CS 763 F22	Lecture 13: Triangulations, continued A. Lubiw, U. Waterloo
Recall	
Triangula	ations of point sets/polygons. Recall what we've seen:
- Delai	unay triangulation of point set in R ^d , O(n log n) algorithm in R ² .
- O(n)	algorithm to triangulate any polygon in R ² (Chazelle's hard algorithm)
Applicat	ions and criteria (this is the outline for the next lectures)
- an	gle criteria - for meshing
- ler	ngth criteria: minimum weight triangulation
- COI	nstrained triangulations (when certain edge must be included)
- me	eshing - triangulations with Steiner points
- flip	distance
- mc	orphing
today - cui	rve and surface reconstruction
- me	edial axis and straight skeleton

CS 763 F22	Lecture 13: Triangulations, continued	A. Lubiw, U. Waterloo
Application of	of Triangulations: Morphing	
500 Years	of Female Portraits in Western Art	
Choose co Then morp	rresponding points, and make the "same" trian h the triangles.	ngulation on both.
	Alex	xei Efros
CS763-Lecture13		

CS 763 F22	Lecture 13: Triangulations, continued	A. Lubiw, U. Waterloo
Two aspects t	o this morphing approach:	
1. how to tr	iangulate "compatibly"	
2. how to m	norph compatible triangluations	
Compatible t	riangulations	
Given two (un	labelled) point sets, triangulate them the "same	e" way.
	5 6 3 3 3 3 3 3 3 3	2
Two triangulat points f(p) of t f(p)f(q)f(r) is a	tions are <i>compatible</i> if we can map the points p he second set (one-to-one, onto) s.t. pqr is a cl clockwise triangle.	of the first set to ockwise triangle iff
EX. Is this	: equivalent to having same ea	dges?
763-Lecture13		4-

S 763 F22	Lecture 13: Triangulations, continued	A. Lubiw, U. Waterloo
Compatible to	riangulations	
an interesting Conjecture : C convex hull, th	open side question: Given two points sets each with n points total, a Biey have a compatible triangulation.	and h points on the
This assumes	no 3 points collinear (otherwise false).	
Aichholzer, Osv compatible triar	vin, Franz Aurenhammer, Ferran Hurtado, and Hannes Krasse igulations." <i>Theoretical Computer Science</i> 296, no. 1 (2003): 3	er. "Towards 3-13.
d https://doi.org/10.10	<u>16/S0304-3975(02)00428-0</u>	
also see Devad	oss O'Rourke book	
back to what's	relevant for morphing:	
Theorem. Tw Theta(n^2) Ste	o simple polygons on n vertices can be compa einer points.	tibly triangulated with
Aronov, Bor triangulation 27-35.	s, Raimund Seidel, and Diane Souvaine. "On compatible s of simple polygons." <i>Computational Geometry</i> 3.1 (1993):	
d https://doi.org/1	0.1016/0925-7721(93)90028-5	

CS 763 F22	Lecture 13: 7	Friangulations, continued	A. Lubiw, U. Waterloo
Morphing co	npatible triangul	ations	
The face morp	ohing projects just	use a linear mapping of eac	ch triangle.
0.			rotated triangle
t=0	$t = \frac{1}{2}$ $t = 1$	¥ (- inverted triangle.
tistime	2	such morphs do not preser	ve planarity in general
Planarity pres	serving morphs	- imput is two a	supatible triangulations
- existence	first proved by Cai	irns, 1944	
- solution by algorithm.	y Floater, Gotsmar No explicit vertex t	n, Surazhky 2000, using Tut rajectories.	te's graph drawing
- piecewise	linear soluton		
Alamdari P., Lubiv drawings	i, S., Angelini, P., Barrer v, A., Patrignani, M., Ros s. SIAM J. Comput.	a-Cruz, F., Chan, T.M., Da Lozzo, G. selli, V., Singla, S., Wilkinson, B., 201	., Di Battista, G., Frati, F., Haxell, 17. How to morph planar graph
d <u>https://doi</u>	.org/10.1137/16M1069171		

CS763-Lecture13

CS 763 F22	Lecture 13: Triangulation	s, continued	A. Lubiw	, U. Waterloo
Curve and s	surface reconstruction			
	Maker Bot. Digitizer			
	Appr Hundreds of	oximately 12 Minutes	ected	
		•		
			2	
	Original	Point Cloud	3D Model	

CS763-Lecture13

Lecture 13: Triangulations, continued CS 763 F22 A. Lubiw, U. Waterloo **Curve and surface reconstruction** alpha-shapes and alpha-hulls pushing discs of smaller radius gives more refined "shape" pushing lines against a point set and detects holes gives the convex hull line = infinite radius circle the alpha-hull, alpha = disc radius

CS 763 F22 Lecture 13: Triangulations, continued A. Lubiw, U. Waterloo

alpha-shapes and alpha-hulls

when alpha is small, the points remain isolated; when alpha is large the alpha-hull approaches the convex hull

Lecture 13: Triangulations, continued A. Lubiw, U. Waterloo CS 763 F22 alpha-shapes and alpha-hulls Teichmann, Capps issues: - what is the "right" value of alpha?

- if points are not uniform then no single value of alpha will work.

Edelsbrunner, Herbert, and Ernst P. Mücke. "Three-dimensional alpha shapes." *ACM Transactions on Graphics (TOG)* 13.1 (1994): 43-72. cited by 1939

d https://doi.org/10.1145/174462.156635

763 F22	Lecture 13: Triangulations, continued	A. Lubiw, U. Waterloo
Crust Algorit	nm for surface reconstruction	
in 2D this is cu	rve reconstruction	
figures from D	evadoss, O'Rourke	
points on th	e curve must be sufficiently dense in order to re	econstruct the curve
(;	a) (b) (c) (d)	Case generitien at applied and computational mathematics
Dey, Tamal K. Cur mathematical analy	ve and surface reconstruction: algorithms with vsis. Vol. 23. Cambridge University Press, 2006.	Curve and Surface Reconstruction Algorithms with Mathematical Analysis Tamal IK. Dey
Amenta, Nina, Mar skeleton: Combinat image processing 6	shall Bern, and David Eppstein. "The crust and the β- orial curve reconstruction." <i>Graphical models and</i> 50.2 (1998): 125-135.	
d https://doi.org/10.1006/gn	<u>iip.1998.0465</u>	Copyramiliation

CS763-Lecture13

Medial axis of a convex polygon = Voronoi diagram of edges of polygon

= grow the vertex angle bisectors by shrinking the polygon. The trajectories of the vertices form the medial axis.

A. Lubiw, U. Waterloo CS 763 F22 Lecture 13: Triangulations, continued Medial axis of a convex polygon = Voronoi diagram of edges of polygon There is an O(n) time algorithm. Here is a simpler O(n log n) algorithm: Hint: maintain bisectors of consecutive edges and intersection points of consecutive bisectors - these are "events" Keep a priority queue of events to find first event (as polygon shrinks) Stop at each event & update info.

CS 763 F22 Lecture 13: Triangulations, continued A. Lubiw, U. Waterloo A physical model for medial axis - Imagine the polygon is drawn on the prairie, and you light fires along the boundary. Medial axis = points where fire is quenched (fire meets other fire) - pouring sand Voronoi diagram

CS 763 F22 Lecture 13: Triangulations, continued A. Lubiw, U. Waterloo A physical model for medial axis

CS 763 F22 Lecture 13: Triangulations, continued A. Lubiw, U. Waterloo

Straight Skeleton — similar to medial axis but avoids curved sections

Grow the vertex angle bisectors by shrinking the polygon. The trajectories of the vertices form the straight skeleton.

For a convex polygon, this is the same as the medial axis

But for a non-convex polygon, it is not the same:

CS 763 F22 Lecture 13: Triangulations, continued A. Lubiw, U. Waterloo

Straight Skeleton — similar to medial axis but avoids curved sections

Difference between medial axis and straight skeleton — only for non-convex polygons:

CS 763 F22	Lecture 13: Triangulations, continued	A. Lubiw, U. Waterloo
Straight skele	ton algorithms	
idea of previ need not be	ious algorithm gives O(n^2 log n) because the between consecutive rays	next ray intersection
improvemer	nts:	
$O(n^{8/5+\epsilon})$ for	or any fixed $\varepsilon > 0$	
Eppstein, Da playing pool: <i>Discrete & C</i>	vid, and Jeff Erickson. "Raising roofs, crashing cycles, and Applications of a data structure for finding pairwise interaction omputational Geometry 22.4 (1999): 569-592	าร."
d <u>https://doi.org/10</u>	D.1007/PL00009479	
$O(n^{4/3+\epsilon})$ time	me for any $\varepsilon > 0$	
Vigneron, An Discrete & C	ntoine, and Lie Yan. "A faster algorithm for computing motorcyc omputational Geometry 52.3 (2014): 492-514.	cle graphs."
d <u>https://doi.c</u>	brg/10.1007/s00454-014-9625-2	

Straight skeleton application: fold and cut problem

Fold and Cut Theorem. For any (slightly perturbed) polygon on a piece of paper there is a flat folding of the paper that puts all the polygon edges on one line and puts the inside and outside of the polygon on opposite sides of the line.

CS 763 F22	Lecture 13: Triangulations, continued	A. Lubiw, U. Waterloo
Summary		
- compatible	e triangulations and morphing	
- curve and	surface reconstruction	
- medial axi	is (Voronoi diagram of edges)	
- straight sk	celeton	
References		
- papers an	d books listed throughout	
763-Lecture13		320