Intro to course

web page

Piazza

Credit:

- 5 assignments (roughly 2 questions each) (50%)
- a project (50%). Pick some topic that interests you and is relevant to the course; explore some aspect of it. You may attempt original research or report on some papers (one paper deeply or a few papers less deeply). You must do a written report and a class presentation. I will suggest possible topics.

Course Outline

- polygon triangulation
- visibility and guarding
- convex hulls
- linear programming
- Voronoi diagrams and Delaunay triangulations
- surface reconstruction
- arrangements and duality
- geometric data structures, search problems
- motion planning, shortest paths
- curves, trajectories, Fréchet distance

Background: I will assume a background in algorithms and data structures from a decent undergraduate course (e.g. UW's CS 341).

A. Lubiw, U. Waterloo

Resources

text:
Computational Geometry: Algorithms and Applications [CGAA] "the 3 Marks book"

lecture notes:
Geometry: Combinatorics \& Algorithms [Zurich notes]

के https://geometry.inf.ethz.ch/gca18.pdf
to find papers
https://scholar.google.com
https://ocul-wtl.primo.exlibrisgroup.com/permalink/01OCUL_WTL/1561h75/cdi_proquest_ebookcentral_EBC3062982
other good books
Discrete and Computational Geometry [Devadoss-O'Rourke]

Handbook of Discrete and Computational Geometry [Handbook]

Computational Geometry in C [O'Rourke]

\int https://ocul-wt.primo.exlibrisgroup.com/permalink/
01OCUL_WTL/5ob3ju/alma9951544243505162
A. Lubiw, U. Waterloo

Triangulate a polygon/point set/surface

Lecture 1: Triangulations
A. Lubiw, U. Waterloo

Polygon Triangulation
Definition. A polygon is specified by a sequence of points in the plane,
$p_{1}, p_{2}, \ldots, p_{n}$ called vertices. The edges are the line segments $e_{i}=p_{i} p_{i+1}$
We assume simple polygons - two edges intersect only at a common vertex.
Examples

not simple

not a
single polygon
"polygonal region"
 weakly'simplepolygons.

How do we test if a polygon is simple? Plane-sweep $O(n \log n)$.
... weakly simple?

- Recognizing weakly simple polygons

HA Akitaya, G Aloupis, J Erickson, CD Tóth - Discrete \& Computational ..., 2017 - Springer

Lecture 1: Triangulations
A. Lubiw, U. Waterloo

Jordan Curve Theorem
A simple polygon divides the plane into two regions, the inside and the outside.
True more generally for simple curves.
Elementary proof for polygons - Courant and Robbins, 1941

How to test if a point is inside/outside a polygon:

Construct a ray r from p count \# crossings.
add \#crossing $\Leftrightarrow p$ is inside

Motivation for Decomposing Polygons

Most algorithms on polygons work better on small/nice polygons - triangles or convex pieces.

Note: 3D is more useful than 2D but we often work with surfaces in 3D and these are stored as a collection of polygons.

Types of Decompositions

- partition - express polygon as union of disjoint subpolygons
- covering - express polygon as union of subpolygons
- Boolean combination - express polygon as Boolean combination (union, intersection, minus, etc.) of subpolygons.

Steiner points

Sometimes we require the subpolygon vertices to be vertices of the original. Otherwise the new vertices are called Steiner points.
Examples:

versus

Triangulating Polygons
Partition a polygon into triangles without Steiner points. Each triangle edge will be a chord - a line segment inside the polygon joining two vertices.

Example

$$
P
$$

Theorem [Lennes 1911] Any polygon, can be triangulated.
Proof. By induction on \# vertices. Basis $n=3$ - have once Δ Enough to find one chord - line segment inside P joining two vertices.
A chord divides Pinto 2 , pieces - by induction smaller can triangulate them.

Theorem [Lennes 1911] Any polygon can be triangulated.
Proof. Take a vertex with angle $<180^{\circ}$ ("Convex vertex") e.g. min x-coord (and min y-Lord in case offies).
 Hope: $B C$ is a chord.
If not find a vertex D inside $\triangle A B C$ s.t. $A D$ is a chord.

Careful: D closest to A fails!
Sweep line parallel to $B C$
from A towards BC.
If we get to $B C$ then $B C$ is a chord.
otherwise we hit a vertex D
Then $A D$ is a chord.

Some properties of polygon triangulations

- number of triangles is (\#chords is $n-3$)
- every polygon has (at least) two disjoint ears = triangle formed by 2 incident
- triangles form a tree polygon edges +1 chord.

ears are leaves of the dual tree degrees of thee vertices: 1,2, or 3

Exercise. Prove that the sum of the interior angles of any polygon is $\pi(n-2)$

The number of triangulations of a polygon.

Some polygons have a unique triangulation.

The 42 possible triangulations for a convex heptagon W https://en.wikipedia.org/wiki/Polygon_triangulation

Fact: The number of triangulations of an n-vertex convex polygon is the Catalan number C_{n-2}

Problem: Give a polynomial-time algorithm to compute the number of triangulations of a simple polygon.
for point sets
Peeling and Nibbling the Cactus: Subexponentia--Time Algorithms for Counting for polygonal regions
Iriangulations and Related Problems
D Marx, T Miltzow - 32nd International Symposium on ..., 2016-drops.dagstuhl.de

Later on we will talk about triangulating point sets in the plane

Also about "rriangulating" polyhedra in 3D

Exercise: cut a cube into min. number of tetrahedra.

Algorithms to triangulate a polygon

1. obvious method (find a chord, following the proof) takes $\mathrm{O}\left(n^{4}\right)$
can be improved to $\mathrm{O}\left(n^{2}\right)$ by cutting off ears
Exercise: figure out the details for this
2. $\mathrm{O}(n \log n)$ algorithm next day
3. $\mathrm{O}\left(n \log ^{\star} n\right)$ randomized algorithm of Seidel (faster than $\mathrm{O}(n \log n)$)

A. Lubiw, U. Waterloo

4. Optimal algorithm to triangulate a polygon $\mathrm{O}(n)$

Bernard Chazelle 1991

- Triangulating a simple polygon in linear time

B Chazelle - Discrete \& Computational Geometry, 1991-Springer Abstract. We give a deterministic algorithm for triangulating a simple polygon in linear time. The basic strategy is to build a coarse approximation of a triangulation in a bottom-up phase and then use the information computed along the way to refine the triangulation ..

But so complicated that there's no implementation!

Linear-time polygon triangulation has intriguing consequences. For example, one cannot check in linear time whether a list of segments ab, cd, ef, gh, etc, is free of intersections, but if the list is of the form $\mathrm{ab}, \mathrm{bc}, \mathrm{cd}$, de, etc, then miraculously one can. Segueing into my favorite open problem in plane geometry, can the self-intersections of a polygonal curve be computed in linear time? I know the answer (it's yes) but not the proof.
https://www.cs.princeton.edu/~chazelle/linernotes.html

The power of having a simple polygon

Simplified linear-time Jordan sorting and polygon clipping

KY Fung, TM Nicholl, RE Tarjan, CJ Van Wyk - Information Processing ..., 1990 - Elsevier Given the intersection points of a Jordan curve with the x-axis in the order in which they occur along the curve, the Jordan sorting problem is to sort them into the order in which they occur along the x-axis. This problem arises in clipping a simple polygon against a rectangle (a "window") and in efficient algorithms for triangulating a simple polygon. Hoffman, Mehlhorn, Rosenstiehl, and Tarjan proposed an algorithm that solves the Jordan sorting problem in time that is linear in the number of intersection points, but their algorithm requires

- ON-LINE CONSTRUCTION OF THE CONVEX HULL OF A SIMPLE POLYLINE

AA Melkman - Information Processing Letters, 1987 - ime.usp.br

Lecture 1: Triangulations
A. Lubiw, U. Waterloo

Art Gallery Theorem (an application of triangulations)
Regard a polygon as a floorplan of an art gallery, edges = walls. How many guards are needed to watch the whole gallery?

Example

2 guards work
1 guard is not enough.

Problem posed by Victor Klee 1973, bound proved by Chvatal 1975, simple proof by Fisk 1978.

$$
\left[\frac{n}{3}\right] \text { vertex guards }
$$

Theorem. For an n vertex polygon floor($n / 3$) guards always suffice, and for some n-vertex polygons, floor(n/3) guards are necessary.

1 situated anywhere.
1 guard suffices but not on a vertex.

Lecture 1: Triangulations
A. Lubiw, U. Waterloo

Theorem. For an n vertex polygon floor($n / 3$) guards always suffice, and for some n-vertex polygons, floor (n/3) guards are necessary.

Proof [Fisk] Triangulate the polygon.
Colour the vertices red, green, blue sit. every triangle has every colour. How to colour:

cut off an ear - by induction colour the smaller piece
Then add ear back
The smallest colour cess has $\leq\left\lfloor\frac{n}{3}\right\rfloor$ vertices
and guards the polygon (because it guards every Δ)
When are floor($n / 3$) guards necessary?

$n=15$ vertices
need 5 guard s
(oneper "cloth")

There are many further results on guarding.
Exercise: If the polygon is orthogonal, make a conjecture about the number of guards that are always sufficient and sometimes necessary.

Art Gallery Theorems and Algorithms, Joseph O'Rourke, 1987

- http://cs.smith.edu/~jorourke/books/ArtGalleryTheorems/

Guards may have limited visibility - sensor networks

Efficient sensor placement for surveillance problems
PK Agarwal, E Ezra, SK Ganjugunte - International Conference on ..., 2009 - Springer

Algorithms for the Art Gallery Problem

Is there an algorithm to find the minimum number of guards for a given polygon? (Above results were about the worst-case number of guards for an n-gon.)

Guards need not be on the boundary.

Example:

The problem is NP-hard. Is the decision problem in NP?

Geometric problems involve issues of real numbers! What is our model of computing? How do we deal with imprecise points?

Guards might need to be at irrational points! (to get min. number of guards)

Irrational Guards are Sometimes Needed
M Abrahamsen, A Adamaszek... - ... Geometry (SoCG 2017), 2017 - drops.dagstuhl.de

The Art Gallery Problem is hard for existential theory of the reals $\exists \mathbb{R}$
OT The art gallery problem is \mathfrak{B}-complete
M Abrahamsen, A Adamaszek, T Miltzow - Proceedings of the 50th ..., 2018 - dl.acm.org
$P \subseteq N P \subseteq \exists \mathbb{R} \subseteq P S P A C E$
(e) A Practical Algorithm with Performance Guarantees for the Art~ Gallery Problem

S Hengeveld, T Miltzow - arXiv preprint arXiv:2007.06920, 2020 - arxiv.org

Summary

- polygon, triangulation, art gallery problem
- two proofs: polygons can be triangulated; $n / 3$ art gallery guards
- dangers of real numbers in geometric problems
- algorithms! possible, impossible, un-implementable

References

- [CGAA] Section 3.1
- [Zurich notes] Chapter 3
- [O’Rourke] 1.1, 1.2
- [Devadoss-O'Rourke] 1.1-1.3

