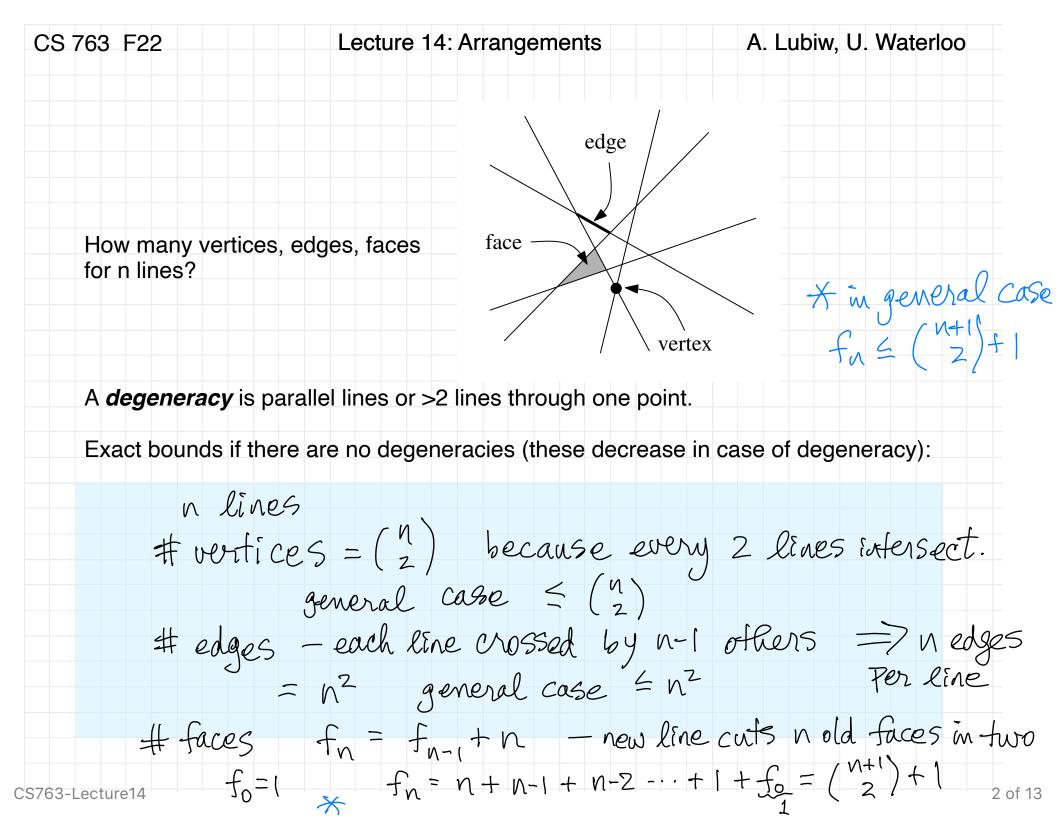
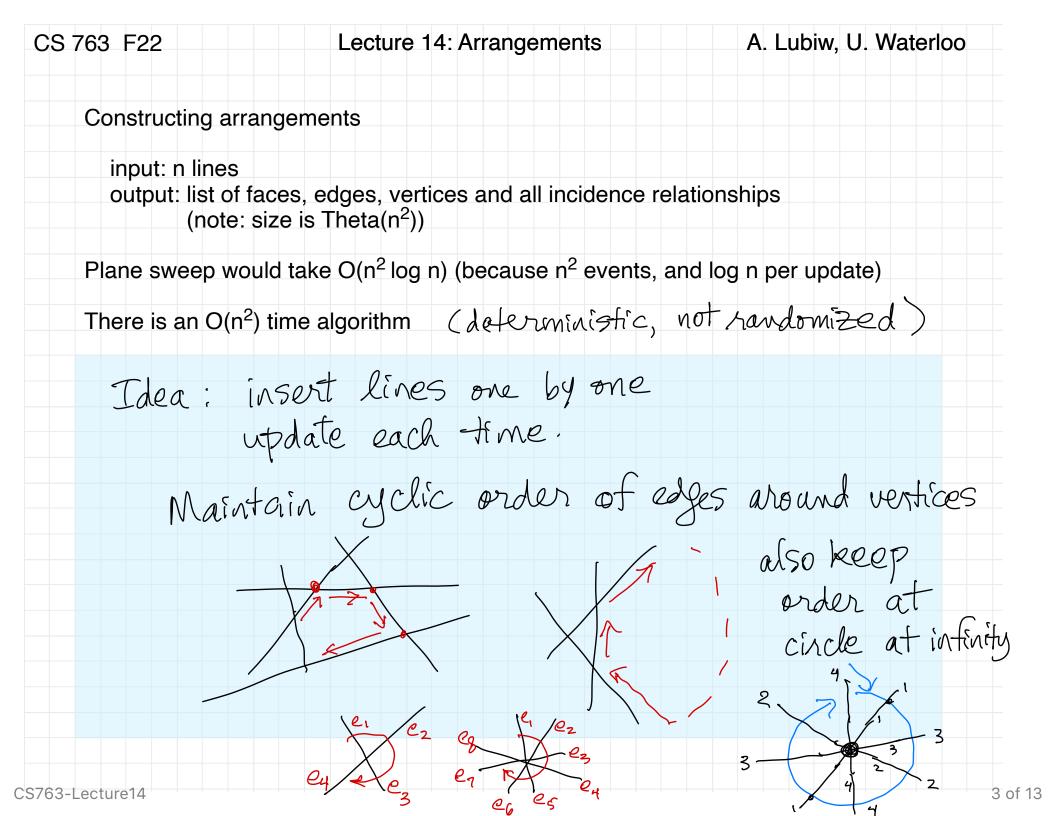
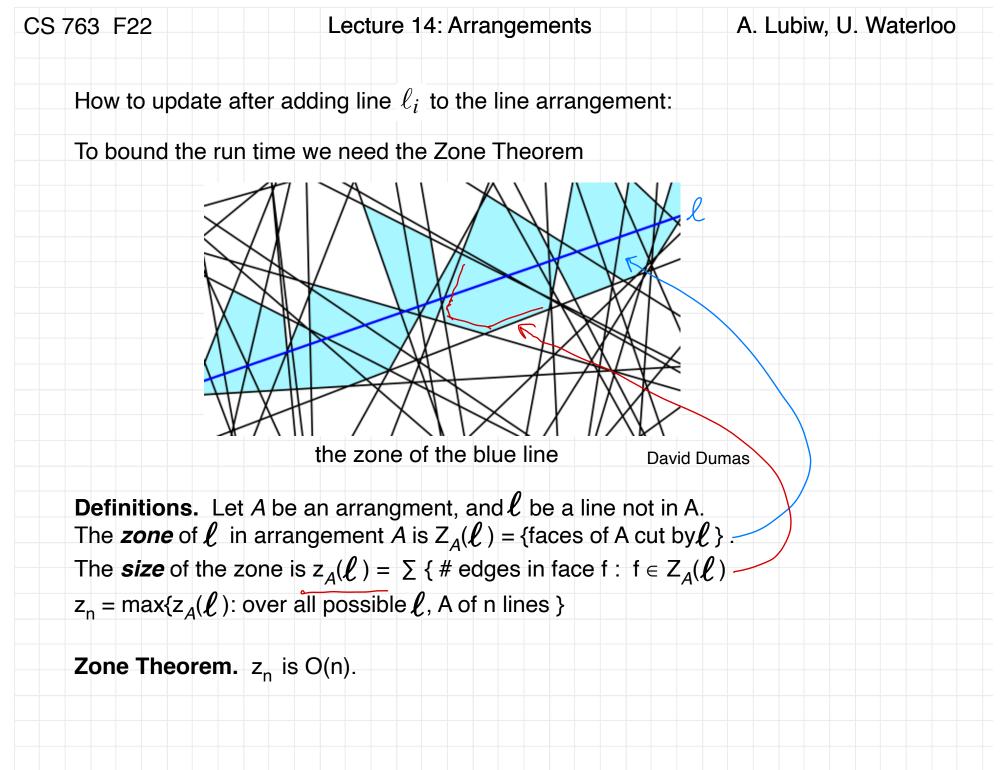
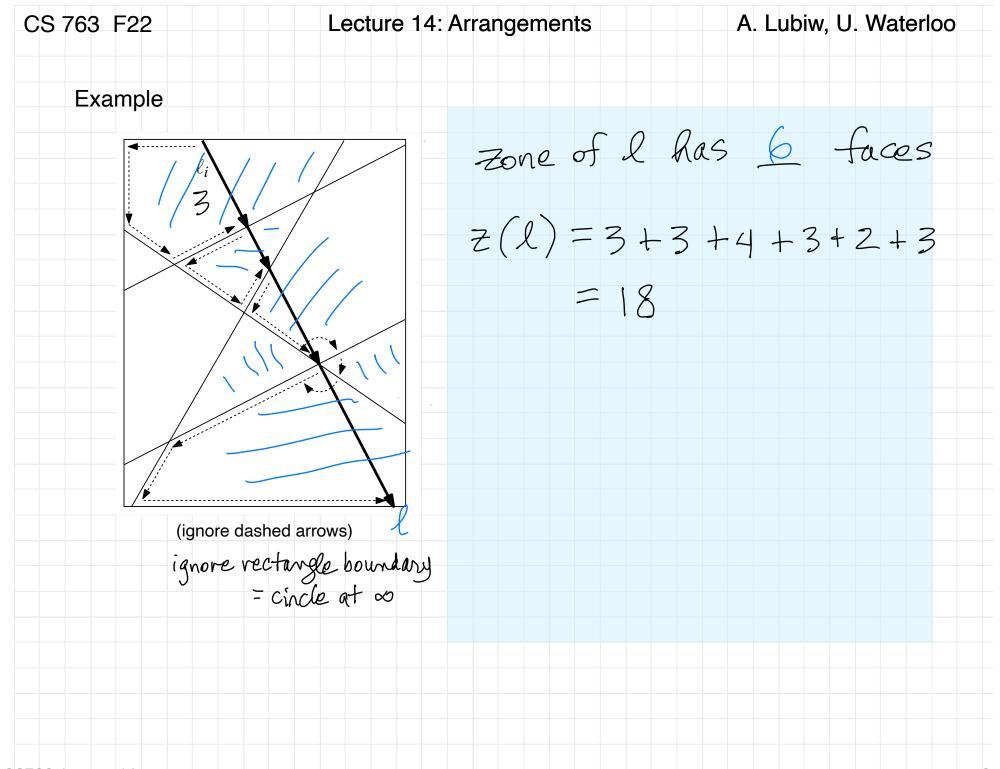
CS 763 F22	Lecture 14: Arrangements	A. Lubiw, U. Waterloo
Recall a problem	we considered before: given n points, ar	re there 3 (or more) collinear
	<> lines) this becomes: 3 of them intersect at a point.	
To get an O(n ²) al	gorithm, we study <i>line arrangements</i> .	
A set of n lines in called the <i>arrange</i>	the plane partitions the plane into faces (ment.	(cells), edges, vertices,
	edge face	
	lace	





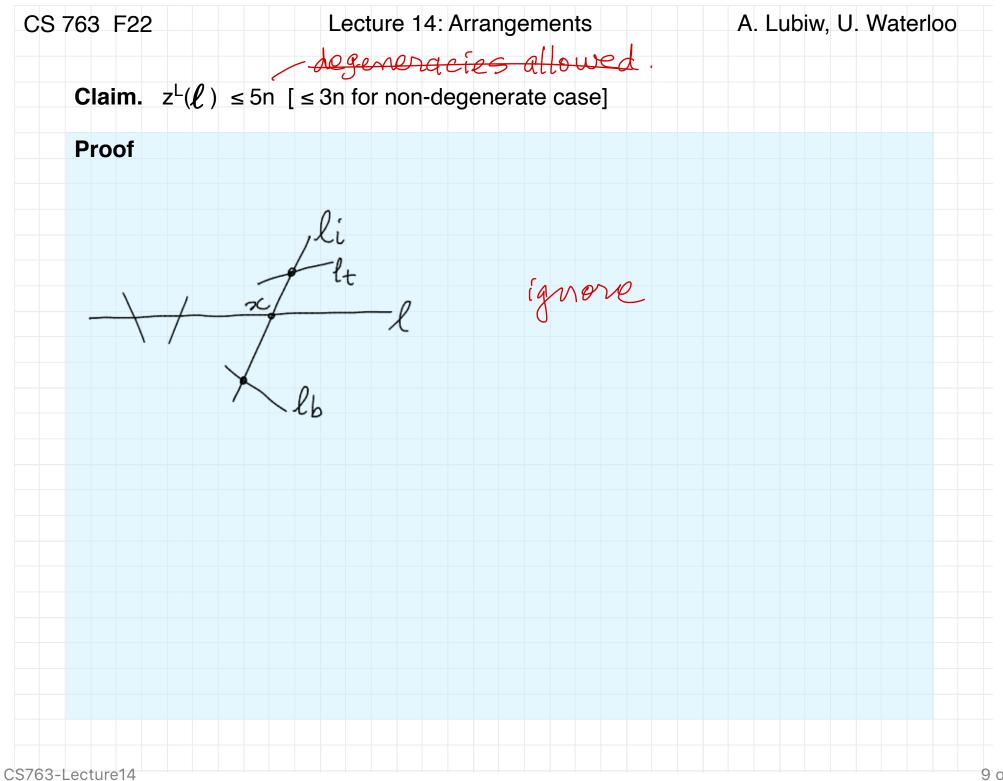
CS 763 F22 Lecture 14: Arrangements A. Lubiw, U. Waterloo Z kinds of updates - hit li - switch faces How to update after adding line ℓ_i to the line arrangement: incident to current - find intersection x - hit vertex - use cuclic of li and li Switch edgs - and edge e on li and a face f containing e -walk around f to get next intersection with li -hop to adjacent face a continue --- initil we -update all info about the arrangement as we go. Time: - initialize (find x, e, f) O(n) - walking and updating: constant time per edge visited O (# elges in faces cut by li) we will show O(i)





CS 763 F22 Lecture 14: Arrangements A. Lubiw, U. Waterloo
Zone Theorem.
$$z_n$$
 is O(n). (For non-degenerate case, $z_n \le 6n$.)
[Chazelle, Guibas, Lee, '85, Edelsbrunner, O'Rourke, Seidel, '86,
correct proof for dimensions ≥ 3 , Edelsbrunner, Seidel, Sharir, '93]
Consequence: the incremental algorithm takes time O(n²).
Proof
We will bound $z_A(\ell) = \Sigma \{ \# \text{ edges in face } f : f \in Z_A(\ell) \}$
Rotate so ℓ is horizontal. Perturb so no other line is
horizontal (this only increases the zone size).
Any face f in $Z_A(\ell)$ has left and right boundary edges.
 f
 $z_A(\ell) = z(\ell) = z^L(\ell) + z^R(\ell)$
Claim. $z^L(\ell) \le 5n$ [$\le 3n$ for non-degenerate case]
This will prove the Zone Theorem.

CS 763 F22 Lecture 14: Arrangements A. Lubiw, U. Waterloo
Claim.
$$z^{L}(\ell) \leq 5n [\leq 3n \text{ for non-degenerate case}]
Proof By induction on n. Basis $n=2$
 $z^{L}(\ell) = 1$
 $vote le hest + slope $n=1$
 $z^{L}(\ell) = 0$
 lt
 lt
 $le hest - slope n=1$
 $z^{L}(\ell) = 0$
 $z$$$$



CS 763 F22 Lecture 14: Arrangements A. Lubiw, U. Waterloo What happens in case there is degeneracy? what if another line l; goes though z? still get left edge on lt split in two +(lb ((III) +(on li get two new left edges +2 on l; one left edge splits in two + | So # left edges = 5n (if even more lines go through x, the bound goes down)

S 763 F22	Lecture 14: Arrangements	A. Lubiw, U. Waterloo
Arrangements	in higher dimensions	
For an arranger	nent of n hyperplanes in R ^d	
- the number	of cells is O(n ^d)	
- Zone Theore	em. The zone of a hyperplane has comple	exity O(n ^{d-1})
		$\sim \sim $
In 3D, for n plan	es, there are O(n ³) cells, and a zone has c	complexity O(n ²).
763-Lecture14		

CS 763 F22	Lecture 14: Arrangements	A. Lubiw, U. Waterloo
Next lecture:		
- applications	of arrangements	
- testing colline	earity and the 3-SUM problem.	
63-Lecture14		

S 763 F22	Lecture 14: Arrangements	A. Lubiw, U. Waterloo
Summary		
- arrangement	S	
- size of parts	of arrangements and the zone theorem	
References		
- [CGAA] Cha	pter 8	
- [Zurich notes] Chapter 8	