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Abstract. In the past, parallel algorithms were developed, for the most part, under the assumption
that the number of processors is Θ(n) (where n is the size of the input) and that if in practice the
actual number was smaller, this could be resolved using Brent’s Lemma to simulate the highly parallel
solution on a lower-degree parallel architecture. In this paper, however, we argue that design and
implementation issues of algorithms and architectures are significantly different—both in theory and
in practice—between computational models with high and low degrees of parallelism.

We report an observed gap in the behavior of a parallel architecture depending on the number of
processors. This gap appears repeatedly in both empirical cases, when studying practical aspects of
architecture design and program implementation as well as in theoretical instances when studying the
behaviour of various parallel algorithms. It separates the performance, design and analysis of systems
with a sublinear number of processors and systems with linearly many processors. More specifically we
observe that systems with either logarithmically many cores or with O(nα) cores (with α < 1) exhibit
a qualitatively different behavior than a system with a linear number of cores on the size of the input,
i.e., Θ(n). The evidence we present suggests the existence of a sharp theoretical gap between the classes
of problems that can be efficiently parallelized with o(n) processors and with Θ(n) processors unless
P = NC.

1 Introduction

There is a vast experience in the study and development of algorithms for the PRAM archi-
tecture. In this case, the standard assumption (though often unstated) was that the number of
processors p was linear on the size of the input, i.e., p = O(n) (see for example [18] for a thorough
discussion). Indeed, the definition of the class NC, which is often equated with the class of prob-
lems that can be efficiently parallelized on a PRAM, allows for up to polynomially many processors.
Hence algorithms were designed to handle the case when p = Θ(n) or p = Θ(nk) for k ≥ 1 and
if the actual number of processors available was lower, this could readily be handled by Brent’s
Lemma using a suitable scheduler [10, 5]. A fruitful theory was developed under these assumptions,
and papers in which p = o(n) were relatively rare.

In this paper, we analyze and report on the influence of the assumed number of processors on
several aspects of the performance of various types of parallel architectures. Because of its current
prevalence, we focus especially in multi-core architectures, which actually feature a relatively small
number of processors and hence advantages that can be identified for parallel systems with a
small number of processor count can lead to benefits in parallel computation in these architectures.
However, we also report on aspects of computation that are relevant in general in other architectures
such as memory collisions, communication in distributed architectures, and network sizes, as well as
in more theoretical aspects like complexity classes and simulations of other models. Our observations
suggest the existence of fundamental differences in the qualities of parallel systems with sublinear
and linear number of processors, and that exploiting the advantages of the former can lead to more



Proc. count Θ(n) Θ(nα) Θ(logn)

Merge sort N N Y
Master theorem

-Case 1 N Y Y
-Case 2 N Y Y
-Case 3 N N N

Amdahl’s law N 1/2 Y
Collision N Y Y
Buffering N N Y
Network size N 1/2 Y
TM simulation N N Y

Table 1. Optimal performance for each case according to processor count.

practical and conceptually simpler designs of both parallel architectures and algorithms, ultimately
increasing their adoption and reducing development costs.

2 Overview of arguments

In this section we briefly list the arguments in favour of considering a limited degree of parallelism.
We emphasize that we did not start from the outset with this goal, but rather we sought to
develop algorithms and tools (both practical and theoretical) for current multi-core architectures.
The observations within are derived from both theoretical investigations and practical experiences
in which time and time again we found that there seems to be a qualitative difference between a
model with O(log(n)) processors and one with O(n) processors, with, surprisingly, the advantage
being for the weaker, i.e., O(log(n)) model. Table 1 shows a summary of our observations for the
considered processor counts. There is strong evidence of a sublinear cliff, beyond which development
and implementation of efficient PRAM algorithms for many problems is substantially harder if not
completely impossible, unless P = NC. In several instances among the evidence observed, the
phenomenon had been observed earlier by others [18, 20, 14]. We now list our arguments briefly,
before we expand on each of them individually in the next section.

1. The number of cores in current multi-core processors is nearly a constant, but first, if it is
truly a constant there is nothing we can say, and second, it seems to be steadily though slowly
growing.

2. In analogous fashion to the word-RAM, the number of bits in a word could be an arbitrary w
but really it is most likely Θ(log n) since it is also an index into memory and memory is usually
polynomial on n.

3. The probability of collision on a memory access is only acceptably low for up to O(
√
n) proces-

sors.

4. The number of interconnects on a CPU network grows too fast for anything else.

5. Serialization at the network end is too costly, i.e., if more than two processors want to talk to
you at the same time you have to listen to them serially.

6. There are natural log n and nε barriers in the complexity of designing algorithms.

7. Efficient cache performance requires bounded number of processors in terms of cache sizes,
which are always assumed to be below n, and often as well in terms of the ratio of shared and
private cache sizes, which is well below 100.
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8. We define the class of problems which can be sped up using a logarithmic number of processors
and show that it contains ENC and EP [20] and furthermore, this containment is strict.

9. For Turing Machines we can automatically increase performance by a log n + log log n factor
when simulating with a parallel computer and this works for log n processors.

10. Amdahl’s law suggests that programs can only noticeably benefit from parallelism if the number
of processors is proportional to the relative difference between the execution time of the serial
and parallel portions of a program.

3 Exposition

In this section we briefly expand on each of the points above. We aim to keep each argument as
short as possible, since the entirety of the case is more important than any individual point.

3.1 Limited Parallelism

In principle it is possible to build a computer with an arbitrary degree of parallelism. In practice
PRAMs algorithms and architectures focused on Θ(n)-processor architectures, while relying on
Brent’s Lemma for cases when the number of processors was below that. In contrast multi-core
processors have aimed for a much smaller number of cores. In principle this number could be
modeled as a constant. However this is unrealistic as the number of cores continues to grow—albeit
slowly—with desktop computers having transitioned over the last decade from single core to dual
core to quad core and presently eight cores and sixteen cores already shipping at the higher end
of the spectrum. Additionally, it has been observed that generally speaking larger inputs justify
larger investments in RAM and CPU capacity, so a function of n is much more reflective of real
life constraints. This suggests that the number of cores is a function which grows slowly on the
input size n since there is a high processor cost. Let P(n) denote this function. Natural candidates
for P(n) are Θ(log n) and Θ(nα) for α < 1, though there are other possibilities. Over the next
subsections we shall consider various candidates for P(n).

3.2 Natural Constraints

The ability to index memory using a computer word as an address in a program’s virtual memory
suggests that the size of the word is w = Ω(logM), where M is the memory size, though this does
not necessarily need to be the case1. Memory itself is usually a polynomial function of the input
size, i.e., M = Θ(nk) for some k ≥ 1, with k = 1 being a common value. Substituting M = Θ(nk) in
w = Ω(logM) gives w = Ω(log n). This is assumed in the word-RAM model, in order for algorithms
to be able to refer to any input element. A common assumption in word-RAM papers is actually
w ≈ log n, which enables constant-time lookup-table implementations of some functions on words
while keeping table sizes sublinear (see, e.g., [23]), and restricts the size of pointers in succinct data
structures that could otherwise increase their space usage (see, e.g., [9]).

Hence, the word size which in the early days of computing was treated as a constant, namely
4 or 8 bits, became better understood as in fact proportional to the logarithm of the input size,
that is Θ(log n). Similarly, in modern multi-core computers, the number of processors has remained

1 In practice there have been architectures in which the memory size was strictly greater than 2w. Currently in the
Intel architecture the size w places a limit on the largest addressable space but this has not always been the case
(e.g. the 8088 processor).
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relatively bounded (in contrast to commercial PRAMs or GPUs which support anywhere from
hundreds to hundreds of thousands of processors and still growing). This relatively slow growth (at
least as compared to most other usually exponential growing performance hardware indices) on the
number of processors can thus be best modeled as log n in similar fashion to the word size.

3.3 Write Conflicts

Consider a multi-threaded server application receiving requests from several clients simultaneously.
Assume that these requests are served by parallel threads running on p processors that share
the system’s memory. Such an application is likely to have several portions of the computation
accessing shared data such as database tables, buffers, and other shared data structures. Write
accesses to shared data involve synchronization to avoid race conditions, usually implemented by
synchronization primitives such as barriers and locks. In general, regardless of how synchronization
is implemented, a simultaneous memory access to the same memory cell involves an overhead, either
due to serialization, or data invalidation. Let us call a simultaneous access by a pair of threads a
collision.

We are interested in analyzing the influence of the number of processors on the number of
collisions during a period of computation. The uncertainty added by the timing of client requests
suggests that write access to shared memory can be modeled as a random process with a certain
probability of collision. A crude, but reasonable first order approximation is to consider memory
access to shared data as uniformly random with p processors contending for access to memory.

We investigate the expected number of collisions for p threads accessing m memory cells, uni-
formly at random at each timestep of a period of service time. Clearly, the smaller the number of
processors the lower the probability of collision. The question is for what value of p as a function
of m does this probability become negligible. Note that in general the size of the memory is usu-
ally modeled as a growing function of a program’s input size, with m = O(nk) being a common
assumption. Thus it is reasonable to analyze the number of collisions as m grows.

This reduces to a balls-and-bins scenario (see, e.g., [16]). Let us first consider the total number
of overall collisions in one step. Let C be a random variable denoting the number of collisions in
one step. The probability that two memory accesses are to the same cell is 1/m. Since the are are(
p
2

)
pairs of memory accesses, the expected number of collisions in one step is E[C] = p(p−1)

2m . As m
grows this expression tends to 0 if p <

√
m, tends to infinity if p >

√
m, and to 1/2 for p =

√
m.

Now we consider an alternative expression for memory access conflicts, namely the number of
cells involved in collisions at each step. Thus, if three or more accesses are to the same cell, the event
counts as one collision. Let X be a random variable denoting the number of memory cells which
suffer a collision when there are p simultaneous memory accesses. The probability of a memory cell
not being accessed is (1−1/m)p, and thus the expected number of accessed cells is m−m(1−1/m)p.
Then, the expected value of X is E[X] = p−m+m (1− 1/m)p . Assume that p = mα with α ≤ 1.
The expression above is then E[X] ≈ mα −m + me−m

α−1
. Using the Taylor expansion of e−m

α−1

we obtain E[X] ≈ m2(α−1)

2 .

Again, when m tends to infinity, the above tends to 0, 1/2, or diverges if α is less, equal, or
greater than 1/2, and thus the threshold again is for p =

√
m. Clearly the smaller p is, the fewer

the expected the collisions.
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Case 1. If p = m, then E[X] = m/e, and E[C] = (m − 1)/2. Thus in each step about 37% of
memory cells have more than one processor trying to access them and about half of the accesses
result in collisions.
Case 2. If p =

√
m then on average there is a collision every two steps of an execution.

Case 3. If p <
√
m the number of collisions goes to zero as m grows.

Suppose that every instruction takes unit time if there is no collision and s ≥ 1 units of time
otherwise. The expected number of collisions per processor per step is (p−1)

2m and thus the expected

slowdown in performance due to collisions is s(p−1)
2m , which is negligible for p = o(m/s).

3.4 Processor Communication Network

Traditionally, parallel computers use either shared memory or a processor communication network
(or both) to exchange information between the various processing units. The advantage of shared
memory is that no additional hardware is required for it; the disadvantages are issues of syn-
chronization and memory contention. Hence a widely explored alternative is the use of an ad-hoc
processor communication network connecting the processors. In general, from the perspective of
performance a full communication network is the preferable network architecture. However when
the number of processors is assumed to be very large this is unfeasible. For example for the case of
Θ(n)-processors of many commercial PRAM implementations the number of interconnects required
would have been Θ(n2) which is prohibitive. Thus there was extensive study of alternative network
topologies which reduced the complexity of the network while attempting to minimize the penalty
in performance derived from the smaller network. Among the most successful such architectures
we have the hypercube, the butterfly and the tori (see, e.g., [21]).

We observe now that full processor communication network becomes a realistic possibility if
the number of processors is O(log n) or even possibly O(nα) for some α� 1/2. For example for a
modest (by present standards) input size of 100, 000, 000 even n1/2 processors would require and
impossible number of interconnects on the full graph. A complete network of O(log n) processors
on the other hand would require 300 interconnects which are well within the realm of current
architectures.

3.5 Buffer overflow

Aside from issues of network topology, in practice it is natural to assume that each processor in
a communication network can handle at most a small constant number of messages at once. If
more than a constant number of processors send messages to a single processor, said messages
would queue up at the receiving end for further processing. In this section we consider a natural
communication model in which in each instruction cycle a processor may send a message to at most
one other processor. In practice depending on the specific application the probability of collision
may range anywhere from zero for the execution of independent threads to one for, say, a master
processor serializing requests to some shared lock. As a compromise we model again this process as
if the processors chose their destination uniformly at random. Let p be the number of processors;
then the maximum number of collisions observed at the most loaded buffer is O(log p) with high
probability [16]. If p = Θ(n) then buffer handling can introduce delays of 20–100 instruction cycles.
In this case even p = Θ(nα) for 0 ≤ α < 1 might prove too costly. In contrast if we assume
p = Θ(log n) the most congested buffer would contain O(log log n) elements which for all practical
purposes is at most 6.
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3.6 Divide-and-Conquer Algorithms

Divide-and-Conquer algorithms are naturally suited for parallelization. Instances at the same level
of the recursion tree are independent and can be scheduled to be executed in parallel. This is
especially well suited for multi-threaded systems, as each recursive calls can simply be handled by
a separate thread. This strategy requires no parallelization of the divide and combine phases of
the recursion, which can be executed by each thread just as in the sequential algorithm. It has
been shown that this easy parallelization yields optimal speedups for a large class of divide-and-
conquer algorithms [14], but only for a bounded number of processors. Thus, in a system with a
logarithmic or sublinear number of processors, obtaining the maximum possible speedup for this
class of algorithms is simple and can be realized with a general strategy that is independent of the
algorithm itself.

Consider a divide-and-conquer algorithm whose time complexity can be written as T (n) =
aT (n/b) + f(n). The master theorem [13] yields the time bounds for a sequential execution of
such an algorithm. A parallel version of this theorem can be obtained by analyzing the parallel
time Tp(n) of an execution in which recursive calls are executed in parallel and scheduled with the
scheduler in [14] or work-stealing [11] with a bounded number of processors [14]:

Tp(n) =


O(T (n)/p), if f(n) = O(nlogb(a)−ε) and p = O(nε) (Case 1)
O(T (n)/p), if f(n) = Θ(nlogb a) and p = O(log n) (Case 2)

Θ(f(n)), if f(n) = Ω(nlogb(a)+ε) and af(n/b) ≤ cf(n), for some c < 1 (Case 3)

(1)

Optimal speedups are achieved in Cases 1 and 2 only for p = O(nε) for ε > 0, and p = O(log n),
respectively. In Case 3, the time is dominated by the sequential divide and conquer time f(n) at
the top of the recursion [14].

We note that it is possible to obtain optimal speedups with larger numbers of processors for
many divide-and-conquer algorithms. However, this invariably requires parallelizing the divide and
combine phases of the algorithm, as otherwise the sequential time f(n) of the divide and combine
phases dominates the parallel time. In fact, if an optimal parallel algorithm for the divide and
combination phases is known, then all cases above yield optimal speedup, and the bounds of the
processors can be relaxed. Then the parallel time in Case 3 becomes Tp(n) = Θ(f(n)/p) [14].

Now Case 1 requires p = O
(
nlogb a

logn

)
, Case 2 requires p = O

(
nlogb a

)
, while Case 3 requires p =

O(f(n)/ log n).

The result for a small number of processors shown in Equation (1) shows that for a system
with a small number of processors the implementation of parallel divide-and-conquer algorithms
that achieve the full speedup offered by the architecture is simple and can be implemented without
the unnecessary complexity of implementing specific parallel algorithms for the divide and combine
phases of the algorithms.

When considering cache performance of divide-and-conquer algorithms, a bounded number of
processors can also be advantageous. Blelloch et al. [6] show that the class of hierarchical divide-and-
conquer algorithms —algorithms in which the divide and combine phases can also be implemented
as divide-and-conquer algorithms— can be parallelized to obtain optimal speedups and good cache
performance when scheduled with a Controlled-PDF scheduler. While a Brent’s Lemma type of
implementation of some of the algorithms in [6] can achieve optimal speedups for a large number
of processors (e.g., matrix addition and cache oblivious matrix multiplication algorithms can both
be sped up optimally up to n2 processors) [6], the optimal speedup and cache performance bounds
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under the Controlled-PDF scheduler is only achieved for a much smaller number of processors,
bounded by the ratio between shared and private cache sizes, and even smaller in some cases, as
we shall see in the next section.

3.7 Cache imposed bounds

Cache contention is a key factor in the efficiency of multi-core systems. Various multi-core cache
models have been studied, with a focus on algorithms and schedulers with provable cache perfor-
mance. Many of the results involving shared and private caches performance require bounds on the
number of processors related to the relative size of the private and shared caches.

The Parallel External Memory (PEM) model [3] models p processors, each with a private cache
of size M , partitioned in blocks of size B. A sorting algorithm given in this model is asymptotically
optimal for the I/O bounds for at most p ≤ n/B2 processors, and it is actually proven that p ≤
n/(B logB) is an upper bound for optimal optimal processor utilization for any sorting algorithm
in the PEM model [3]. This algorithm is used in further results in the model for graph and geometry
problems [4, 1, 2]. Thus the assumption that p ≤ n/B2 is carried on to these results as well, some
of which actually require p ≤ n/(B log n) and even p ≤ n

B2 logB log(t) n
, where log(t) n denotes the

composition of t log functions, and t is a constant.
Shared cache performance is studied in [7], which compares the number of cache misses of a

multi-threaded computation running on a system with p processors and shared cache of size C2

to those of a sequential computation with a private cache of size C1. It is shown that under the
PDF-scheduler [8], the parallel number of misses is at most the sequential one if Cp ≥ C1 + pd,
where d is the critical path of the computation. This implies that p ≤ (Cp − C1)/d, which is less
than n (as otherwise all the input would fit in the cache) and is usually sublinear, as d is rarely
constant and is Ω(log n) for many algorithms. Thus, for many algorithms the bound on the parallel
misses hold for p = O(n/ log n).

As mentioned in Section 3.6, Blelloch et al. [6] study hierarchical divide-and-conquer algorithms
in a multi-core cache model of p processors with private L1 caches of size C1 and a shared L2 cache
of size C2. An assumption of the model is that p ≤ C2

C1
� n, since the input size is assumed not

to fit in L2. It is shown that under a Controlled-PDF scheduler, parallel implementations achieve
optimal speedup and cache complexity within constant factors of the sequential cache complexity
for a class of hierarchical divide-and-conquer algorithms. Optimality for some algorithms, such as

Strassen’s matrix multiplication and associative matrix inversion even require p ≤ (C2/C1)
1

1+ε [6].
Cache efficient dynamic programming algorithms have been designed in this multi-core model

with the same p ≤ C2
C1

assumption [12], as well as in a shared cache model with p ≤ C2/B, where
B is the block size. Thus although the time complexity of parallel dynamic programming allows a
large number of processors for optimal speedups (e.g., Tp = O(n3/p+ n) for Gaussian elimination
paradigm problems, which is optimal for p ≤ n2), the efficiency in cache performance restricts the
level of parallelism.

Observe that presently the ratio between L2 shared cache and private L1 cache is in the order
of 4 to 100 depending on the specific processor architecture.

3.8 The class E(p(n))

The class NC can be defined as the class of problems which can be solved in polylog time using
polynomially many processors. It is believed that NC 6= P and hence that there are known problems
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which do not admit a solution in time O(logk n), for some k ≥ 1. In our case we are interested in
the study of problems which can be sped up using O(log n) or O(nα) processors for α < 1. Kruskal
et al. [20] introduced the classes ENC and EP which encode the classes of problems that allow
optimal speed up (up to constant factors) using polynomially many processors on a CRCW PRAM.
The class ENC has polylogarithmic running time, while the class EP has polynomial running time.
They also define the related classes SNC, ANC, SP , and AP , which are analogous to ENC and
EP in terms of the required running times but allow for some inefficiency. In general, one could
introduce the class C(p(n), S(n)) as the class of problems that allow a speedup of S(n) with p(n)
processors. Thus, following the notation in [20] we define the class E(p(n)) = C(p(n), p(n)), which is
the class of problems that can be solved using O(p(n)) processors in time O(T (n)/p(n)) where T (n)
is the running time of the best sequential solution to the problem. In this work we are particularly
interested in the classes E(log n) and E(nα) for α < 1 2.

The class ENC is a sharpening of the well known class NC. Recall that the class NC requires
maximal speedup down to polylogarithmic time even at the cost of a polynomial amount of inef-
ficiency (i.e., the ratio between parallel and sequential work). In contrast ENC requires the same
speedup but bounds the inefficiency to a constant factor.

The class E(log n) bounds the inefficiency to a constant which implies a speed up of Θ(log n) on
the sequential solution to the problem. Observe that by Brent’s Lemma ENC ⊂ EP ⊂ E(log n):

Theorem 1. ENC ⊂ EP ⊂ E(log n)

Proof. The inclusion ENC ⊂ EP is stated in [20]. We now show that EP ⊂ E(log n). Let Π ∈
ENC be a problem with sequential running time t(n). Let A be an algorithm that solves Π in
time O(t(n)ε) with p processors, where ε < 1 [20]. Since A is work-optimal the total work done
by A is O(t(n)). Then, by Brent’s Lemma [10], we can simulate A in T ′p(n) = O(t(n)/p′ + t(n)ε)
time with p′ ≤ p processors. The simulation achieves optimal speedup for any p′ = O(t(n)1−ε).
Since for E(log n) we have p′ = O(log n), which is O(t(n)1−ε) for any t(n) = Ω((log n)1/(1−ε)), then
Π ∈ E(log n). ut

The reverse is not the case, i.e., E(log n) 6= ENC, and EP 6= ENC unless P = NC since
there are known P -complete problems which allow optimal speedup using a polynomial number of
processors [17], and thus they are in EP (and hence in E(log n)). If any such problem is in ENC,
this would imply P = NC. We conjecture that E(log n) 6= EP as well.

Similarly E(nα) bounds the inefficiency to a constant which implies a speed up of O(nα) on the
sequential solution to the problem. Again we have ENC ⊂ EP ⊂ E(nα), while E(nα) 6= ENC for
any α < 1 for the same reason described above. Again, we conjecture that E(nα) 6= EP .

Theorem 2. ENC ⊂ EP ⊂ E(nα)

Proof. The proof is analogous to the proof of Theorem 1. The simulation of an algorithm for a
problem Π ∈ EP using Brent’s Lemma is optimal up to p′ = O(t(n)1−ε) processors, which is
Ω(nα) (with α < 1) for any t(n) = Ω(n1/(1−ε)), which holds in particular for any t(n) = Ω(n). ut

This gives a theoretical separation between the problems that can be speed up optimally using
polynomially many processors and those that can be speed up using a logarithmic number of
processors. We conjecture that the separation holds as well for O(nα) processors for any α < 1.

2 For consistency in the class comparisons, we assume a CRCW PRAM as in [20], though these classes can be defined
for other PRAM types (EREW,CREW), as well as for asynchronous models (such as multi-cores).
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3.9 Optimal Time Simulation of Turing Machines by O(log n) Processors

We show that any computation on a Turing machine that takes time T (n) ≥ n log n can be carried
out in parallel by a multi-core system with p = lg n processors in time Tp(n) = O(T (n)/(lg n +
lg lgn)). There are known simulation results for Turing Machines by a sequential RAM [19] as
well as by a PRAM [15]. In the latter it is shown that a deterministic machine running in T (n)
time can be simulated by a PRAM in time O(

√
T (n)) using an exponential number of processors

and memory addressing on words of size O(
√
T (n)). We adapt this simulation to a more realistic

logarithmic number of processors and word size.

Outline. Let M be a single-tape deterministic Turing Machine3. The idea of the simulation is to
treat contiguous blocks of b = b(n) bits of M ’s tape as a word in RAM. By precomputing M ’s
resulting configuration after b steps when starting with each possible block, we can then simulate b
steps of M at a time by successively looking up the next configuration of M from the precomputed
table. Let g(n) denote the precomputation time. If each access to the precomputed table takes

constant time, then the total time of the simulation is Tp(n) = T (n)
b(n) + g(n).

Precomputation phase. Since in b steps M can only alter the contents of b cells, for a given position
within the tape we need only to consider the content of the b cells to the left and b cells to the
right of the current position in order to compute the resulting configuration after b steps. A block
configuration of M is a tuple (s,B), where s is a state, and B is a (2b− 1)-bit string representing
the contents of a segment of M ’s tape around some position of the head. For each possible block
configuration c, we store in A[c] the resulting configuration when running M starting from c (i.e.,
the new state and block contents), plus information about how many positions the head moved,
and in which direction. The latter is necessary to know where the new block should be centered in
M ’s tape. A block configuration c uses |c| = 2b−1 +d = O(b) bits, where d is the constant number
of bits required to indicate a state of M . Let k be a constant such that |c| ≤ kb. Then there are at
most 2kb starting block configurations. Since the resulting configurations starting from all possible
configurations can be computed independently in parallel and each computation takes O(b) time
by direct simulation of M , the total precomputation time is g(n) = O

(
2kbb/p

)
using p processors.

Note that the precomputation requires M ’s specification but is independent of a particular input.

Simulation phase. Suppose the configuration table A has already been computed and it is stored in
the RAM of the multi-core machine. If the length of each configuration is smaller than the machine
word’s length, then A can be indexed by configuration and each entry can be accessed in constant
time. For this sake we set b = lgn+lg lgn

k , and thus |c| ≤ lg n + lg lg n = Θ(log n). Therefore A
can be stored as an array of configurations, indexed by configurations. Given M and an input x,
and starting with the initial configuration c0, the multi-core simulates M (using one processor) by
applying ci+1 = A[ci], and updating the contents of M ’s tape at each step, until ci+1 contains a
final state. Since at each step A can be accessed in constant time and the relevant part of M ’s
tape can be updated in constant time, the simulation takes O(T (n)/(lg n + lg lg n)) time and the

precomputation takes O
(
2lgn+lg lgn(lgn+lg lgn)

p

)
time, which is O(n lg n) for p = lg n. Thus the total

time is

Tp(n) = O

(
T (n)

lg n+ lg lg n
+ n lg n

)
3 It is straightforward to extend the simulation to a k-tape Turing Machine.
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Faster recursive precomputation. The approach described above requires T (n) = Ω(n lg2 n) to
be optimal. However, we can relax this requirement by speeding up the precomputation phase.
This approach, whose details are described in Appendix A, yields a simulation time of Tp(n) =

O
(

T (n)
lgn+lg lgn + n lgn

p + lg lg p
)

, which for p = lg n and T (n) ≥ n(lg n+ lg lg n) is O
(

T (n)
lgn+lg lgn

)
.

Larger number of processors. A simulation like the one described above would not be optimal
if p = ω(lg n). If the length of the blocks is kept at b = O(lg n + lg lg n), then the total time

is Tp(n) = Ω
(

T (n)
lgn+lg lgn + n

p + lg lg p
)

, which for p = ω(lg n) can never be O(T (n)/p). A longer

block length b = ω(lg n) could reduce the simulation phase time, but would require an infeasible
superpolynomial-size precomputed table. This, of course, does not preclude the existence of other
approaches that could result in optimal simulation time with a larger number of processors.

3.10 Amdahl’s Law

Consider a program whose execution has a serial part that cannot be parallelized (unless P = NC)
represented by S(n) and a fully parallelizable part denoted by P (n) then the parallel time with p
processors is: Tp(n) = S(n) + P (n)/p and the speedup is represented by

T1(n)

Tp(n)
=

S(n) + P (n)

S(n) + P (n)/p
.

Observe now that for p = Θ(n) we get that the parallel program is noticeably faster only if
S(n) = O(P (n)/n). For p = Θ(nα) we get that the parallel program is noticeably faster only if
S(n) = O(P (n)/nα). Lastly, for p = Θ(log n) we get that the parallel program is noticeable faster
if S(n) = O(P (n)/ log n). Observe that most practical algorithms on large data sets run in time
O(n log n) or less, with the sequential part often corresponding to I/O operations, i.e., reading the
input. This means that the likeliest value for which one can obtain optimal speedup corresponds
to P (n)/S(n) which is often (though not always) log n.

4 Conclusions

We presented a list of theoretical arguments and practical evidence as to the existence of a quali-
tative difference between the classes of problems that can be sped up with a sublinear number of
processors and those that can be sped up with polynomially many processors.

We also show that in various specific instances even though there are optimal algorithms for
either case, it is conceptually and practically much simpler to design an algorithm for a sublinear
number of processors. The benefits of a low processor count extend to issues of processor commu-
nication, buffering, memory access, and cache bounds.

We introduced classes that describe the problems that allow for optimal speed up, up to a
constant factors, for logarithmic and sublinear number of processors and show that they contain a
strictly larger class of problems that the PRAM equivalents introduced by Kruskal, Rudolph, and
Snir in 1990 [20], unless NC = P .

The discontinuities identified in behaviour and performance of parallel systems for logarithmic
and sublinear number of processors make these particular processor count functions theoretically
interesting, practically relevant, and worth of further exploration.
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A Faster Recursive Precomputation Phase of Turing Machine Simulation.

The idea is to recursively apply the simulation on the computation of each entry of A. Let gi and
bi denote the precomputation time and block length of the i-th level simulation, respectively. Thus
gm = g(n) is the total precomputation time and bm = b(n) is the block length of the final simulation
as described above. Since the computation of each entry of A can now be sped up by bm−1, we have

gm =
2kbm

p

bm
bm−1

+ gm−1,

where k is a constant such that for all i, a configuration in level i has size at most kbi. We then set

bm−i = lgn+lg lgn
k2i

for all 0 ≤ i ≤ m = lg
(
lgn+lg lgn

k

)
. Then, bm−i/bm−i−1 = 2, which is the length

of the critical path at each recursive level. Then,

gm−i = max

{
2kbi+1

p
, 2

}
+ gm−i−1 = max

{
2(n lg n)

1

2i

p
, 2

}
+ gm−i−1

Note that 2(n lg n)
1

2i /p ≤ 2 when i ≥ lg
(
lgn+lg lgn

lg p

)
. Let i? = lg

(
lgn lg lgn

lg p

)
. Since g0 = 0,

gm =
m−1∑
i=0

gm−i − gm−i−1

=
2

p

i?∑
i=0

(n lg n)
1

2i +
m−1∑
i=i?+1

2

≤ 2

p
(n lg n+ i?

√
n lg n) + 2(lg lg p− lg k − 1)

≤ 4n lg n

p
+ 2 lg lg p

Therefore, the total simulation time is now Tp(n) = O
(

T (n)
lgn+lg lgn + n lgn

p + lg lg p
)

, which for

p = lg n and T (n) ≥ n(lg n+ lg lg n) is O
(

T (n)
lgn+lg lgn

)
.
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