
Untangled Monotonic Chains and Adaptive
Range Search?

Diego Arroyuelo1??, Francisco Claude2, Reza Dorrigiv2, Stephane Durocher3,
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Abstract. We present the first adaptive data structure for two-dimen-
sional orthogonal range search. Our data structure is adaptive in the
sense that it gives improved search performance for data with more in-
herent sortedness. Given n points on the plane, the linear-space data
structure can answer range queries in O(logn + k + m) time, where m
is the number of points in the output and k is the minimum number
of monotonic chains into which the point set can be decomposed, which
is O(

√
n) in the worst case. Our result matches the worst-case perfor-

mance of other optimal-time linear-space data structures, or surpasses
them when k = o(

√
n). Our data structure can also be made implicit,

requiring no extra space beyond that of the data points themselves, in
which case the query time becomes O(k logn+m). We present a novel al-
gorithm of independent interest to decompose a point set into a minimum
number of untangled, same-direction monotonic chains in O(kn+n logn)
time.

1 Introduction

Applications in geographic information systems, among others, require struc-
tures that can store and retrieve spatial data efficiently in both space and time.
In this work we describe a data structure and algorithm for two-dimensional or-
thogonal range search, which is a commonly-encountered spatial data retrieval
problem. Our data structure is adaptive, giving improved query performance for
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data with more inherent sortedness; and can be implicit, requiring no added
storage space beyond that of the data points themselves.

The problem of two-dimensional orthogonal range search can be defined as
follows: let P = {p1, p2, . . . , pn} be a set of n points in the plane, and let
r = [x1, x2] × [y1, y2] be a query range. The orthogonal range search problem
asks for all points pi ∈ P such that x1 ≤ x(pi) ≤ x2 and y1 ≤ y(pi) ≤ y2, where
x(pi) and y(pi) denote the x and y coordinate values of point pi, respectively.
An orthogonal range search data structure preprocesses the set P in order to
efficiently answer arbitrary range queries; a natural goal is to balance the con-
flicting objectives of minimizing both the space required by the data structure
and the time required to answer queries.

Our basic data structure’s worst-case query time is O(k log n+m), where n
is the number of points in the point set; m the number of points in the output;
and k the minimum number of monotonic chains into which the point set can be
decomposed, which is O(

√
n) in the worst case. Applying fractional cascading [4]

reduces the query time to O(log n+ k +m) at the cost of implicitness.
We require that the monotonic chains should be untangled. That is, when

successive vertices are connected by line segments, the chains should not intersect
each other. This requirement does not increase the minimal number of chains.
We present a novel algorithm for finding a minimal set of untangled chains
(all monotonic in the same direction) in O(kn + n log n) time; this untangling
algorithm is of independent interest.

2 Previous Work

Any set of n points can be split into some number k of chains in which the
y coordinate is monotonically increasing or decreasing as the x coordinate in-
creases. When all chains must be ascending (or all descending), the problem of
finding a minimal chain decomposition is well-studied. With worst-case data the
minimal number of chains may be Θ(n), even given a choice of ascending or de-
scending chains. Supowit gives an algorithm for it with worst-case running time
Θ(n log n) [12], which is optimal [3]. If chains of both types are allowed, then
minimizing the number of chains is NP-hard [5]. However, an algorithm of Fomin,
Kratsch, and Novelli acheives a constant-factor approximation of the minimal
number of chains in O(n3) time [6]. An algorithm of Yang, Chen, Lu, and Zheng
generates a decomposition into at most b√2n+ 1/4− 1/2c chains of both types
(which is the minimal number for worst-case data) in O(n3/2) time [14]. They
do not prove any guaranteed approximation factor when the minimal number of
chains is smaller than O(

√
n), but comment that in practical experiments their

algorithm often achieves very close to the constant-factor approximation value.
The two-dimensional orthogonal range search problem has received consider-

able attention, and several efficient data structures exist. For instance, R-trees [7]
are a multidimensional extension of B-trees. An R-tree is a height-balanced tree,
where each tree node represents a region of the underlying space. Thus, the data
structure divides the space with hierarchically nested (and possibly overlapping)



minimum bounding rectangles. The search algorithm descends the tree, recurs-
ing into every subtree whose bounding rectangle overlaps the query. In the worst
case a search could be forced to examine the entire tree in O(n) time, even when
the query rectangle is empty. However, R-trees are simple to implement, use
linear space, tend to perform much better in practice than the theoretical worst
case, and are popular as a result.

Range trees [9] support multidimensional range queries by generalizing bal-
anced binary search trees to multiple dimensions. The data points are indexed
along one dimension in a standard balanced binary search tree. At each node
v of that tree, we collect all the descendants of v and store a new balanced
binary search tree storing all those points indexed along the second dimension.
A rectangle query descends the first tree to do a one-dimensional range search
in O(log n) time, then searches along the other dimension for an overall time of
O(log2 n+m). More advanced techniques, like fractional cascading [4], allow the
two-dimensional search time to be reduced to O(log n + m); and the technique
can also be extended to higher dimensions at some cost in search time.

Alternative solutions exist that require linear space like R-trees but improve
on the worst-case search time. Kanth shows that O(

√
n+m) worst-case search

time is optimal for non-replicating (or linear-space) data structures [8]. Bentley
achieves it with kd-trees [2], which recursively divide a k-dimensional space with
hyperplanes. Munro describes an implicit kd-tree, with optimal search time and
no storage used beyond that of the points themselves [10]. Arge describes priority
R-trees, or PR-trees [1], also with O(

√
n + m) worst-case search time. In a

recent result, Nekrich [11] presents a data structure that uses linear space with
search time O(log n+m logε n), trading suboptimal performance in m for better
performance in n. See Table 1 for a comparison of methods.

Table 1. Summary of orthogonal range query results; n is the number of points in the
database, m is the number of points returned, and k is the number of chains.

Data structure Worst-case search time Space

R-trees [7] O(n) O(n)
kd-trees [2, 10] O(

√
n+m) implicit

PR-trees [1] O(
√
n+m) O(n)

Range trees [9] O(logn+m) O(n logn)
Nekrich [11] O(logn+m logε n) O(n)
This paper O(logn+ k +m) O(n)
This paper O(k logn+m) implicit

To summarize, R-trees are practical, but do not provide worst-case guar-
antees at search time, and range trees have an impractical O(n log n) space
requirement. There are alternative solutions requiring linear space and provid-
ing better search time. However, none of these can profit from “easy” data.
Here we present an adaptive data structure. When the data can be decomposed



into a small number of monotonic chains, our search performance improves. If
the number of chains k = o(

√
n), we surpass the performance of optimal-time

linear-space data structures [1, 2, 8, 10].

3 Finding Untangled Chains

In the next section we describe an adaptive algorithm and data structure for
two-dimensional orthogonal range search on data decomposed into a union of
monotonic chains. The data structure performs better when there are fewer
chains. Furthermore, we can search more efficiently by assuming that the chains
are untangled: successive data points can be connected with line segments with
no segments intersecting. That raises the question of how to find an optimal
untangled chain decomposition, which we resolve in this section. Due to lack of
space we omit proofs in this section, as they are mainly based on exhaustive case
analysis.

Although our data structure asks for an optimal decomposition into chains
with both ascending and descending monotonic chains allowed, it actually func-
tions by splitting the points into the two directions as a preprocessing step and
then considering the two directions separately; chains are only required to be un-
tangled with respect to other chains of the same type. The untangling problem of
interest to us, then, is how to decompose a set of points into a minimal number
of untangled chains all in one direction (without loss of generality, descending).
Also assume that points in the input set are in general position.

It is easy to see that removing a single tangle between two chains does not
change the number of chains, so the minimum number of untangled chains is the
same as the minimum number of possibly-tangled chains.

However, finding tangles to remove requires search, and each untangling move
could introduce many new tangles, resulting in an expensive untangling proce-
dure. Van Leeuwen and Schoone show that such a process must terminate after
O(n3) moves [13]. They describe an O(n2) exhaustive search to find each tangle,
for an overall time of O(n5). We describe an algorithm for finding a minimal
number of chains in O(n log n+ kn) time where k is the number of chains.

3.1 Untangling Monotonic Chains

Given two points pi, pj ∈ P , we say that the edge or line segment (pi, pj) is
valid if x(pi) ≤ x(pj) and y(pj) ≤ y(pi). We also say that points pi and pj
are compatible if (pi, pj) or (pj , pi) is valid. A chain is a sequence of edges
C = {(p1, p2), (p2, p3), . . . , (pn−1, pn)} where each one is valid. We will often
refer to a point p ∈ C for some chain C, which means that p is an endpoint
of some edge in C. A sub-chain S of C is a contiguous subset of the edges
{(pk, pk+1), . . . , (pk+`−1, pk+`)}, where k + ` ≤ n. We call ` the length of S.

Supowit [12] proposed an algorithm, Algorithm 1, for decomposing points
into a minimal number of possibly-intersecting same-direction monotonic chains.



Algorithm 1 Minimum number of descending chains
1: S ← ∅
2: for i = 1 . . . n do
3: let S′ = {A ∈ S,miny(A) ≥ y(pi)}
4: if S′ 6= ∅ then
5: let A0 = argminA{miny(A), A ∈ S′}
6: append pi to A0

7: else
8: add pi as a chain to S
9: return S

Let A be a chain and miny(A) = min{y|(x, y) ∈ A}. Let P = {p1, p2, . . . , pn} be
the data points sorted by increasing x-coordinate.

If an edge in one chain intersects an edge in another chain, we call the inter-
section a tangle and the chains tangled with each other. Let L(P ) be the set of all
valid edges and L∗(P ) be the set of edges created by running Algorithm 1 on P .
Then for any edge (pi, pj), define H+(pi, pj) to be the open half-plane bounded
by the line through pi and pj and containing the point (x(pi) + 1, y(pi) + 1),
and H−(pi, pj) symmetrically. Now we can show that all tangles in the output
of Algorithm 1 are of a special kind.

Definition 1. Suppose we have two chains C2 and C1 with edges (q1, q2) ∈ C2

and (p1, p2), . . . , (p`−1, p`) ∈ C1 such that p1 ∈ H−(q1, q2), p` ∈ H−(q1, q2),
and pi ∈ H+(q1, q2) for all 1 < i < `. We call such a tangle a “valid”-tangle
(abbreviated as v-tangle). Fig. 1 shows examples. We call (q1, q2) the upper part
of the v-tangle, and (p1, p2), . . . , (p`−1, p`) the lower part.

S

a

q2

C1

C2

p1

p`

q1 a

S

b

bc

c

d

d
p2

p`−1

Fig. 1. (Left) Valid tangles (v-tangles) generated by Algorithm 1. (Right) Two exam-
ples of tangles that cannot be generated by Algorithm 1.

Lemma 1. All tangles created by Algorithm 1 are v-tangles.

Since only v-tangles are possible in the output of Algorithm 1, there is an
intuitive ordering on the set of chains. Suppose we run Algorithm 1 on P and it



generates k chains. We can create a set of k points Q = {q1, . . . , qk} such that
x(qi) < x(qi+1), no two points in Q are compatible with each other, but every
point in Q is compatible with every point in P , Then, if we execute Algorithm 1
again on P ∪Q, each qi will be added to a single chain Ci, and we can order the
chains based on these points. We will assume we have such a set at the beginning
of the chains and another at the end in order to avoid special boundary cases.
Thus, given two chains Ci and Cj , we can refer to Cj as the upper chain if j > i.
The uppermost chain is Ck.

With this ordering in mind, we now discuss how to untangle a v-tangle.
The following lemma illustrates that untangling a v-tangle does not create new
tangles involving upper chains.

Remark 1. Given a v-tangle, as shown in Fig. 1, we can untangle it by using
the dotted lines as edges. This is just moving S to be part of C2. As we just
explained, it does not matter how the points change and move around chains,
chain Ci is the one that would contain qi.

Lemma 2. Consider two tangled chains Ci and Cj as in Fig. 2. By removing a
v-tangle, where Cj is above Ci, we cannot generate new tangles involving chains
above Cj.

Ci

Cj

Fig. 2. Illustration of the case considered in Lemma 2.

Consider Algorithm 2. Each iteration of the outer for loop ensures that chain
Ci is not tangled with any chains below, C1, . . . , Ci−1.

Algorithm 2 Untangled-Chains(P)
1: Run Algorithm 1 on P to get chains C1, . . . , Ck where Ck is the uppermost chain.
2: for i = k down to 1 do
3: for j = i− 1 down to 1 do
4: Find and untangle all v-tangles between Ci and Cj

To find the tangles we just traverse both chains in order of increasing x-
coordinates of their points, so the process take time proportional to the sum of



the lengths of the chains. Our method of untangling also has the following useful
invariant properties.

Lemma 3. Consider the set of points R in chains C1, . . . , Ci−1 after untangling
Ci, . . . , Ck. If we run Algorithm 1 with input R, the resulting set of chains is
exactly C1, . . . , Ci−1.

Lemma 4. After we have untangled Ci with chains Ci−1, . . . , C1, no subsequent
untangling operations occurring among chains C1, . . . , Ci−1 can cause a new tan-
gle to form with Ci.

The previous results allow for the possibility that during the untangling of Ci,
we could (temporarily) create non-v-tangles involving Ci. In fact, such tangles
are possible if the order in which the untangling is done is arbitrary, which can
be seen in Fig. 3. However, since Algorithm 2 untangles the chains in descending
order, this situation cannot occur.

What remains to be shown is that in the process of untangling the upper
chain Ci from the chains C1, . . . , Ci−1, when untangling a v-tangle, any other
v-tangles involving Ci either disappear or remain being a v-tangle.

C1

C3
C2

C1

C2

C3

Fig. 3. Untangling chains in an arbitrary order may cause tangles which are not v-
tangles. For example, untangling C1 and C3 results in such a situation. The arrow
points to a new tangle that is not a v-tangle.

Lemma 5. Suppose a v-tangle between Ci and Cj is removed by Algorithm 2,
where Cj is the upper chain. Any tangles between Cj and C` where ` < j may
have been altered. However, the remaining tangles are still v-tangles.

Now we state our main theorem about the untangling process:

Theorem 1. A set of n points in the plane can be decomposed into a minimal
set of chains without tangles in O(n log n+ kn) time, where k is the number of
chains.

4 Adaptive Orthogonal Range Search

First, observe that if the data points form a single monotonic chain, then the
answer to any query must be a contiguous interval of the ordered list of points,



and we can find it with a binary search. We can store such a data set in O(n)
space and answer queries in O(log n + m) time, where n is the number of data
points and m is the number of points returned by the query.

Now assume that as a preprocessing step the data points have been decom-
posed into a minimal number k of monotonic chains. A truly optimal decom-
position would require solving an NP-hard problem, but we can come within a
constant factor in O(n3) time with the algorithm of Fomin, Kratsch, and Nov-
elli, and that is good enough to preserve the asymptotic search time of our data
structure [6]. The O(n3/2) partitioning algorithm of Yang, Chen, Lu, and Zheng
offers no guarantee of a minimal decomposition, but appears to come close in
practice and may be preferable in real applications [14]. In either case, once we
have a decomposition of the data points into chains, we separate the ascending
and descending chains, and treat the two directions separately, building a data
structure for each and running every query on both.

The two-direction minimization algorithms are used only to decide for each
point whether it will go into the ascending or descending structure. Having made
that decision, we run the algorithm of the previous section to find a minimal set
of untangled chains for each direction; doing so cannot increase the number of
chains further.

Without loss of generality, we describe the data structure for descending
chains here. The ascending case is symmetric. Let {C1, C2, . . . , Ck} be the set of
untangled descending chains, and let `i be the length of Ci. Let r = [x1, x2] ×
[y1, y2] be the query range.

We first find the set of chains that intersect r. If we store the chains ordered
from left to right as described in the previous section, we can find the first
chain to pass above the point (x1, y1) and the last chain to pass below the point
(x2, y2), and know that all chains intersecting the query range must be between
those two chains in the ordering. Evaluating whether a point is above or below
a chain can be accomplished by a simple binary search over the points in the
chain in O(log n) time, so with two binary searches over the chains we can find
the start and end of the range of chains that might intersect r, in O(log k log n)
time. Let k′ ≤ k be the number of chains in that subset.

For each of the k′ chains that might intersect r, we can do two more binary
searches to find the start and end of the interval of data points within the
chain, that are actually included in the query range. Note that because of the
monotonicity of the chains, this must be a contiguous interval. The time to do
these searches is O(log `i) for each of the k′ chains, and since

∑
`i = n, the time

for this step is O(k′ log(n/k′)).
The number of points m returned by the query also places a lower bound on

the running time simply because we must spend time writing them out. Adding
up the times gives the following lemma:

Lemma 6. Given a set of n points which can be decomposed into k monotonic
chains, we can in O(n3) time construct a linear-space data structure answering
two-dimensional orthogonal range search queries in O(log k log n+k′ log(n/k′)+



m) time, where m is the number of points returned and k′ ≤ k depends on the
query.

Observe that the above solution involves performing binary searches for the
same keys in separate ordered lists. Thus, we can use the technique of fractional
cascading [4] to speed up the query time and achieve the following result:

Theorem 2. Given a set of n points which can be decomposed into k monotonic
chains, we can in O(n3) time construct a linear-space data structure answering
two-dimensional orthogonal range search queries in either O(log n+k+m) time
or O(log k log n + k′ + m) time, where m is the number of points returned and
k′ ≤ k depends on the query.

Proof. To check whether the query rectangle [x1, x2]× [y1, y2] intersects a given
chain Ci, it is sufficient to perform binary searches on the list of x-coordinates
(or y-coordinates) of the points on Ci using x1 and x2 (or y1 and y2) as search
keys. This also finds which edge, if any, of Ci intersects each edge of the query
rectangle. Therefore, we can report the points on Ci that are located in the query
range in O(log n+ ki) time, where ki is the number of such points.

Then to answer orthogonal range search queries using our data structure, we
can perform two binary searches on the list of x-coordinates of the points on each
chain, and two binary searches on the list of y-coordinates for each chain. Thus,
we can store the sorted lists of x-coordinates and y-coordinates corresponding
to the monotonically increasing chains separately, and use the technique of frac-
tional cascading [4] to speed up the query time without increasing the asymptotic
space cost of our data structure. We augment the data structure for the mono-
tonically decreasing chains using the same approach. This yields a data structure
of linear space that supports orthogonal range search in O(log n+ k +m) time.

The other result in the theorem can be achieved by locating the start and
the end of the range of chains that might intersect the query rectangle, and then
using fractional cascading to compute the answer starting from the uppermost
chain in this range. ut

The O(n3) preprocessing time may be improved to O(n3/2) (matching the
untangling step) in practical cases when the partitioning algorithm of Yang,
Chen, Lu, and Zheng gives acceptable results [14]. We can also make the data
structure of Lemma 6 implicit:

Corollary 1. A set of n points in the plane can be arranged as an array of n
coordinate pairs so that any orthogonal range query over this point set can be
answered in O(log k log n+ k′ log(n/k′) +m) time with O(1) working space.

5 Conclusions

We have presented a new data structure for two-dimensional orthogonal range
search that is adaptive to the minimum number of monotonic chains that the
input points can be partitioned into. For data which is considered easy in this



sense, our data structure outperforms existing alternatives, either in query time
or space requirements. Furthermore, we show that our structure can be made
implicit, requiring only constant space in addition to the space required to encode
the input points.

As a contribution of independent interest, we show how to partition a set of
two-dimensional points into a minimal number of untangled monotonic chains.
This decomposition is a key element of our data structure, and could also be
useful in other geometric applications.
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