

CS 763 F22	Lecture 10: Voronoi Diagrams, cont'd	A. Lubiw, U. Waterloo
Recall		
Properties		
	Sites	
Voronoi ver Voronoi cel	rtices have degree 3 (we assume no 4 points co Is are convex.	o-circular).
$V(p_i)$ is unt	bounded iff p_i is on the convex hull of the sites.	
There are	$\leq 2n$ Voronoi vertices and $\leq 3n$ Voronoi edges.	
$\mathcal{D}(P)$ - is a	a triangulation.	
- na	s an edge (p_i, p_j) iff there is an empty circle thr	ougn $p_i p_j$.
- na	s a face $p_i p_j p_k$ in there is an empty circle through the correspondence of the co	$p_i p_j p_k$
	(centered at the correspond	ang voronoi vertex).
	site	
	Voronoi edges	
	Delaunay edges	
	Voronoi vertex	,
CS763-Lecture10		2

CS 763 F22	Lecture 10: Voronoi Diagrams, cont'd	A. Lubiw, U. Waterloo
Outline:		
- applicatior	ns of Voronoi diagrams, Delaunay triangulations	
- O(<i>n</i> log <i>n</i>)) algorithm for Voronoi diagram	
- relationshi	p to convex hull problem	
262 Looturo10		

Application of Delaunay triangulations: finding all nearest neighbours

Given n points in the plane find, for each point, its nearest neighbour — gives *nearest neighbour graph*, a directed graph of out-degree 1.

CS763-Lecture10

CS 763 F22 Lecture 10: Voronoi Diagrams, cont'd A. Lubiw, U. Waterloo The *Nearest Neighbour Graph*, NN(P), has vertices P, and a directed edge (u, v)if *u*'s nearest neighbour is *v*. Note: break ties so every vertex has out degree 1, and do it to avoid cycles, e.g. choose nearest neighbour of min x, max y. What is the in-degree of a vertex? Notpossible P2 - pi's closest ro73 neighbour is p7 answer: max degree 6 łς Claim. NN(P) $\subseteq \mathcal{D}(P)$ circle with diameter pg is empty no sites inside this pg is circle edge o 6 CS763-Lecture10

CS 763 F22 Lecture 10: Voronoi Diagrams, cont'd A. Lubiw, U. Waterloo Algorithm to find NN(P)-find D(P) - O(nlogn) (to come) -for every site check its neighbours in D(P) to find closest. O(n) because # edges in D(P)

Application of Delaunay triangulations: finding min spanning trees (MST)

Given points p_1, \ldots, p_n in the plane, find the *Euclidean minimum spanning tree* = tree with vertex set p_1, \ldots, p_n of minimum total length

There are good algorithms to find the min weight spanning tree in any edge-weighted graph. But our graph has $O(n^2)$ edges.

Lemma. The minimum spanning tree is a subgraph of the Delaunay triangulation.

Then we can run the graph MST algorithm on the Delaunay triangulation to get an algorithm with total run time $O(n \log n)$.

Lecture 10: Voronoi Diagrams, cont'd CS 763 F22 A. Lubiw, U. Waterloo (MST) Lemma. The minimum spanning tree is a subgraph of the Delaunay triangulation. Proof. Consider 2022 2 of MST remove e Û Tb Get two trees Ta, Tb want an empty circle through a and b Take circle C with diameter ab Ta Is there a point inside it? Suppose pinside C. Suppose PETh (if PETa we'd add Pb) claim lap < 1el So adding ap instead of e gives a spanning tree of smaller weight. Contradiction: "Cempty EED(P) 9 of 27 CS763-Lecture10

S 763 F22	Lecture 10: Voronoi Diagrams, cont'd	A. Lubiw, U. Waterloo
	voronoi diagsams	
Application of	of Delaunay triangulations: finding largest e	mpty circle
This is a facili (Recall that in the smallest c	ty location problem. 1 Lecture 7 we looked at a different facility locati circle enclosing given points.)	ion problem — to find
Given <i>n</i> points center in <i>B</i>	s in a convex boundary polygon <i>B</i> , find the large	est empty circle with
	Box	
	0	
e.g. locate a r locate a nucle	new store location among existing stores, or ear waste dump among cities	
Lemma. The - a Voroi	e center of the largest empty circle is either noi vertex	
- the inte - a verte	ersection of a Voronoi edge with the boundary o x of <i>B</i>	of B
3-Lecture10		1

CS 763 F22 Lecture 10: Voronoi Diagrams, cont'd A. Lubiw, U. Waterloo where is the center of largest empty Proof idea. Consider any empty B ~ circle C centered at x We can enlarge C and more x until - x at Voronoi vertex C goes thru 375 sites what about What about B non-convex 5 x on boundary of B and on Voronoi edge C goes through 2 sites rc at vertex of B C goes through 1 site. whether this is useful might depends on application. 13 of 27 CS763-Lecture10

CS 763 F22	Lecture 10: Voronoi Diagrams, cont'd	A. Lubiw, U. Waterloo
Algorithm for Input: <i>n</i> poin	r the largest empty circle problem ts in polygon <i>B</i> with <i>k</i> vertices	
- compute Vor - compute inte	ronoi diagram of the points ersection points of Voronoi edges with the polyg	on O(nlogn)
- try each pos	sible center <i>p</i> from the above Lemma	O(n)
- Voronoi ve & ch	ertex p eck its 3 nearest neighbours)(n)
- intersectio	on point <i>p</i> of Voronoi edge <i>e</i> and polygon	O(n) of these
- polygon v find	ertexp Which region of V(P) con	rtains p
Pregnoc	ress V(P) for planar point	+ location O(ulogn
then	query every vertex of B	D(k losn)
Runtime:	O((n+k)logn)	
763-Lecture10		1/1 of 2

Connection between Voronoi diagram / Delaunay triangulation and Convex Hull

Given $p_1, \ldots, p_n \in \mathbb{R}^2$ project them up onto parabola $z = x^2 + y^2$

$$p=(x_p,y_p) \longmapsto \hat{p}=(x_p,y_p,x_p^2+y_p^2)$$

Project onto paraboloid.

Compute convex hull.

Project hull faces back to plane.

Theorem. The lower convex hull of $\hat{p}_1, \dots, \hat{p}_n$, projected back to the plane, is the Delaunay triangulation of p_1, \dots, p_n

Theorem. The lower convex hull of $\hat{p}_1, \ldots, \hat{p}_n$, projected back to the plane, is the Delaunay triangulation of p_1, \ldots, p_n

Proof.

Claim 1. Points in the plane are co-circular iff their projections on the parabola are co-planar.

$$(2C-p)^{2} + (y-q)^{2} = r$$

re-arrange $(\pi c^{2} + y^{2}) - 2\pi p - 2yq + (p^{2} + q^{2} - r^{2}) = 0$ ZSo this is a plane in $\pi, y, z = x^{2} + y^{2}$.

Claim 1. Points outside the circle map to points above the plane; points inside the circle map to points below the plane.

Theorem. The lower convex hull of $\hat{p}_1, \dots, \hat{p}_n$, projected back to the plane, is the Delaunay triangulation of p_1, \dots, p_n

Proof. \hat{a} \hat{b} \hat{c} form a face of lower convex hull iff no sites lie below plane through \hat{a} , \hat{b} , \hat{c} iff no sites lie inside circle thru a, b, ciff a, b, c form a triangle in D(P).

Figure 1.11. Points *a*, *b*, *c* lie on the dashed circle in the x_1x_2 -plane and *d* lies inside that circle. The dotted curve is the intersection of the paraboloid with the plane that passes through \hat{a} , \hat{b} , \hat{c} . It is an ellipse whose projection is the dashed circle.

CS 763 F22	Lecture 10: Voronoi Diagrams, cont'd	A. Lubiw, U. Waterloo
Algorithms to	compute Voronoi diagrams / Delaunay triangula	ations
- we can get e	ither one from the other in O(n) time.	
- we can comp hull algorithn	pute the Delaunay triangulation in O(n log n) tim	ne using a 3D convex
- first O(n log Shamos and	n) algorithm to compute Voronoi diagram was d Hoey, 1975. The merge step is complicated.	livide and conquer,
- Steve Fortur	e, '87, gave a sweepline algorithm for Voronoi o	diagram
next lecture:		, , , , , , , , , , , , , , , , , , , ,
- randomized	ncremental algorithm to compute the Delaunay	r triangulation

CS	763 F22	Lecture 10: Voronoi Diagrams, cor	nt'd A. Lubiw, U. Waterloo
	Fortune's swe	epline algorithm for Voronoi diagram	
	the difficulty approach:	y with a sweepline	
	V(p) starts	s before we reach p	•
			a
	Solution		
	Find the Vo line.	ronoi diagram of the points PLUS the ha	alf plane below the sweep

CS763-Lecture10

CS 763 F22	Lecture 10: Voronoi Diagrams, cont'd A. Lubiw, U. Waterloo
Summary	
- Voror	oi diagram and Delaunay triangulation
- applic	ations to proximity graphs, largest empty circle
- relatio	onship to Convex Hull
- O(n k	og n) algorithm
Reference	es (same as before)
- [CGA	A] Chapters 7, 9
- [Zuric	h notes] Chapters 5, 7 (they start with Delaunay)
- [O'Rc	ourke] Chapter 5
- [Deva	idoss-O'Rourke] Chapter 4.