, are even more believable than their integer counterparts. Under the very believable hypothesis that at least one of the

Summary

- applications of arrangements
- testing collinearity and the 3-SUM problem.

References

- [CGAA] Chapter 8
- [Zurich notes] Chapter 8

[^0]: A http://im-possible.info/english/articles/animation/animation.html

