CS 763 F22	Lecture 12: Triangulations	A. Lubiw. U. Waterloo
		······································

Triangulations of point sets/polygons. Recall what we've seen:

- Delaunay triangulation of point set in R^d, O(n log n) algorithm in R².
- O(n) algorithm to triangulate any polygon in R^2 (Chazelle's hard algorithm)

Applications and criteria (this is the outline for the next lectures)

- angle criteria for meshing
- length criteria: minimum weight triangulation
- constrained triangulations (when certain edge must be included)
- meshing triangulations with Steiner points
- flip distance
- morphing
- curve and surface reconstruction
- medial axis and straight skeleton

Lecture 12: Triangulations	A. Lubiw, U. Waterloo
s for triangulations	
meshing for finite element methods (mor arge angles are bad.	re on this later)
bad triangles	
t set, find a triangulation that maximizes tay triangulation does this.	the min. angle
t set, find a triangulation that minimizes t	he max. angle
these two can be different.	
	Lecture 12: Triangulations s for triangulations meshing for finite element methods (mo arge angles are bad. bad triangles t set, find a triangulation that maximizes ay triangulation does this. t set, find a triangulation that minimizes t these two can be different.

S 763 F22	Lecture 12: Triangulations	A. Lubiw, U. Waterloo
There is a poly ti angle.	ne algorithm to find a triangulation that r	ninimizes the maximum
It uses a solution programming).	for the case of triangulating a polygon (via dynamic
Bern, M., Edelsbrunne Edge insertion for optin <i>10</i> (1), pp.47-65.	r, H., Eppstein, D., Mitchell, S. and Tan, T.S., 1993. nal triangulations. <i>Discrete & Computational Geometr</i>	y,
d https://doi.org/10.1007/BF0257	3962	

CS 763 F22	Lecture 12: Triangulations	A. Lubiw, U. Waterloo
Length condition	s: Minimum weight triangulation	
Given a point se edges.	t find a triangulation that minimizes the su	Im of the lengths of the
Solved by dynar	nic programming for triangulations of a sir	mple polygon.
For point sets, p Note: not known	roved NP-hard in 2008 (had been open si to be in NP because of square root comp	nce 1979). outations.
Mulzer, Wo NP-hard." J	fgang, and Günter Rote. "Minimum-weight triangulation <i>ournal of the ACM (JACM</i>) 55.2 (2008): 11.	n is
d <u>https://doi.org</u>	10.1145/1346330.1346336	
Approximations	(how do various triangulations compare to	o min weight)
- approximatio - approximatio Theta(\sqrt(r	on ratio of Delaunay triangulation: Theta(n on ratio of greedy triangulation (add edges n))	n) in order of weight):
- quasi-poly ti	me approximation scheme:	
Remy, Jan, an scheme for mir 56.3 (2009): 15	d Angelika Steger. "A quasi-polynomial time approximat imum weight triangulation." <i>Journal of the ACM (JACM)</i>	tion

CS763-Lecture12

CS 763 F22	Lecture 12: Triangulations	A. Lubiw, U. Waterloo
Most results for E triangulations.	Delaunay triangulations carry over to Con	strained Delaunay
The edge empty (a,b) is an edge of (a,b) and there is visible to a point	circle condition carries over: of the Constrained Delaunay triangulation a circle through a and b that does not co on edge (a,b).	n iff no edge of F crosses ontain any point p in P
Illegal edge flippi	ng carries over.	
There is an O(n I triangulation.	og n) time algorithm to compute the Cons	strained Delaunay
The Constrained constrained trian	Delaunay triangulation maximizes the migulations).	in angle (among all

763 F22	Lecture 12: Triangulations	A. Lubiw, U. Waterloo
Triangulations f	or finite element methods	
Example probler Requires solving "mesh" (often a t	n: find how a solid body deforms under str partial differential equations, which is don riangulation)	ess. e by approximating on a
Meshing. Giver triangles meeting boundary edge is	a region of R ² with a polygonal boundary g edge-to-edge and <i>conforming</i> to the bou s a union of triangle edges. Use "nicely sh	, subdivide it into disjoint ndary, i.e. every naped" triangles.
Note: can add ne	ew points called "Steiner points"	
3-Lecture12		

CS 763 F22	Lecture 12: Triangulations	A. Lubiw. U. Waterloo
00,00,1==		

Meshing. Given a region of R² with a polygonal boundary, subdivide it into disjoint triangles meeting edge-to-edge and *conforming* to the boundary, i.e. every boundary edge is a union of triangle edges. Use "nicely shaped" triangles.

We concentrate on unstructured meshes.

Shewchuk, Jonathan Richard. "Unstructured mesh generation." *Combinatorial Scientific Computing* (2011): 259-297.

https://people.eecs.berkeley.edu/~jrs/papers/umg.pdf

Theoretically Guaranteed Delaunay Mesh Generation–In Practice (slides)

https://people.eecs.berkeley.edu/~jrs/papers/imrtalk.pdf

CS 763 F22	Lecture 12: Triangulations	A. Lubiw, U. Waterloo
Delaunay refinem	nent algorithm	
Start with Delaun	ay triangulation and add more points to in	mprove angles.
kill skinny trian	sle by adding point v at center of circumo	
Ruppert, Jim. "A De mesh generation." . d <u>https://doi.org/10.1006/jag</u>	launay refinement algorithm for quality 2-dimensional lournal of algorithms 18.3 (1995): 548-585. m.1995.1021	

CS763-Lecture12

57631	F22	Lecture 12: Triangulations	A. Lubiw, U. Waterloo
Flip	distance		
Rec	onfiguration pro	blem: changing one structure to anot	ther via discrete steps
Exa	mples:		
- (edit distance of s	trings	
- :	sorting via swaps		
- :	solving Rubik's c	ube	
-	pivot operations f	or simplex method	
(of linear program	ming	
Que	estions:		
- (can we get from	every configuration to every other one	? Yes
- 1	worst case bound	I on number of steps?	
-	how many steps	between a given pair of configurations	? 20 (God's number,
The	se can be viewec	as connectivity and shortest path que	estions
in a	reconfiguration	<i>araph</i> — vertex for each configuration	n
edae	e for each step	graph venex of each comigaration	
			18
Rec	onfiguration grap icitly.	hs are large, so we don't explore them	43×10°

CS 763 F22	Lecture 12: Triangulations	A. Lubiw, U. Waterloo
		we may flip any edge
Flip distance		
Reconfiguring trian	gulations of a given point set via flips	whose vemoral gives convex
- can we get from	n any triangulation to any other? Yes	, via Delaunay triangulation Indrilatera
- what is the wor	rst case <i>flip distance</i> (= number of flip	os)? O(n²)
triangulat	ion 1	Triangulation Z
Flips	backwards	$O(n^2)$ flips
$O(n^2)$	Delaunay triang	ulation
- can we find the	e flip distance between two given trian	gulations?
This is NP-co distance betw	mplete, but OPEN for the case of con een binary trees.	vex polygons = rotation

CS 763 F22	Lecture 12: Triangulations	A. Lubiw, U. Waterloo
OPEN. Is the fol triangulations of	lowing problem NP-complete or in P? G a convex polygon, is their flip distance <	Given number k and two = k?
Why is rotation d	istance interesting?	
- dynamic opti constant fact	mality conjecture for splay trees: splay t or of any offline rotation-based search tr	trees perform within a ree algorithm
- distance betw	veen phylogenetic trees	

CS 763 F22	Lecture 12: Triangulations	A. Lubiw, U. Waterloo
Summary		
- triangulations	of point sets, possibly with fixed edges ('	'constrained")
- angles, meshi	ing, lengths, flipping, reconfiguration	
References		
- papers and bo	ooks listed throughout	
CS763-Lecture12		23