CS 763 F22	Lecture 15: Arrangements continued	A. Lubiw, U. Waterloo
Recall		
Recall a proble	m we considered before: given n points, are	there 3 (or more) collinear
By duality (poin given n lines,	its <—> lines) this becomes: do 3 of them intersect at a point.	
To get an O(n ²)	algorithm, we study <i>line arrangements</i> .	
A set of n lines called the <i>arrar</i>	in the plane partitions the plane into faces (ce <i>ngement</i> .	ells), edges, vertices,
	edge	
	face	
	vertex	
762 Locturo15		

CS 763 F22	Lecture 15: Arrangements continued	A. Lubiw, U. Waterloo
Recall		
Arrangements ir	n higher dimensions	
For an arrangeme	ent of n hyperplanes in R ^d	
- the number o	f cells is O(n ^d)	
- Zone Theore	m. The zone of a hyperplane has complexit	ty O(n ^{d-1})
In 3D, for n plane	s, there are O(n ³) cells, and a zone has cor	nplexity O(n ²).

CS 763 F22	Lecture 15: Arrangements continued	A. Lubiw, U. Waterloo
Application: A	spect Graph	
Aspect graph o	f convex polyhedron in 3D with n vertices	
O(n) faces =	→ O(n ³) cells	
for non-convex	polyhedron Theta(n ⁹) cells	
we need plai so O(n ³) plar	through every 3 points (in worst case) thes $\Rightarrow O(n^9)$ cells	
The aspect gra	oh can be used to:	
- find the view	wpoint seeing the maximum number of faces	
- find a "nice	' projection	
- figure out w	here a robot is, based on what it sees.	

CS 763 F22 Lecture 15: Arrangements continued A. Lubiw, U. Waterloo Properties of duality map **Lemma.** point p lies on/above/below line q* iff point q lies on/above/below line p*. Corollary. Some points lie on a line iff their dual lines go through a point. Proof. p = (a, b) p^{\star} : y = ax - b q = (c, d) q^{\star} : y = cx - d above p lies on q^{\star} b = ca - d z same. q lies on p^{\star} d = ac - b z same. $P^{\star}: y = ax - b$ $q^{\star}: y = cx - d$

S 763 F22	Lecture 15: Arrangements continued	A. Lubiw, U. Waterloo
Application: (Collinear points.	
Given n points,	are there 3 (or more) collinear?	
Solution. App a point. Consti	ly duality. There are 3 collinear points iff the d ruct the arrangement, and check for this. O(n ²	ual has 3 lines through ²)
Is there a faste	r algorithm? — see below	

CS 763 F22 Lecture 15: Arrangements continued A. Lubiw, U. Waterloo **Claim.** Levels can be constructed in $O(n^2)$ time. compute arrangement O(n2) Sort lines by slope — this gives edges in each $O(n \log n)$ level at $x = -\infty$ Trace line I through the arrangement level i-1 leveli leveli level iti Total time O(n²)

CS 763 F22	Lecture 15: Arrangements continued	A. Lubiw, U. Waterloo
Levels in an arra	angement	
Open problem: i.e. what is the wo	what is the complexity of level L _k ? orst case number of edges in level L _k ?	
Dual: given a set For k = n/2, how	of points, how many subsets of size k can b many <i>halving lines</i> can there be?	be cut away with a line?
Best known boun	ids:	
$\Omega(n\log k)$	● 1973, Erdös et al., raised a bit by Toth, 2001	• • •
$O(nk^{1/3})$	Tamal Dey, 1997	• 5-set
		•••
Also: find level L _k	(without constructing whole arrangement)	

CS 763 F22	Lecture 15: Arrangements continued	A. Lubiw, U. Waterloo
Application:	Discrepancy problem.	
Given n points	in a unit square, do they provide a reasonable	e random sample?
discrepancy	of half-plane $h = I$ area of square below $h - fractions$	action of points below h l
	example:	
	7 points in shaded a so fraction of points	rea; 13 points total below h is 7/13
•		
Given n points	s, find the maximum discrepancy of any half-pla	ane.
Arrangements	give an O(n ²) time algorithm for this.	
nice presentat	ion: http://www.ams.org/samplings/feature-column/fc-2011-12	
26762 Looturo15		
,5703-Lecture 15		13 01 2

763 F22	Lecture 15: Arrangements continued A. Lubiw, U. Waterle	OC
Application:	Discrepancy problem.	
Lemma. Maxi	imum discrepancy occurs	
1. at line h t	hrough 2 points, or	
2. at line h t midpoint of	hrough 1 point and the point is the first formula the segment h \cap unit square	
Proof. - if k g dou - if k	pes-through 0 points we can slide h up or un to increase discrepancy. 1 gees through 1 point P	
	increase discrepancy by	
	It h rotating h around P	
	· unless p is midpoint.	
-Lecture15		,

CS 763 F22 Lecture 15: Arrangements continued A. Lubiw, U. Waterloo Solving the discrepancy problem via arrangements. - type 2 lines h can be decked brute force T(n) = point $D(n^2) = total$. -type 1 points - le thru 2 points use dual arrangement point ht through 2 lines at intersection of test all vertices of arrangement -the level gives # points above. Total O(n2) (area below h takes O(1))

S 763 F22	Lecture 15: Arrangements continued	A. Lubiw, U. Waterloo
Application:	Ham sandwich theorem.	
Theorem. Gire the exists a line the	ven a set of red points and a set of blue poinat cuts both sets in half.	ints in the plane, there
General Ham (from '30's - 4 In R ^d , any d m cut in half by o hyperplane.	-Sandwich Theorem O's). neasurable objects can be one (d-1) dimensional	
For discrete v	ersion in plane, there is an O(n) time algorit	thm to find the halving line.
Can be viewe	d in terms of arrangements.	

CS 763 F22	Lecture 15: Arrangements continued	A. Lubiw, U. Waterloo
Application: I	Ham sandwich theorem.	
Theorem. Given the exists a line the theorem of the exist	ven a set of red points and a set of blue points at cuts both sets in half.	s in the plane, there
Standard proo	f idea uses a rotating line.	the two ½-levels intersect at a point
In terms of dua	ality and arrangements:	⇒ halving line.
		J.
CS763-Lecture15	the n/2 level of red lines the n/2 level of red lines the the the	David Austin paint P p* is solution to ham Sandwich. 17 of 20

CS 763 E22	Lecture 15: Arrangements continued	A Luhiw II Waterloo
00700122	Lecture 15.7 mangements continued	

3-SUM hardness W https://en.wikipedia.org/wiki/3SUM

Can we test for 3 collinear points (for point set in the plane) faster than $O(n^2)$?

It is a "3-SUM-hard" problem, one of a large class of "equivalent" problems that all seem(ed) to need $O(n^2)$ time.

3-SUM problem: Given n numbers, are there 3 that sum to 0? (repetition is allowed)

Exercise. Find an $O(n^2)$ time algorithm for 3-SUM. [This is not too hard. Start by sorting the points.]

Lemma. If we could test for 3 collinear points in $o(n^2)$, then we could solve 3-SUM in $o(n^2)$.

Proof. Given n numbers as input to 3-SUM, map each number x to the point (x,x^3) . **Claim.** 3 numbers a,b,c sum to 0 iff the corresponding points are collinear.

points collinear iff slopes
$$(a, a^3) + o(b, b^3) = slope(b, b^3) + b(c, c^3)$$

iff $\frac{b^3 - a^3}{b - a} = \frac{c^3 - b^3}{c - b}$ iff $(b^2 + a^2 + ab) = c^2 + b^3 + cb$
iff $b(a - c) = c^2 - a^2$ iff $b = \frac{c^2 - a^2}{c - a}$ $b = -(a + c)$
iff $a + c + b = 0$

	Lecture 15: Arrangements continued	A. Lubiw, U. Waterloo
recent breakth	nrough on 3-SUM:	
an algorithn	n with run time $O(n^2/(\log n/\log\log n)^{2/3})$)
Grønlund, Allar the ACM, 2018	n, and Seth Pettie. "Threesomes, degenerates, and love triang . (conference version 2014)	les." Journal of
d https://doi.org/10.11	145/3185378	
improved by	y Timothy Chan, 2018	
very recent	paper on Tine-grained complexity lower boun	nds:
Very recent Hardness for Tria More Believable from Real APSP, TM Chan, VV Williams arXiv:2203.08356, 202 The 3-SUM hypothesis fine-grained complexity about integer inputs in 3-SUM" hypotheses, w valued inputs in a reas than their integer count	paper on Tine-grained Complexity lower bound angle Problems under Even Hypotheses: Reductions Real 3SUM, and OV a, Y Xu - arXiv preprint 22 - arxiv.org a, the APSP hypothesis and SETH are the three main hypotheses in y. So far, within the area, the first two hypotheses have mainly been the Word RAM model of computation. The "Real APSP" and "Real which assert that the APSP and 3-SUM hypotheses hold for real- onable version of the Real RAM model, are even more believable terparts. Under the very believable hypothesis that at least one of the	
Very recent Hardness for Tria More Believable from Real APSP, TM Chan, VV Williams arXiv:2203.08356, 202 The 3-SUM hypothesis fine-grained complexity about integer inputs in 3-SUM" hypotheses, w valued inputs in a reas than their integer count	paper on Tine-grained Complexity lower bount angle Problems under Even Hypotheses: Reductions Real 3SUM, and OV a, Y Xu - arXiv preprint 2 - arxiv.org a, the APSP hypothesis and SETH are the three main hypotheses in y. So far, within the area, the first two hypotheses have mainly been the Word RAM model of computation. The "Real APSP" and "Real which assert that the APSP and 3-SUM hypotheses hold for real- onable version of the Real RAM model, are even more believable terparts. Under the very believable hypothesis that at least one of the	Ids:
Very recent Hardness for Tria More Believable from Real APSP, TM Chan, VV Williams arXiv:2203.08356, 202 The 3-SUM hypothesis fine-grained complexity about integer inputs in 3-SUM" hypotheses, w valued inputs in a reas than their integer count	paper on Tine-grained Complexity lower bount angle Problems under Even Hypotheses: Reductions Real 3SUM, and OV 5, Y Xu - arXiv preprint 22 - arxiv.org 5, the APSP hypothesis and SETH are the three main hypotheses in Y. So far, within the area, the first two hypotheses have mainly been the Word RAM model of computation. The "Real APSP" and "Real which assert that the APSP and 3-SUM hypotheses hold for real- onable version of the Real RAM model, are even more believable terparts. Under the very believable hypothesis that at least one of the	Ids:
Very recent Hardness for Tria More Believable from Real APSP TM Chan, VV Williams arXiv:2203.08356, 202 The 3-SUM hypothesis fine-grained complexity about integer inputs in 3-SUM" hypotheses, w valued inputs in a reas than their integer count	paper on Tine-grained Complexity lower bount angle Problems under Even Hypotheses: Reductions Real 3SUM, and OV 5, Y Xu - arXiv preprint 22 - arxiv.org 5, the APSP hypothesis and SETH are the three main hypotheses in y. So far, within the area, the first two hypotheses have mainly been the Word RAM model of computation. The "Real APSP" and "Real thich assert that the APSP and 3-SUM hypotheses hold for real- onable version of the Real RAM model, are even more believable terparts. Under the very believable hypothesis that at least one of the	Ids:

CS 763 F22	Lecture 15: Arrangements continued	A. Lubiw, U. Waterloo
Summary		
- application	ns of arrangements	
- testing col	linearity and the 3-SUM problem.	
References		
- [CGAA] C	Chapter 8	
- [Zurich no	tes] Chapter 8	