Recall

Triangulations of point sets/polygons. Recall what we've seen:

- Delaunay triangulation of point set in $R^{d}, O(n \log n)$ algorithm in R^{2}.
- $O(n)$ algorithm to triangulate any polygon in R^{2} (Chazelle's hard algorithm)

Applications and criteria (this is the outline for the next lectures)

- angle criteria - for meshing
- length criteria: minimum weight triangulation
- constrained triangulations (when certain edge must be included)
- meshing - triangulations with Steiner points
- flip distance
- morphing
today - curve and surface reconstruction
- medial axis and straight skeleton

Application of Triangulations: Morphing

500 Years of Female Portraits in Western Art
D https://www.youtube.com/watch?v=nUDIoN-_Hxs

Choose corresponding points, and make the "same" triangulation on both. Then morph the triangles.

Alexei Efros

(2) http://vision.gel.ulaval.ca/~jflalonde/cours/4105/h16/tps/results/tp3/JIZHA16/index.html

Two aspects to this morphing approach:

1. how to triangulate "compatibly"
2. how to morph compatible triangluations

Compatible triangulations

Given two (unlabelled) point sets, triangulate them the "same" way.

Two triangulations are compatible if we can map the points p of the first set to points $f(p)$ of the second set (one-to-one, onto) st. par is a clockwise triangle ff $f(p) f(q) f(r)$ is a clockwise triangle.
Ex. Is this equivalent to having same edges?

Compatible triangulations

an interesting open side question:
Conjecture: Given two points sets each with n points total, and h points on the convex hull, they have a compatible triangulation.

This assumes no 3 points collinear (otherwise false).

```
Aichholzer, Oswin, Franz Aurenhammer, Ferran Hurtado, and Hannes Krasser. "Towards
```

compatible triangulations." Theoretical Computer Science 296, no. 1 (2003): 3-13.
d https://doi.org/10.1016/S0304-3975(02)00428-0
also see Devadoss O'Rourke book
back to what's relevant for morphing:
Theorem. Two simple polygons on n vertices can be compatibly triangulated with Theta($\mathrm{n}^{\wedge} 2$) Steiner points.

```
Aronov, Boris, Raimund Seidel, and Diane Souvaine. "On compatible
triangulations of simple polygons." Computational Geometry }3.1\mathrm{ (1993):
27-35.
```


compatible triangulations of polygons

Morphing compatible triangulations
The face morphing projects just use a linear mapping of each triangle.

t is time

inverted triangle.

Planarity preserving morphs - input is two compatible triangulations.

- existence first proved by Cairns, 1944
- solution by Floater, Gotsman, Surazhky 2000, using Tutte's graph drawing algorithm. No explicit vertex trajectories.
- piecewise linear solution

Alamdari, S., Angelini, P., Barrera-Cruz, F., Chan, T.M., Da Lozzo, G., Di Battista, G., Frati, F., Hazel, P., Lubiw, A., Patrignani, M., Roselli, V., Singla, S., Wilkinson, B., 2017. How to morph planar graph drawings. SIAM J. Comput.
morphing using Floater, Gotsman, Surazhky method

Craig Gotsman, Vitaly Surazhsky

Curve and surface reconstruction

Curve and surface reconstruction

digital Michaelangelo project

Curve and surface reconstruction

alpha-shapes and alpha-hulls

pushing lines against a point set gives the convex hull line $=$ infinite radius circle

pushing discs of smaller radius gives more refined "shape" and detects holes
the alpha-hull, alpha = disc radius

alpha-shapes and alpha-hulls
when alpha is small, the points remain isolated; when alpha is large the alpha-hull approaches the convex hull

alpha-shapes and alpha-hulls

Teichmann, Capps

issues:

- what is the "right" value of alpha?
- if points are not uniform then no single value of alpha will work.

Edelsbrunner, Herbert, and Ernst P. Mücke. "Three-dimensional alpha shapes." ACM Transactions on Graphics (TOG) 13.1 (1994): 43-72. cited by 1939
d https://doi.org/10.1145/174462.156635

Crust Algorithm for surface reconstruction

in 2D this is curve reconstruction
figures from Devadoss, O'Rourke
points on the curve must be sufficiently dense in order to reconstruct the curve

Dey, Tamal K. Curve and surface reconstruction: algorithms with
mathematical analysis. Vol. 23. Cambridge University Press, 2006.

Amenta, Nina, Marshall Bern, and David Eppstein. "The crust and the β skeleton: Combinatorial curve reconstruction." Graphical models and image processing 60.2 (1998): 125-135.
d https://doi.org/10.1006/gmip.1998.0465

input points Voronoi diagram

Delaunay triangulation of original points S + Voronoi vertices
edges with both endpoints in S

Medial axis of a convex polygon = Voronoi diagram of edges of polygon

(a)

(b)

$=$ locus of centers of circles inside polygon that touch boundary at 2 or more points (centers of maximal inscribed discs)

Medial axis of a convex polygon = Voronoi diagram of edges of polygon

= grow the vertex angle bisectors by shrinking the polygon. The trajectories of the vertices form the medial axis.

every edge of the medial axis is a bisector of two polygon edges

Medial axis of a convex polygon $=$ Voronoi diagram of edges of polygon
There is an $\mathrm{O}(\mathrm{n})$ time algorithm.
Here is a simpler $O(n \log n)$ algorithm:
Hint: maintain bisectors of consecutive edges and intersection points of consecutive bisectors - these are "events"
Keep a priority queue of events to find first event (as polygon shrinks) stop at each event \& update info.

Medial axis of a non-convex polygon = locus of centers of maximal inscribed discs

Figure 5.6: The central arc lies on the parabola determined by the vertex v and the edge e, where the maximal disks centered on that arc touch e and v.

can be found in time $\mathrm{O}(\mathrm{n})$

A physical model for medial axis

- Imagine the polygon is drawn on the prairie, and you light fires along the boundary. Medial axis = points where fire is quenched (fire meets other fire)
- pouring sand

Voronoi diagram

bradmohr

A physical model for medial axis

Applications of medial axis

Blum transform for shape recognition

Vadim Shapiro
character recognition

Straight Skeleton - similar to medial axis but avoids curved sections

Grow the vertex angle bisectors by shrinking the polygon. The trajectories of the vertices form the straight skeleton.

For a convex polygon, this is the same as the medial axis
But for a non-convex polygon, it is not the same:

Straight Skeleton - similar to medial axis but avoids curved sections

Difference between medial axis and straight skeleton - only for non-convex polygons:
medial axis

(a)
straight skeleton

(b)
offset curve with mitred caps

Straight skeleton algorithms

idea of previous algorithm gives $O\left(n^{\wedge} 2 \log n\right)$ because the next ray intersection need not be between consecutive rays
improvements:

```
O(n}\mp@subsup{n}{}{8/5+\varepsilon) for any fixed \varepsilon>0
Eppstein, David, and Jeff Erickson. "Raising roofs, crashing cycles, and
playing pool: Applications of a data structure for finding pairwise interactions."
Discrete & Computational Geometry 22.4 (1999): 569-592
d https://doi.org/10.1007/PL00009479
```

$O\left(n^{4 / 3+\varepsilon}\right)$ time for any $\varepsilon>0$

Vigneron, Antoine, and Lie Yan. "A faster algorithm for computing motorcycle graphs."
Discrete \& Computational Geometry 52.3 (2014): 492-514.
d https://doi.org/10.1007/s00454-014-9625-2

Straight skeleton applications: designing roofs

How to fit a roof to these walls?

Straight skeleton application: fold and cut problem

Fold and Cut Theorem. For any (slightly perturbed) polygon on a piece of paper there is a flat folding of the paper that puts all the polygon edges on one line and puts the inside and outside of the polygon on opposite sides of the line.

solution for triangle:

general solution to fold-and-cut

MAY use perpendiculars on any edge and we need some of these to get flat folding

Example.
All folds except the pink ones are straight skeleton folds.

In degenerate cases, this bouncing can be infinite. This is why we may need to perturb the input polygon slightly.

fold-and-cut examples

Demaine, Erik D., Martin L. Demaine, and Anna Lubiw. "Folding and one straight cut suffice." Proceedings of the tenth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathematics, 1999.
http://erikdemaine.org/foldcut/
A. Lubiw, U. Waterloo

Summary

- compatible triangulations and morphing
- curve and surface reconstruction
- medial axis (Voronoi diagram of edges)
- straight skeleton

References

- papers and books listed throughout

