
Compositional Reasoning for Port-based Distributed
Systems

Alma L. Juarez Dominguez
School of Computer Science

University of Waterloo
Waterloo, ON, Canada

aljuarez@cs.uwaterloo.ca

Nancy A. Day
School of Computer Science

University of Waterloo
Waterloo, ON, Canada

nday@cs.uwaterloo.ca

ABSTRACT
Many distributed systems consist of components that run
concurrently and communicate asynchronously through ports.
The IP-based communication protocols used produce chains
of connections in which the components communicate through
queues. We present a compositional reasoning method to
verify liveness properties of a communication protocol for
chains of connections consisting of an unknown number of
components. In our verification method, we model check
components individually in an abstract environment, and
then use the properties of the individual components in an
inductive proof to conclude that the communication proto-
col properties hold for chains of connections. We describe
how our method is used to verify properties of the call pro-
tocol used by the AT&T’s Distributed Feature Composition
(DFC) architecture.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Formal meth-
ods

1. INTRODUCTION
Many distributed systems consist of independent compo-
nents that run concurrently and communicate asynchronously
via first-in first-out queues. The protocols used often create
graphs of connections between components where a com-
ponent only communicates with its immediate neighbours.
Parts of these graphs are linear chains of connections. Many
IP-based telecommunications protocols are of this form. An
example of such a system is AT&T’s Distributed Feature
Composition (DFC) architecture [11] for IP-based telecom-
munication services in which the components are telecom-
munication features such as call waiting and call forwarding.
In this work, we are interested in proving liveness properties
of a protocol for chains of connections of an unknown num-
ber of components representing by finite state processes that
communicate asynchronously. Many of these properties take

the form of ensuring that if a message is sent at one end of
the chain, it will be received at the other end after passing
through all the concurrent components of the chain. Au-
tomated verification of these types of queue-based systems
is usually beyond the capacity of current verification tools,
particularly when the number of components in the system
is unknown. Thus, to reduce the verification complexity,
we would like to be able to use compositional reasoning to
verify these properties. Our contribution in this paper is in
exploiting domain-specific information about these types of
systems to produce a compositional reasoning method.

Much of the work on compositional reasoning techniques is
applicable to a fixed number of heterogeneous components.
Assume-guarantee reasoning [16] is designed to handle de-
pendency problems between components. To prove proper-
ties of one component, we assume properties of another com-
ponent and vice versa, which leads to proof rules in which
care must be taken to avoid circular arguments. If the com-
ponents are identical, induction in a theorem prover can be
used to reason about an unknown, but bounded number of
components. A combination of theorem proving and model
checking has also been used to verify an unknown number
of identical components (e.g., [14]). Usually this work takes
the form of using theorem proving to justify the reduction
of the system to a fixed number of identical components.

We exploit domain-specific knowledge about both the prop-
erties to be proven and the system, and use a combination
of theorem proving, model checking, and language contain-
ment to reduce considerably the verification effort. First,
we recognize that while the components of the system are
heterogeneous, to satisfy the protocol properties, they must
all satisfy the same properties. We use the term semiregular
to describe a set of components that behave the same with
respect to the protocol but have distinct behaviours. This
observation allows us to decompose the overall system prop-
erties into identical obligations that each individual compo-
nent must satisfy. These individual properties are verified
by model checking each component, and the properties are
combined using induction in a theorem prover. The theorem
proving effort is only in terms of properties of the compo-
nents and properties of the queues, and does not need to be
repeated as more components are added to the system.

The individual properties are unlikely to hold in every en-
vironment, but rather only when the component is placed
in the environment of a chain of similar components us-

ing the same protocol. Here, we exploit a second aspect
of domain-specific knowledge. The components in a chain
communicate only with their immediate neighbours. A port
is the communication behaviour that a component has with
one neighbour sending and receiving messages. If we prove
that a component works in an environment consisting only
of the ports of its neighbours, then it will work in the entire
chain. The port serves as an abstraction of not only its im-
mediate neighbour but all components on that side of the
chain. Furthermore, because of the semiregularity attribute,
we are able find an abstract representation of a port to serve
as the environment in which we check individual components
rather than checking all combinations of a component with
possible neighbouring ports. We use language containment
to show that the behaviour of any port is contained within
the behaviour of the abstract model of a port.

By exploiting these two domain-specific attributes (semi-
regularity and port-based communication), we have created
a compositional reasoning method to verify liveness proper-
ties of a protocol used by chains of connections of an un-
known number of components in a semiregular, port-based,
asynchronous distributed system with bounded queues. An
outline of the method is as follows: (1) use model checking to
prove every component satisfies individual properties in an
environment consisting of abstract ports; (2) use induction
to prove the overall liveness property from the properties of
the individual components; and (3) show that the behaviour
of every port is contained within the behaviour of the ab-
stract ports using a language containment proof. A key
contribution here is isolating and abstracting the behaviour
of a port of a neighbour, which both reduces the state space
search for model checking, and means that we do not have
to verify all the possible combinations of components that
could be neighbours in a chain.

Handling asynchronous communication also offers challenges
not usually addressed by assume-guarantee style reasoning
which focuses on synchronous or broadcast communication.
Queues increase the size of the state space. We tackle this
problem by decomposing the verification of the properties of
individual components into two parts. First, we use model
checking to verify that the component satisfies the individual
properties in a synchronous environment where the neigh-
bouring components always accept output and send appro-
priate input. Synchronous communication abstracts away
the queues and therefore reduces the verification complexity.
Second, we verify that the component produces only output
that is expected and receives all input provided in an envi-
ronment consisting of abstract representations of the ports
of its neighbours and asynchronous communication with a
queue of bounded size. This check is basically a check for
lack of deadlock and is reusable for multiple properties. In
the theorem proving component of our method, we abstract
the behaviour of the queues to perfect communication: every
message that is sent is eventually ready to be received.

We demonstrate the utility of our approach by describing
a significant case study showing how our method works to
prove protocol properties of the Distributed Feature Com-
position (DFC) architecture. DFC is used for coordinating
telecommunications features. In this system, components
are features such as call waiting. Users can subscribe to
features, which creates the situation where the number of

features to be used in a call is unknown. DFC creates chains
of components that run concurrently and communicate only
with their neighbours through queues. An interesting aspect
of this case study is that we created a hierarchy of abstract
ports. This hierarchy allows feature behaviour to be com-
pared to the most appropriate element in the hierarchy when
checking language containment.

In the next section, we describe our compositional reasoning
method. In Section 3, we describe our case study applying
the method to DFC. We first provide an introduction to the
DFC architecture, and present our model of DFC. We also
include a brief discussion of how we model checked instances
of DFC with a fixed number components to help debug our
protocol properties. Then, we describe how we use our com-
positional reasoning method for DFC. We conclude with a
discussion of related work, a summary and a brief descrip-
tion of future work.

2. COMPOSITIONAL REASONING
The goal of our work is to verify overall system properties of
a communication protocol in all chains of connections with
any number of components. We decompose the problem into
two main parts: verify properties of individual components,
which we will call individual properties, and then assuming
all components satisfy the individual properties, prove the
overall system property. Figure 1 illustrates our composi-
tional reasoning method. Verifying components individually
is done in steps (1), (2), and (3) using model checking and
language containment. Proving the overall system property
is done using induction over the structure of the chain of
components in a theorem prover in step (4).

The proof obligations of steps (1), (2), and (3) allow us to
conclude that a component will satisfy the individual prop-
erties in any chain of components of the system. These steps
must be completed for every component. Because the sys-
tem is semiregular and uses port-based communication, we
create an abstract model of a port and use this abstraction
to represent the behaviour of the neighbouring port plus
all aspects of the chain on the other side of the neighbour.
The abstract model of the port captures that most general
behaviour of a port. In step (1), which we call port com-
pliance, we verify that the behaviours of each port of every
components is within the behaviour of this abstract port.

Unlike broadcast communication, port-based communica-
tion over chains of components means that a component will
only communicate with its immediate neighbours. There
could be multiple neighbours, but there is usually a reason-
ably small, fixed maximum number of neighbours for a com-
ponent. For example, a call waiting feature communicates
with at most four neighbours: a subscriber to the feature,
the user to whom the subscriber is talking, a user on hold,
and any other user who receives a busy signal. We decom-
pose the step of verifying the protocol properties of a com-
ponent into two parts to reduce the state space. First, we
show protocol compliance in step (2), which means that the
component satisfies the individual properties in a cooper-
ative environment using synchronous communication. Sec-
ond, we show I/O compliance in step (3), which means that
the output produced by the component is expected by its en-
vironment and the environment provides the input expected
by the component. This separation results in a reduced state

!"#$%&$!'!()

!!!

!"
#
$"
%&
%'

()&)& ()&)&

*+,-."/'-!"#$012%3&

*4,-567-!"#$012%3&

*8,-./"'"3"0-!"#$012%3&

*9,-5%:)3'1;&-<&2="%1%>

!"#$%&'#'(!

$'))(#*$+,*'#

!"
#
$"
%&
%'

!""$&/2'1;&

."/'

!""$&/2'1;&

."/'

⊆

?@A7<AB-
.<7C5DE

B7FAG-
!@A!H5DE

IJ='/23'-

."/'

!"
#
$"
%&
%'

+!"#$%&'#'(!

$'))(#*$+,*'#

IJ='/23'-

."/'

!*+"
#$%&$!'!(

!"
#
$"
%&
%'

./
"$

()&)&
./"$

!"
#
$"
%&
%'

./
"$

!"#$%&'($)&'(

!*#$+,-.)/+0($'/(1

GIDEKIEA-
!7D?I5DBAD? IJ='/23'-

."/'

!"
#
$"
%&
%'

./
"$

!"
#
$"
%&
%'

./
"$

!"
#
$"
%&
%'

./
"$

()&)&
./"$

()&)&
./"$

()&)&
./"$

B7FAG-
!@A!H5DE

Figure 1: Compositional Reasoning Method

space for model checking. Also, we expect the I/O compli-
ance step to be reusable for multiple individual properties
(and therefore multiple overall system properties). Next, we
provide further details on these steps.

In the port compliance step, we prove, using language con-
tainment, that the behaviour of each port in a component
is within the behaviours of the abstract port. First, we iso-
late the behaviour of the component to its communication
on only one port by replacing all transition triggers except
those dealing with communication on this port with a guard
of “true” and removing all outputs except those to the port
being verified. This is a valid abstraction of the port’s be-
haviour – it does not add or remove any port behaviour.
Second, we find an abstraction function, abs, matching the
states of the component (concrete) with the states of the
abstract port (abstract). Then we show, for every tran-
sition in the concrete machine consisting of a source state
(src), destination state (dest), and a trigger (sig), which in-
volves receiving or sending a signal, that:

∀ src, sig, dest · (src, sig, dest) ∈ concrete

⇒ (abs(src), sig, abs(dest)) ∈ abstract

In the protocol compliance step, we use model checking to
verify the individual properties of a component using coop-
erative ports and synchronous communication. A coopera-
tive port sends and receives any signal the component needs
during its execution. It allows us to hide the behaviour of
the environment by assuming the environment will cooper-
ate. The use of synchronous communication abstracts away
the behaviour of the unbounded queues, which considerably

reduces the state space during the verification effort.

In the I/O compliance step, we use model checking to verify
that a component communicating with neighbouring com-
ponents asynchronously over a channel of bounded length
receives only the signals it is expecting and sends only the
signals expected by the environment. In this step, we use ab-
stract ports as the neighbours of the component. We check
for a combination of lack of deadlock (invalid end states)
and termination with empty queues. No other components
in the chain need to be considered because the component
only communicates with its immediate neighbours.

The size of queues needed between the components for check-
ing I/O compliance will depend on the system being veri-
fied. In our DFC case study, we required a queue size of only
one to prove lack of deadlock and termination with empty
queues. While a larger queue size could have been used,
the smaller queue size reduces the state space and forces the
maximum number of interleavings. Having a larger queue
size would permit extra behaviours that involved fewer in-
terleavings.

When carried out for every component, we can conclude
from the above three steps that every component in the
chain satisfies the same set of individual properties with any
neighbours the system might provide to it in the chain.

In step (4), we use induction in a theorem prover to prove
the overall system properties. The induction is on the struc-
ture of the chain of components. We assume the individual
properties hold of all components and that the queues pro-
vide perfect communication: any message that is sent on a
queue will eventually reach the component’s neighbour. The
base case is two components connected by a queue. In the
inductive step, we assume the overall system property holds
if there are n components in the chain, and then prove the
overall system property will hold if there are n + 1 compo-
nents in the chain. The inductive reasoning is performed in
terms of properties only, and is only performed once. Since
we are not working with models of components in this step,
there is no state space search.

Currently, we use the Spin model checker [10] because it sup-
ports both synchronous and asynchronous communication
and, therefore, we describe the properties in linear temporal
logic (LTL). We use the Hol theorem prover [7], and a sim-
ple tool that we wrote for checking language containment.
In our case study (described next), we determined the prop-
erties of individual boxes by hand, although this was quite
straightforward given the overall system properties of inter-
est. Also, we arrived at the abstract port manually through
trial and error, but it is the union of the possible behaviours
of the components’ ports.

3. CASE STUDY: DFC
In this section, we describe how our method is applied to
DFC. Our model of DFC is based on the material found
in the DFC Manual [12], DFC modifications [26, 25], and
various papers describing the architecture [11, 21, 27].

3.1 DFC Model
The Distributed Feature Composition (DFC) system is an
architecture developed by Jackson and Zave at AT&T for co-

!"##$%

&
'!(

&

!"##$$

)
!*

&
!+

)

OCS is “originating call screening”
CW is “call waiting”

CF is “call forwarding”

Figure 2: Example of a Usage

ordinating telecommunication features [11]. A feature box
is a function for the users of a system that is performed on
top of basic services. An example of a feature in the tele-
phony domain is call waiting. The DFC architecture is a dis-
tributed system in which each feature runs independently. A
DFC usage describes the response to a request for a telecom-
munication service at certain time. A usage can be viewed as
a graph that consists of the features subscribed to by users
assembled in an order based on precedence information. An
example of a usage is presented in Figure 2. The nodes of the
graph are features and the edges are bidirectional commu-
nication channels1, which are unbounded first-in, first-out
bidirectional queues between communicating boxes. Com-
munication occurs only between features that are immediate
neighbours. A feature, such as call waiting, can communi-
cate with more than two neighbouring features and therefore
create a branching usage.

A box is a process that performs either interface or feature
functions. Interface boxes (e.g., caller or callee) provide an
interface to physical devices to communicate to users or to
other networks. Feature boxes are either free or bound. A
free feature box is one for which a new instance of it is
generated every time the feature is to be included in a usage.
An example of a free feature box is call forwarding, which
is not persistent and gets created upon request. A bound
feature box is dedicated to a particular address, and even if
it is already in use within an existing usage, the same feature
box is made part of a new usage. An example of a bound
feature box is call waiting. If a call waiting box is involved
in a usage, and the subscriber is called by another caller,
the route for this second call goes through the call waiting
box that is already in use.

We model each box (feature boxes and interface boxes) as a
single process in Promela, the modelling language of Spin.
The processes communicate via channels. There are three
phases to the interaction between caller and callee: setup,
communication, and teardown. In the setup phase, each in-
ternal call is set up in a triangular and piecewise manner
as illustrated in Figure 3. A setup signal2 from a box first
goes to the router on the box out channel (step 1), then the
router determines the next box in the usage and sends it
a setup signal on the box in channel (step 2), and finally,
a communication channel (ch1) is created between the first
two boxes in the usage (step 3). In step 2, the router deter-
mines the next box in the sequence based on the caller and
callee’s subscriptions, and precedence information ordering
the boxes in a usage. When a box receives a setup signal
from the router, it sends an upack signal to the calling box
along the communication channel connecting the two boxes.

1These are called internal calls in the DFC literature.
2A setup signal contains additional information such as the
source and destination. These details are not needed for the
properties of interest in this work.

!"#$%! !"#$%!

&'
()*
%$
#+

,"
-.
"#
$

&/()#+012 &3()#+012

14' 145&6
()*
%$
#+

,"
-.
"#
$

&5()*%$#+

,"-.78

&9()*%$#+

,"-.78

!"##$%
&'%(

:0;;%! <= :0;;%%
!"##$%
&'%(

!"##$$
&'%(

!"##$$
&'%(

Figure 3: Setup Phase
The setup phase continues with the second box in the usage
sending a setup signal to the router to be forwarded to the
next box in the usage. The end of the communication chan-
nel connected to the box that initiates a call by sending a
setup is called a caller port, and the port on the other end
of the communication channel is called a callee port. Once
a usage from a caller process to a callee process has been set
up, the caller process can respond with an avail (available)
or unavail (unavailable) signal to indicate its status. There
are other status signals (unknown and none) that are part
of the DFC call protocol, which are not implemented in our
model. The call then proceeds to either its communication
phase, or directly to its teardown phase.

In the communication phase, data is exchanged between the
caller and callee. In the teardown phase, the usage is de-
stroyed. Similar to the setup phase, the teardown phase is
performed piecewise: a teardown is acknowledged by send-
ing a downack back to the box that sent the teardown, and
then propagating the teardown to the next box in the us-
age. In contrast to setup signals, teardown signals can come
from either end.

Processes in Promela run in an interleaved manner. State-
ments in processes can be grouped using an atomic con-
struct, which means these statements cannot be interrupted.
Unlike previous models of DFC created in Spin (e.g., [22]),
in our model, instances of boxes in a usage are dynamically
created by the router as they are needed. Using dynamic
process creation matches the way DFC works more closely
than having persistent processes for features. It also results
in a significantly simpler model than having all processes
persist and having channels for all possible connections. We
have an array of channels that are allocated by the router
as the usage is created. The router checks subscription in-
formation and runs a new instance of a free feature box
process, or directs communication to a bound feature box
or an interface box as appropriate. As the DFC routing
protocol has been analyzed previously [20, 25], we do not
model details of the router and instead dynamically create
local instances of a router process as needed. We model
the communication to and from the router in an atomic se-
quence using rendezvous channels for box out and box in.
No other process can execute during this atomic sequence
of actions (processes communicating through zero-capacity
channels never block) and once completed, the router has
reached the end of its code. Therefore, it is never necessary
to have two router processes in existence at the same time,
which means the same channels, box out and box in, can be
used for all communication with the routers. This method
reduces the state space of the model.

The communication that occurs on the communication chan-
nels connecting the caller and callee ports of a box may be
delayed, i.e., a signal may not be read immediately after it
was sent because of the interleaved execution of processes.
Therefore, these channels are not zero-capacity. DFC as-

sumes that signals are read in the same order as they were
sent on a particular channel, and Promela’s channels have
this behaviour.

We have modelled four feature boxes: the free transparent
feature (FTF), the free feature boxes call forwarding (CF)
and originating call screening (OCS), and the bound fea-
ture box call waiting (CW). Our complete Promela model
is available in [13]. Call waiting is the most complicated of
the features we modelled, and its state transition diagram
contains 338 states and 445 transitions. It has three ports
on which it may communicate (two users talking and one on
hold). There is also an additional port called busy, which
rejects the connection when a fourth user tries to communi-
cate.

3.2 Categorization of Boxes
Some DFC boxes have the power to change the topology of
a chain of components by placing, receiving, or tearing down
calls. To describe properties of DFC chains, we created the
following characterization of boxes:

User agents (UA): Set of interface boxes, plus the feature
boxes that can act like a user. A user agent box can
request the creation of a chain of components (e.g.,
call forwarding on busy), or respond to such a request.
The response can be positive, accepting the creation
of a chain of components (by the generation of an
avail signal), or negative, stopping the continuation
of a chain (by the generation of an unavail signal). A
user agent such as call waiting can create a branch in
a chain.

Transparent (T): 3 Set of all boxes that must forward any
call protocol signals that they receive onto the next box
in the usage. These boxes may not create new chains
of components.

Of the features we modelled, call forwarding and the free
transparent feature box are transparent boxes. Call waiting,
originating call screening, the caller process, and the callee
process are user agents.

We denote as a segment any part of a usage that is a chain
of components which starts at a user agent box and ends at
a user agent box. A new setup (rather than a propagated
setup signal) is involved in the creation of a branch of a
usage, therefore every setup signal generates a single seg-
ment. Segments can be connected together at user agents
as illustrated in Figure 4.

3.3 Segment Properties
In this section, we describe our call protocol properties of
segments, which stitch together behaviour of individual boxes
to provide a concise statement of end-to-end behaviour of
DFC, where the “ends” are user agents. The general form
of the properties is “After a user agent sends a signal, the
user agent at the other end of the segment eventually re-
ceives the signal.” To state the segment properties, we
use the names of the channels shown in Figure 5. We call
the sender of a setup signal at one end of the segment an

3There are specific features called the free transparent fea-
ture (FTF) and the bound transparent feature (BTF) boxes.
The category of “transparent” boxes includes more than just
these particular feature boxes, although the category name
is inspired by the behaviour of FTB and BTF.

!"##$%

&

!"##$$

'
(' (' ('

!"##$%

!

('

!"#"$"%"#"&"' !"#"$"%"#"&"'!""

#"

$"

%"

#"

&"

'

!"#$

%&#'(

!"#$

%&#'(

!"#$

%&#'(

!"#$

%&#'(

Figure 4: Usage composed of Segments

2(box out!setup ⇒ 3box in?setup) S.1

2(box out!setup ⇒

((2¬(∃i.(i.ch2)?teardown)) ⇒

(alpha!teardown ⇒ 3(beta?teardown)))) S.2

2(box out!setup ⇒

((2¬(∃i.(i.ch1)?teardown)) ⇒

(beta!teardown ⇒ 3(alpha?teardown)))) S.3

2(beta!avail ⇒ 3alpha?avail) S.4

2(beta!unavail ⇒ 3alpha?unavail) S.5

2 means “always”;
S

means “strong until”
3 means “eventually”

ch!sig means signal sig is sent on channel ch
ch?sig means signal sig is received on channel ch

i.ch means channel ch of box i

Table 1: Segment Properties

Upstream User Agent (UUA), and the receiving user agent
is called a Downstream User Agent (DUA). We also need
one feature box (FB i) in the middle of the segment to state
the properties.

The segment properties, to be checked for segments with
any number of feature boxes, are formalized in linear tem-
poral logic (LTL) with predicate logic in Table 1. The first
property (S.1) concerns the propagation of a setup signal
from the upstream user agent to the downstream user agent.
The second and third properties (S.2, S.3) describe the seg-
ment behaviour for a teardown signal. A teardown signal
may originate from either end of the segment after a setup

signal has been sent. A teardown signal propagates to the
end of a segment only if a teardown has not been sent by the
other end of the segment and received at some intermediate
box. A DFC feature that receives a teardown from one side
when it has already received a teardown from the other side
does not propagate the signal. To express this property, we
introduce an intermediate box in the segment. The final two
properties (S.4, S.5) describe the propagation of avail and
unavail signals from a DUA to a UUA. By checking all the
segments that compose a usage, we verify the behaviour of
the usage.

3.4 Model Checking Fixed Configurations
We began our verification effort by model checking fixed
configurations of DFC, i.e., models with a particular num-
ber of callers and callees processes, and fixed subscription

!!"

!

#!"

"

#$%&$'(#$%&)*

+++

!"#$%&'()*+,#$%&'(

!"

#
,-.,-/012-0 #3(0+++

UUA = Upstream User Agent
DUA = Downstream User Agent

Figure 5: Channels used in Segment Properties

information.

By using dynamic process creation, we had a model of infi-
nite size4, thus we limited our callers to calling at most twice.
Once call waiting was introduced into usages, the state space
explosion became apparent and the largest model we could
check was CW with three users and no other features. Each
user could make one call. This model checking effort took
28 minutes on a 1.4 GHz Xeon CPU with 4GB of RAM and
reached a maximum depth in Spin of 5 million steps. All the
results that we report in this paper were produced on this
equipment. Because Spin uses an explicit state representa-
tion, the depth is a measure of how many states have been
explored. Any larger configurations that we tried to check
exceeded the maximum number of steps possible within the
memory available, and therefore did not complete. However,
by checking fixed configurations, we could debug both our
model and the segment properties. This debugging exercise
was very useful as we discovered a previously unknown race
condition in call waiting within five minutes while checking
for deadlock. The new behaviour was added to the original
specification of CW, and the final description is used in all
our verifications.

3.5 Compositional Verification for DFC
In this section, we describe how our compositional method is
used for verifying the properties of Table 1 on DFC segments
of unknown, but finite length. In the following subsections,
we provide details on each of the proof steps.

3.5.1 Protocol Compliance
First, we determined the individual properties that capture
the essential box behaviour sufficient to prove the segment
properties. The DFC Box Properties are listed in Table 2
and are described in terms of the channels shown in Figure 6.
Most of these properties have the form “After receiving a sig-
nal, the box eventually sends a signal on another channel”.
Most box properties are similar to the segment properties
(Table 1), but reflect what an individual box must do so
that the segment properties will be satisfied. For example,
Property T.5 describes the behaviour that after the usage
is setup, the first teardown received from either neighbour is
forwarded. Property D.3 requires a send of an upack signal
to be followed by a send of either an unavail or an avail

signal unless a teardown is received.

We check these properties using model checking in Spin.

4Even though there are only a fixed number of features,
callers, and callees, Spin processes created dynamically all
have unique process identifiers and there is always an inter-
leaving order that allows a process to persist forever. Thus a
usage that had previously been explored would be explored
again because of different process identifiers.

!"#$%&'()*+,#$%&'(

!"#$%& !"#$"'(

-.//001

"234

-.//031

"234
)*+)*,

Figure 6: Channels and Ports for a Two-way Box

Transparent Box Properties

2(box in?setup ⇒ 3ch1!upack) T.1

2(box in?setup ⇒ 3box out!setup) T.2

2(ch1?teardown ⇒ 3ch1!downack) T.3

2(ch2?teardown ⇒ 3ch2!downack) T.4

2(box in?setup ⇒

((¬ch2?teardown
S

(ch1?teardown ∧ 3ch2!teardown))

∨ (¬ch1?teardown
S

(ch2?teardown ∧ 3ch1!teardown))

∨ 2(¬ch1?teardown ∧ ¬ch2?teardown)) T.5

2(ch2?avail ⇒ 3ch1!avail) T.6

2(ch2?unavail ⇒ 3ch1!unavail) T.7

Upstream User Agent Box Property

2(ch2?teardown ⇒ 3ch2!downack) U .1

Downstream User Agent Box Properties

2(box in?setup ⇒ 3ch1!upack) D.1

2(ch1?teardown ⇒ 3ch1!downack) D.2

2(ch1!upack ⇒

((¬ch1?teardown)
S

(ch1?teardown ∨ ch1!avail ∨ ch1!unavail)) D.3

2(ch1!unavail ⇒

((¬ch1?teardown)
S

(ch1?teardown ∨ ch1!teardown)) D.4

Table 2: DFC Box Properties

We place each box in a cooperative port environment that
can receive and send non-deterministically any of the signals
through all channels using synchronous (rendezvous) com-
munication. If, in the cooperative port, Spin happens to
choose a rendezvous send statement that has no receiving
part in the box process, the send statement is discarded by
Spin, selecting a new candidate from the set of executable
statements.

We verified the DFC box properties on the caller process,
callee process, and four feature boxes that we have modelled.
The verification of call waiting took the longest amount of
time at 20 seconds with a maximum depth of 23938.

3.5.2 Port Compliance
Using synchronous communication with a cooperative envi-
ronment to verify DFC-compliance implicitly assumes that
the box only receives inputs and sends outputs when they
are expected. To avoid the problem of having to verify ev-

ery box in the environment of every other box, we capture
the essential behaviour of a DFC port in an abstract model
of a port’s behaviour. The DFC manual presents models
of caller port and callee port behaviour [12]. We started
using these caller and callee port models as our abstract
ports, but found that the ports of the call waiting feature
box can switch from being a caller to a callee and vice versa
during the box’s execution. This behaviour happens in two
situations. The first situation occurs when a user who was
called by the subscriber (interacting with CW through a
caller port) is placed on hold. If this user decides to hang
up, it releases the CW’s caller port. The port just released
can be used if another user calls the subscriber, and there-
fore interacts with CW through a callee port. The second
situation occurs when a user calls the subscriber so the sub-
scriber interacts with CW through a callee port, and another
user tries to reach the subscriber. This user remains on hold.
When the subscriber hangs up, the CW feature calls back
the subscriber, reminding them that there is a person on
hold. The subscriber is now called by CW and therefore
interacts with CW through a caller port. Because of these
situations, we created an abstract model of a port, called
a combo port, that can switch between these modes. The
details of how we verify all features with neighbours whose
ports behave as this most general abstract port are provided
in the next section. Because the abstract port is the union
of the possible behaviours of every component’s ports, false
negatives are not possible. Each behaviour of the abstract
port is the behaviour of some component’s port. Next, we
describe how to verify that the behaviour of every port of a
box is contained within the possible behaviours of the combo
port.

The abstract models of caller port, callee port, combo ports
and their free and bound instances can be arranged in a par-
tial order based on language containment as shown in Fig-
ure 7, where the dashed boxes are the abstract models (1-6).
The language of the ports is the communication between the
port and the channel. Bound ports (ports of bound boxes)
have the behaviours of free ports, but after the call is torn
down they return to their initial state to await another setup
signal. The behaviour of both caller ports and callee ports
is contained within the behaviour of the combo ports. The
combo bound port model, shown in Figure 8, behaves like a
caller port (or callee port) until it reaches the communica-
tion phase (state CommPhase), then there is no distinction in
behaviour between caller port and callee port. This captures
the behaviour of call waiting where the subscriber can call
(using a call waiting callee port) or be called (using a call
waiting caller port). Bound ports include the behaviour of
the busy port, which handles the reception of a setup sig-
nal from the router when the box is already communicating
with another box. The busy port rejects the request for an
additional connection. This behaviour is captured by the
looping transitions on states in Figure 8 labelled U .

Rather than trying to show language containment of a box’s
port directly with the behaviour of the combo bound port,
we rely on the partial order of abstract models, and match
the box’s ports with the most appropriate element of the
abstract model hierarchy. This makes it easier to find the
abstraction function needed to show language containment,
and also provides a tighter verification of the port’s be-

!"#$%

&'()#*'
+(,,'*-."*)-

+(,,''-

."*)
!"#$%

!"#$%

&'()#*'
+(,,''-."*)

+(,,'*-

."*)
!"#$%

+(,,''-

."*)
&'((

+(,,'*-

."*)
&'((

&*''

&'()#*'
+(,,'*-."*)

&*''

&'()#*'
+(,,''-."*)

!"#$%

&'()#*'
+"/0"."*)

+"/0"-

."*)
&'((

+"/0"-

."*)
!"#$%

!"#$%!&$
'(%$

)!*+,!+-.&(*$!/*0-*$.
&1-&2-3

!!

!"

#

$

!

% & '

() *+(,,'*1-- +(,,''1--

Figure 7: Abstract Models of Port Behaviour

haviour. In Figure 7, the shaded boxes (the leaves of the
tree) represent the ports of particular boxes. For example,
the caller port of the caller process (7) is checked against the
abstract bound caller port model (3), and the callee port of
a free feature box (10) is checked against the free callee port
abstract model (6).

We have written a simple tool that takes a description of
the box as a set of transitions, isolates one port’s behaviour,
and carries out the port compliance check as explained in
Section 2. It walks over transitions of a box, uses the ab-
straction function to compute the abstract states matching
the source and destination of the transition, and checks that
there is a corresponding transition in the abstract machine.
The creation of the state transition diagram for a box is cur-
rently done by hand, but a tool could automatically extract
these models from the Promela model. Determining the
abstraction function is usually straightforward.

We checked the behaviour of all the boxes we modelled
against the appropriate abstract port model. All the ports
of call waiting behave as bound combo ports. We also
checked the relationship between the abstract models (e.g.,
that caller port bound is contained within the combo port
bound). Using the partial order, we know that as long a
box’s port behaviour is contained within one of the abstract
models, it is contained within the most general abstract
model. This part of the verification effort took 5 seconds
to check each call waiting port, which is the most compli-
cated and time consuming example.

3.5.3 I/O Compliance
We use Spin to verify the I/O compliance property: that
each feature box placed in an environment of the most ab-
stract ports (i.e., communicating with combo bound ports)
only receives signals it expects and sends only the signals
the abstract port models expect. The environment for veri-
fying a bound box with four communication ports, such as
call waiting, is illustrated in Figure 9. Boxes in the trans-
parent (T) category can have at most two ports, but user
agents may have more. The channels subsc (subscriber),
ch1, and ch2 are for regular communication, and the busy

channel handles the box’s response to a fourth user that
tries to call, where it simply tears down the call. By using

!"##$%&'(

!"#$%&'()*+,-

./0+,1.2

./0*)134"5&

./'4"5&1.2

./'*)134"5&-

./04"5&1.2

!"#$%

%&'!"

()**$+,('#,)+

%&'!"

#"'-.)/+

%&'!"

)*+,+-(

./'*)134"5&-

./04"5&1.2

.(&/+"0*$%&'(

1(234$%&'()

5*-6*76*8)

./0*)134"5&

!+(67+()389:;

./0+&1<1%=

0!+(67+()389:;

./01<1%=

!

!

!!

1(234$%&'(9

./'1<1%=

./'*)134"5&-

./04"5&1.2

!"#$"+*0()*+,-

./'+,1.2

5*-6*76*89

./'+&1<1%=

! :

!"#$%&'()*+,-

!+(60+,1.2-

!+(60+&1<1%=-

!+(60*)134"5&-

!+(6'4"5&1.2

5*-6*7;

!"#$%&'&#(')#

.1==)3>(:,"3*
!)/1<%"+3

.1==))>(:,"3*
!)/1<%"+3

,"3*:!)/1<%"+3
"?:!"*/:

Figure 8: State Machine for ComboPortBOUND Process

!"#$%&'($()"
%(**)$+%!,+($
"#$%&'($()"
%(**)$+%!,+($

!"#$$%&'(

)*+,-

.$'/+#$0

)*1

!"#!$

2*34*0

5*#/
!"#$%

2*34*0

5*#/
!"#$%

#"!%

#&'(&")

&")+

#&'(,- #&'(&")

&")+

#&'(,-

$./

2*34*0

5*#/
!"#$%

2*34*0

5*#/
!"#$%

$.0

&")+ *&")+*

#&'(&") #&'(,- #&'(&") #&'(,-

Figure 9: Abstract Environment to Verify Expected
I/O Property

the combo bound port in the environment we capture the
behaviour of multiple users communicating with a box as a
caller or callee port at different times. The router process
is included in the model, but the box is not dynamically
created (as we are only checking one box) and the channels
used are fixed in advance. As in our verification of fixed DFC
configurations, we use synchronous communication for the
channels box out and box in. We use asynchronous com-
munication for the rest of the channels with a queue size
of one. This forces the maximal amount of interleavings.
Since we check that the box and its environment are free of
deadlock, this channel size is sufficient.

To prove the I/O compliance property, we checked for a com-
bination of lack of deadlock (invalid end states) and termi-
nation with empty queues. This is done automatically using
XSpin. The maximum model checking time for checking the
I/O compliance property for the CW box was 5 seconds.

3.5.4 Inductive Reasoning

In the final step of our compositional verification method,
we use the DFC box properties stated in Table 2 to prove
the segment properties, stated in Table 1, for all segments
of an unknown, but finite length n. To gain confidence in
the correctness of this proof, we verified it using the Hol

theorem proving system [7].

Having shown that the DFC box properties hold for a box
in any DFC environment, we can restrict our reasoning at
this point to only rely on the LTL properties. We model
the sending and receiving of signals at a box as uninter-
preted predicates, Send and Receive, which take as param-
eters: time, the sender and receiver box addresses, and the
signal. Since we are assuming the correctness of the routing
protocol, the box address can be represented using natural
numbers in the order they appear in the usage. Because
we reason about segments, the base case is a UUA box
connected to a DUA box communicating through a queue,
whereas the inductive step is a proof for a UUA box con-
nected to n transparent boxes and finalized by a DUA box to
conclude a segment with n + 1 transparent boxes delimited
by a UUA and a DUA (all communicating through queues).

Rather than using an embedding of temporal logic in the
logic of the theorem prover, we found it easier to convert the
segment properties to their equivalent versions as functions
of time. For example, 2p means that proposition p holds at
all points in the future, and is expressed using propositions
as functions of time as ∀n · p(t + n), where t the time at
which the property is supposed to hold.

Since we have completed the protocol compliance, I/O com-
pliance and port compliance steps, we rely on the behaviour
of DFC boxes, and can make the assumption that the queues
behave perfectly meaning every signal sent is eventually re-
ceived by the destination box. Using the DFC properties of
boxes, plus the queue property, we prove the segment prop-
erties. For example, for segment property S.1 describing

the propagation of setup signals, we prove,

/* Queue Property (specialized for setup) */
(∀c,t · (Send t c (c+1) Setup) ⇒

(∃t2 · (t2 > t) ∧ (Rec t2 c (c+1) Setup)))
∧

/* DFC Box Property T.2 */
(∀c,t · (Rec t c (c+1) Setup) ⇒

(∃t2 · (t2 > t) ∧ (Send t2 (c+1) (c+2) Setup)))
|=

/* Segment Property S.1 */
∀n,t · (Send t 0 1 Setup) ⇒

(∃t2 · (t2 > t) ∧ (Rec t2 n (n+1) Setup))

where t and t2 are variables of type “time” and c and n are
addresses of boxes in the segment. At this level of reasoning,
we also abstract away the details of which port a signal
is sent on: the Receive predicate effectively means “there
is some port on which the box receives this signal”. The
proofs of the propagation of the setup (S.1), avail (S.4),
and unavail (S.5) signals are all of similar form.

The proofs of the teardown properties (S.2, S.3) are more
complicated and involve a case split on whether a teardown
signal is propagated or whether a teardown signal from the
other end of the segment has been received and therefore
the teardown is not propagated. The complete proofs are
available in [13].

4. RELATED WORK
In this section, we briefly overview related work. There has
been a variety of work on reducing a system consisting of
a fixed number of finite-state processes communicating over
unbounded FIFO channels to a completely finite state sys-
tem for model checking (e.g., [19], [18]). We use theorem
proving in addition to model checking to handle an unknown
number of components. While our theorem proving effort re-
quires more work than model checking, it only needs to be
completed once.

Most existing compositional reasoning techniques (e.g., [5],
[17], [15]), including assume-guarantee reasoning (e.g., [8],
[9], [1]) have focus on verifying systems with synchronous
communication between a fixed number of heterogeneous
components. We are interested in systems consisting of an
unknown number of components with asynchronous com-
munication. We have the advantage of the attribute of the
semiregularity of the components with respect to the pro-
tocol allowing us to prove identical properties of all compo-
nents and then use theorem proving to compose these results
to show an overall system property.

Many systems, such as an IP-based implementation of DFC,
have effectively unbounded queues because they send mes-
sages on the internet. Proving properties of systems with
unbounded queues is undecidable in general [4]. In the fu-
ture, we hope to build on work that characterizes decidable
subsets of this problem (e.g., [6]). Our use of theorem prov-
ing may offer us some advantages in being able to describe
the required properties of queues abstractly.

There have been other efforts to verify DFC-related arti-
facts. Zave provided a formal description of the service layer
of a telecommunication system, organized according to the

DFC [20] architecture, using Promela and Z. The routing
algorithm as well as the routing data were described in Z,
and the DFC protocols were described in Promela. Spin

was used to check that the protocols of the virtual network
never deadlock. As in Zave’s work, the first step of our ver-
ification approach was to check for absence of deadlock, but
we also check our call protocol properties for segments and
provide a compositional approach for checking the proper-
ties on segments of unknown length.

The AT&T IP-based implementation of DFC, formerlly called
ECLIPSE, was developed at AT&T Labs, and the Mocha
model checker was used to verify the communication pro-
tocols [2],[3]. Individual ECLIPSE feature box code was
translated to the modeling language framework of Mocha
automatically. Similar to our work, the verification con-
sists of combining a feature with standardized environmental
peer entities of caller, callee and dual ports. They checked
for deadlock using synchronous communication between the
feature and its environment. The example described in their
paper involves the analysis of a free transparent feature box
only, and there is no discussion of analyzing bound feature
boxes. We extend this work by checking liveness properties,
as well taking the step of showing that all box behaviour
is contained within an abstract model, which captures the
most general DFC port behaviour. The dual port peer in
the AT&T IP-based implementation of DFC work reflects
the combined behaviour of a caller and callee ports, as de-
scribed in the DFC manual. However, a dual port does not
take into account busy processing, which is part of our ab-
stract models. We also present a partial order among these
abstract models. Finally, we also state box and segment
properties and use inductive reasoning to conclude the seg-
ment properties.

5. CONCLUSION
In this work, we described a compositional reasoning method
for protocol properties of port-based distributed systems
with chains consisting of an unknown number of components
and communicating using bounded queues. We demonstrated
how the method can be used to verify liveness properties of
the DFC call signalling protocol. Our verification method
allows us to reason about components individually, which
considerably reduces the verification effort. Our method
consists of verifying an individual component for (1) indi-
vidual properties in a cooperative environment with syn-
chronous communication; (2) I/O compliance in an envi-
ronment consisting of abstract models of port behaviour
and asynchronous communication; and (3) port-compliance,
where we show that the behaviour of every port in a compo-
nent is within the behaviour of the abstract port. For DFC,
we proved the language containment relationships between
a partial order of abstract port models so that the most
specific abstract port model could be used for checking the
port compliance of a component. Finally, in a step that
only needs to be completed once and is in terms of prop-
erties only, we prove by induction that the overall system
properties hold for chains with an unknown number of com-
ponents. This form of compositional reasoning is possible
when a system with port-based communication has the at-
tribute of semiregularity for the properties of interest, which
is common for protocol properties. We expect the abstract
ports and I/O compliance step to be reusable for multiple

types of properties of the system.

In the future, we plan to study the applicability of our
method to other properties and other systems. Zave de-
fined a set of constraints on feature behaviour called “ideal
address translation” to evaluate and avoid undesirable in-
teractions in DFC [24]. Adherence of every feature to the
constraints results in provable properties such as preserva-
tion of anonymity. We plan to examine whether our method
can be used to verify these properties of chains of features.
We also plan to investigate at whether it is possible to de-
termine automatically (to at least a first approximation) the
properties that individual components must satisfy for the
whole system to satisfy a given property, and whether an ab-
stract model of a port can be determined automatically. Fi-
nally, we plan to study whether our method can be extended
to work for properties of more complicated topologies than
chains of components.

6. REFERENCES
[1] N. Amla, E. A. Emerson, and K. S. Namjoshi.

Efficient decompositional model-checking for regular
timing diagrams. In CHARME, 1999.

[2] G. Bond, F. Ivancić, N. Klarlund, and R. Trefler.
ECLIPSE feature logic analysis. IP-Telephony
Workshop, pages 49–56, 2001.

[3] G. W. Bond, E. Cheung, K. H. Purdy, P. Zave, and
J. C. Ramming. An open architecture for
next-generation telecommunication services. ACM
Transactions on Internet Technology, 4(1):83–123,
February 2004.

[4] D. Brand and P. Zafiropulo. On communicating
finite-state machines. J. ACM, 30(2):323–342, 1983.

[5] J. Burch, E. Clarke, and D. Long. Symbolic model
checking with partitioned transition relations. In
International Conference on Very Large Scale
Integration, pages 49–58, 1991. IFIP Transactions,
North-Holland.

[6] X. Fu, T. Bultan, and J. Su. Conversation protocols:
A formalism for specification and verification of
reactive electronic services. In Int’l Conf. on Impl. and
Application of Automata, number 2759 in LNCS,
pages 188–200. Springer, 2003.

[7] M. J. C. Gordon and T. F. Melham. Introduction to
HOL: A theorem proving environment for higher order
logic. Cambridge University Press, 1993.

[8] O. Grumberg and D. E. Long. Model checking and
modular verification. ACM Trans. on Prog. Lang. and
Sys., 16(3):843–871, 1994.

[9] T. Henzinger, S. Qadeer, and S. Rajamani. You
assume, we guarantee: Methodology and case studies.
In CAV, pages 440–451. 1998.

[10] G. J. Holzmann. The Spin Model Checker: Primer
and Reference Manual. Addison-Wesley, 2003.

[11] M. Jackson and P. Zave. Distributed feature
composition: A virtual architecture for
telecommunications services. IEEE Trans. on Soft.
Eng., pages 831–847, August 1998.

[12] M. Jackson and P. Zave. The DFC Manual. AT&T
Labs, November 2003.

[13] A. L. Juarez Dominguez. Verification of DFC call
protocol correctness criteria. Master’s thesis, School of
Computer Science, University of Waterloo. May, 2005.

[14] K.Bhargavan, D. Obradovic, and C. A. Gunter.
Formal verification of standards for distance vector
routing protocols. J. of the ACM, 49(4):538–576, July
2002.

[15] K. L. McMillan. Verification of infinite state systems
by compositional model checking. In CHARME, pages
219–233. 1999.

[16] A. Pnueli. In transition from global to modular
temporal reasoning about programs. In Logic and
models of concurrent systems, pages 123–144. 1985.

[17] H. J. Touati, H. Savoj, B. Lin, R. Brayton, and
A. Sangiovanni-Vicentelli. Implicit state enumeration
of finite state machines using BDD’s. In IEEE Int.
Conf. Computer-Aided Design, pages 130–133, 1990.

[18] A. Vardhan, K. Sen, M. Viswanathan, and G. Agha.
Actively learning to verify safety for fifo automata. In
24th Conference on Foundations of Software
Technology and Theoretical Computer Science , pages
494–505, December 2004.

[19] A. Vardhan, K. Sen, M. Viswanathan, and G. Agha.
Learning to verify safety properties. In International
Conference on Formal Engineering Methods
(ICFEM’04), pages 274–289, 2004.

[20] P. Zave. Formal description of telecommunication
services in Promela and Z. In Proceedings of the 19th
International NATO Summer School: Calculational
System Design, pages 395–420, 1999.

[21] P. Zave. Feature-oriented description, formal methods,
and DFC. In Language Constructs for Describing
Features, pages 11–26. Springer-Verlag, 2000/2001.

[22] P. Zave. An experiment in feature engineering. In
Monographs In Computer Science, Programming
Methodology, pages 353–377. Springer-Verlag, 2003.

[23] P. Zave. Ideal connection paths in DFC. Technical
report, AT&T Laboratories–Research, November 2003.

[24] P. Zave. Address translation in telecommunication
features. ACM Trans. on Soft. Eng. and Methodology,
13(1):1–36, Jan. 2004.

[25] P. Zave and M. Jackson. DFC modifications II:
Protocol extensions. Technical report, AT&T
Laboratories–Research, November 1999.

[26] P. Zave and M. Jackson. DFC modifications I:
Routing extensions. Technical report, AT&T
Laboratories–Research, May 2000.

[27] P. Zave and M. Jackson. A call abstraction for
component coordination. In Int. Coll. on Automata,
Languages, and Programming: Workshop on Formal
Methods and Component Interaction, June 2002.

