763 F22	Lecture 1: Triangulations	A. Lubiw, U. Waterloo
Intro to cours	e	
web page	https://cs.uwaterloo.ca/~alubiw/CS763.html	
Piazza	P https://piazza.com/uwaterloo.ca/fall2022/cs763/home	
Credit:		
• 5 assignmen	nts (roughly 2 questions each) (50%)	
• a project (50	0%). Pick some topic that interests you and is relevant to	the course;
explore som	ne aspect of it. You may attempt original research or rep	ort on some
papers (one	paper deeply or a few papers less deeply). You must do	a written
report and a	class presentation. I will suggest possible topics.	
Course Outli	ine	
 polygon tria 	angulation	
 visibility an 	d guarding	
 convex hull 	S	
 linear progr 	amming	
 Voronoi dia 	grams and Delaunay triangulations	
surface reco	onstruction	
arrangemen	ts and duality	
• geometric d	ata structures, search problems	
motion plan	ining, shortest paths	
• curves, traje	ectories, Fréchet distance	
Background: I	will assume a background in algorithms and data structu	res from a decent
undergraduate c	ourse (e.g. UW's CS 341).	

CS 763 F22	Lecture 1: Triangulations	A. Lubiw, U. Waterloo
Polygon Triang	gulation	
Definition. A p	<i>olygon</i> is specified by a sequence of po	pints in the plane,
p_1, p_2, \ldots, p_n	\mathcal{D}_n called <i>vertices</i> . The <i>edges</i> are the li	ine segments $e_i = p_i p_{i+1}$
We assume <i>sin</i>	nple polygons — two edges intersect or	nly at a common vertex.
Examples P_2 P_3 P_4 P_2 P_3 P_1 P_1 P_2	Py Pz P, Pz not simple not a single polygon "polygonal region	P2 P5 P3 P1 P4 P1 P4 P1 P4 P1 Weakly SEmple-polygons.
How do we test	if a polygon is simple? Plane-sweep O simple? HA Akitaya, G Aloupis, J Erickson, CD Tóth - D	Discrete & Computational, 2017 - Springer

CS 763 F22	Lecture 1: Triangulations	A. Lubiw, U. Waterloo
Jordan Curve Th	neorem	
A simple polygon	divides the plane into two regions, the ir	nside and the outside.
True more genera	ally for simple curves. W https://en.wikipedia.org/wiki/Jord	dan_curve_theorem
Elementary proof	for polygons — Courant and Robbins, 1 w https://en.wikipedia.org/wiki/What_Is_Matt	1941 hematics%3F
How to test if a p	oint is inside/outside a polygon:	
	In Construct a M	ay + from p
	P Count # C	rossings.
		< =) = is incido
	* * * * * * * * * * * * * * * * * * *	FIS MOTAE
2 6 crossin	es v	
63-Lecture1		

CS 763 F22	Lecture 1. Triangulations	A Lubiw U Waterloo
00700122	Locialo I. mangulations	71. LUDIW, O. Watchiou

Motivation for Decomposing Polygons

Most algorithms on polygons work better on small/nice polygons — triangles or convex pieces.

Note: 3D is more useful than 2D but we often work with *surfaces* in 3D and these are stored as a collection of polygons.

Types of Decompositions

- partition express polygon as union of disjoint subpolygons
- covering express polygon as union of subpolygons
- Boolean combination express polygon as Boolean combination (union, intersection, minus, etc.) of subpolygons.

Steiner points

Sometimes we require the subpolygon vertices to be vertices of the original. Otherwise the new vertices are called *Steiner points*. Examples:

Steiner point versus

5 763 F22	Lecture 1: Triangulations	A. Lubiw, U. Waterloo
Triangulating P	olygons	
Partition a polyge a <i>chord</i> — a line	on into triangles without Steiner points. Ea e segment inside the polygon joining two v	ach triangle edge will be ertices.
Example		
Theorem [Lenne	es 1911] Any polygon, can be triangulated.	
Proof. By ind Enough to	uction on # vertices. Basis find one chord - line segn joining two ve	n=3 - have one a ment inside P rtices.
A chord d	toides Pinto 2, pieces - smaller	5y induction can triangulate them

CS 763 F22 Lecture 1: Triangulations A. Lubiw, U. Waterloo Theorem [Lennes 1911] Any polygon can be triangulated. Proof. Take a vertex with angle < 180° ("convex vertex") e.g. min z-coord (and min y-coord in case offices). Hope: BC is a chard. If not find a vertex D inside AABC s.t. AD is a chord. Careful: D closest to A fails! Sweep line Parallel to BC K from A towards BC. If we get to BC then BC is a chord. Otherwise we hit a vertex D Then AD is a chord. Min. 76 CS763-Lecture1 8 of 20

CS 763 F22	Lecture 1: Triangulations	A. Lubiw. U. Waterloo
00/00/22		

The number of triangulations of a polygon.

The 42 possible triangulations for a convex heptagon W https://en.wikipedia.org/wiki/Polygon_triangulation

Fact: The number of triangulations of an *n*-vertex convex polygon is the Catalan number C_{n-2}

Problem: Give a polynomial-time algorithm to compute the number of triangulations of a simple polygon.

for point sets

Peeling and Nibbling the Cactus: Subexponential-Time Algorithms for Counting Triangulations and Related Problems

for polygonal regions

Counting Polygon Triangulations is Hard

D Eppstein

D Marx, T Miltzow - 32nd International Symposium on ..., 2016 - drops.dagstuhl.de

Some polygons have a unique triangulation.

CS 763 F22	Lecture 1: Triangulations	A. Lubiw, U. Waterloo
Algorithms to tr	iangulate a polygon	
1. obvious metho	d (find a chord, following the proof) takes	o O(n ⁴)
can be improv	ed to $O(n^2)$ by cutting off ears	
Exercise: figure	e out the details for this	
2. O(<i>n</i> log <i>n</i>) algo	orithm next day	
3. O(<i>n</i> log* <i>n</i>) ran	domized algorithm of Seidel (faster than	O(<i>n</i> log <i>n</i>))
762 ooturo1		

S 763 F22	Lecture 1: Triangulations	A. Lubiw, U. Waterloo
4. Optimal algorithm	to triangulate a polygon $O(n)$	
Bernard Chazelle	1991	
	 Triangulating a simple polygon in linear time B Chazelle - Discrete & Computational of Abstract. We give a deterministic algorith polygon in linear time. The basic strategy approximation of a triangulation in a both the information computed along the way 	Geometry, 1991 - Springer thm for triangulating a simple gy is to build a coarse ttom-up phase and then use y to refine the triangulation

But so complicated that there's no implementation!

Linear-time polygon triangulation has intriguing consequences. For example, one cannot check in linear time whether a list of segments ab, cd, ef, gh, etc, is free of intersections, but if the list is of the form ab, bc, cd, de, etc, then miraculously one can. Segueing into my favorite open problem in plane geometry, can the self-intersections of a polygonal curve be computed in linear time? I know the answer (it's yes) but not the proof.

ttps://www.cs.princeton.edu/~chazelle/linernotes.html

CS	763	F22
$\mathbf{C}\mathbf{S}$	100	1 22

The power of having a simple polygon

E Simplified linear-time Jordan sorting and polygon clipping

KY Fung, TM Nicholl, <u>RE Tarjan</u>, CJ Van Wyk - Information Processing ..., 1990 - Elsevier Given the intersection points of a Jordan curve with the x-axis in the order in which they occur along the curve, the Jordan sorting problem is to sort them into the order in which they occur along the x-axis. This problem arises in clipping a simple polygon against a rectangle (a "window") and in efficient algorithms for triangulating a simple polygon. Hoffman, Mehlhorn, Rosenstiehl, and Tarjan proposed an algorithm that solves the Jordan sorting problem in time that is linear in the number of intersection points, but their algorithm requires ...

ON-LINE CONSTRUCTION OF THE CONVEX HULL OF A SIMPLE POLYLINE
 AA Melkman - Information Processing Letters, 1987 - ime.usp.br

CS 763 F22	Lecture 1: Triangulations	A. Lubiw, U. Waterloo
Algorithms for	the Art Gallery Problem	
Is there an algor	ithm to find the minimum number of guard	ds for a given polygon?

(Above results were about the worst-case number of guards for an n-gon.)

Guards need not be on the boundary.

The problem is NP-hard. Is the decision problem in NP?

Geometric problems involve issues of real numbers! What is our model of computing? How do we deal with imprecise points?

CS 763 F22	Lecture 1: Triangulations	A. Lubiw, U. Waterloo
Guards might need	to be at irrational points! (to get min	n. number of guards)
$p_t^{\ell} e_t^{\ell}$	$p_t^r = e_t^r$ $l_m \qquad \qquad$	
g_ℓ e_b^ℓ p_b^ℓ	$ \begin{array}{c} $	ational Guards are Sometimes Needed rahamsen, A Adamaszek Geometry (SoCG 2017), - drops.dagstuhl.de
The Art Gallery Prol	blem is hard for existential theory of	the reals $\exists \mathbb{R}$
$P \subseteq NP \subseteq$	$\exists \mathbb{R} \subseteq PSPACE$	
S Hengeveld, T Miltzow - arXiv prep	nce Guarantees for the Art~ Gallery Problem print arXiv:2007.06920, 2020 - arxiv.org	

CS 763 F22	Lecture 1: Triangulations	A. Lubiw, U. Waterloo
Summary		
- polygon, trian	gulation, art gallery problem	
- two proofs: po	olygons can be triangulated; n/3 art galle	ery guards
- dangers of re	al numbers in geometric problems	
- algorithms! p	ossible, impossible, un-implementable	
References		
- [CGAA] Secti	on 3.1	
- [Zurich notes]	Chapter 3	
- [O'Rourke] 1.	1, 1.2	
- [Devadoss-O	'Rourke] 1.1 - 1.3	