
Finding a Hausdorff Core of a Polygon:

On Convex Polygon Containment with Bounded Hausdorff

Distance∗

Reza Dorrigiv Stephane Durocher Arash Farzan Robert Fraser
Alejandro López-Ortiz J. Ian Munro Alejandro Salinger Matthew Skala

May 15, 2009

Abstract

Given a simple polygon P , we consider the problem of finding a convex polygon Q
contained in P that minimizes H(P, Q), where H denotes the Hausdorff distance. We call
such a polygon Q a Hausdorff core of P . We describe polynomial-time approximations
for both the minimization and decision versions of the Hausdorff core problem, and we
provide an argument supporting the hardness of the problem.

1 Introduction

Traditional hierarchical representations allow for efficient storage, search and representation
of spatial data. These representations typically divide the search space into areas for which
membership can be tested efficiently. If the query region does not intersect a given area,
the query can proceed without further consideration of that area. When a space or object
has certain structural properties, the data structure built upon it can benefit from those
properties. For example, the data structure of Kirkpatrick [12] is designed to index planar
subdivisions answering point queries in time O(log n) and space O(n), with preprocessing
time O(n log n).

Our study is motivated by the problem of path planning in the context of navigation at sea.
In this application, a plotted course must be tested against bathymetric soundings to ensure
that the ship will not run aground. We suppose the soundings have been interpolated into
contour lines [1] and the plotted course is given as a polygonal line. There is no requirement
of monotonicity or even continuity between contour lines in the map. A given line might be a
maximum, minimum or a falling slope. Similarly, we observe that in general there are several
disconnected contour lines with the same integer label (depth).

Although contour lines can be arbitrarily complicated, typical shipping routes run far from
potential obstacles for the majority of their trajectories, and only short segments require more
careful route planning. As a result, most intersection checks should be easy: we should be
able to subdivide the map into areas such that most of our intersection tests are against
conveniently-shaped areas, reserving more expensive tests for the rare cases where the path
comes close to intersecting the terrain.

∗Funding for this research was made possible by the NSERC strategic grant on Optimal Data Structures
for Organization and Retrieval of Spatial Data.

1

The search for easily-testable areas motivates the study of the simplification of a contour
line into a simpler object which is either entirely contained within the contour line or fully
contains it. In this paper we consider the case in which the simplified polygon must be convex
and contained.

1.1 Definitions

A polygon P is a closed region in the plane bounded by a finite sequence of line segments
or edges. We restrict our attention to simple polygons, in which the intersection of any two
edges is either empty or an endpoint of each edge and the intersection of any three edges is
empty. Finally, recall that a region P is convex if for all points p and q in P , the line segment
pq is contained in P .

Given a simple polygon P and a metric d (defined on polygons), a d-core of P is a convex
polygon Q contained in P that minimizes d(P,Q). Examples of metrics d of interest include
the area of the region P \Q, the Hausdorff distance between P and Q, and the link distance
(which is a discrete distance metric). A common measure of distance between two sets P
and Q is given by

d(P,Q) = max
{

max
p∈P

min
q∈Q

dist(p, q), max
q∈Q

min
p∈P

dist(p, q)
}

.

When P and Q are polygons in the plane and dist(p, q) denotes the Euclidean (`2) distance
between points p and q, d(P, Q) corresponds to the Hausdorff distance between sets P and
Q, which we denote by H(P, Q). We define the corresponding d-core as the Hausdorff core.
We consider both the minimization and decision versions of problem of finding a Hausdorff
core for a given simple polygon P :

Input. A simple polygon P .
Question. Find a Hausdorff core of P .

Input. A simple polygon P and a non-negative integer k.
Question. Does there exist a convex polygon Q contained in P such that H(P, Q) ≤ k?

The 1-centre of a polygon P (also known as Euclidean centre) is the point c that minimizes
the maximum distance from c to any point in P . In this work we are only interested in the
1-centre inside P , also known as constrained Euclidean centre. Although the unconstrained
1-centre is unique, this is not necessarily true for the constrained version [6]. A constrained
1-centre of a polygon P of n vertices can be computed in time O(n log n + k), where k is the
number of intersections between P and the furthest point Voronoi diagram of the vertices of
P [6]. For simple polygons k ∈ O(n2). Note that the constrained 1-centre of P is a point
c ∈ P that minimizes H(P, c). Throughout the rest of the paper, when we refer to a 1-centre,
we specifically mean a constrained 1-centre.

1.2 Related Work

We can divide the problem of approximating polygons into two broad classes: inclusion
problems seek an approximation contained in the original polygon, while enclosure problems
determine approximation that contains the original polygon. Formally, let P and Q be
classes of polygons and let µ be a function on polygons such that for polygons P and Q,
P ⊆ Q ⇒ µ(P) ≤ µ(Q). Chang and Yap [7] define the inclusion and enclosure problems as:

2

• Inc(P,Q, µ): Given P ∈ P, find Q ∈ Q included in P , maximizing µ(Q).

• Enc(P,Q, µ): Given P ∈ P, find Q ∈ Q enclosing P , minimizing µ(Q).

The best known enclosure problem is the convex hull, which we may state formally as
Enc(Psimple,Pcon, area), where Psimple is the family of simple polygons and Pcon is the family
of convex polygons. Given a convex polygon P , many problems are tractable in linear time:
Enc(Pcon,P3, area) [16], Enc(Pcon,P3, perimeter) [5], and Enc(Pcon,Ppar, area) [17], where
Ppar is the family of parallelograms. For general k-gons, Enc(Pcon,Pk, area) can be solved in
O(kn + n log n) time [3].

Perhaps the best known inclusion problem is the potato-peeling problem of Chang and
Yap [7], defined as Inc(Psimple,Pcon, area). There is an O(n7) time algorithm for this problem,
and an O(n6) time algorithm when the measure is the perimeter, Inc(Psimple,Pcon, perimeter),
where n is the number of vertices of P [7]. The problem of finding the triangle of maximal
area included in a convex polygon, Inc(Pcon,P3, area), can be solved in linear time [9]. The
generalization of this problem to any k-gon can be solved in time O(kn + n log n) [2]. If the
input polygon is not restricted to be convex, Inc(Pcon,P3, area) can be found in time O(n4)
[15].

The inclusion and enclosure problems can also be formulated as minimizing or maximizing
a measure d(P, Q). Note that in the case when µ(Q) is the area, maximizing or minimizing
µ(Q) for the inclusion and enclosure problems, respectively, is equivalent to minimizing the
difference in areas (d(P, Q) = |µ(P)−µ(Q)|). Both the inclusion and enclosure problems us-
ing the Hausdorff distance as a measure were studied by Lopez and Reisner [14], who present
polynomial-time algorithms to approximate a convex polygon minimizing the Hausdorff dis-
tance to within an arbitrary factor of the optimal. Since the input polygon is convex, the
approximating solution is restricted to a maximum number of vertices. In the same work,
the authors also studied the min-# version of the problem, where the goal is to minimize the
number of vertices of the approximating polygon, given a maximum allowed error. For this
setting, they show that the inclusion and enclosure problems can be approximated to within
one vertex of the optimal in O(n log n) time and O(n) time, respectively.

The inclusion problem that minimizes the Hausdorff distance where the input is a simple
(not necessarily convex) polygon was addressed in [8]. They present an algorithm that returns
a Hausdorff core for the case when the point 1-centre is contained in the input polygon P .
The algorithm shrinks the input polygon P until its convex hull is contained in the original
P . If the shrunken polygon P ′ is not convex, the region in which the convex hull P ′ intersects
P is removed from P ′. The procedure is repeated starting with P ′ until a convex polygon
is obtained. In general, the algorithm does not return a Hausdorff core if the point 1-
centre is not contained in P . A counterexample is illustrated in Figure 1. To the best of
our knowledge, no algorithm for finding a Hausdorff core of an arbitrary simple polygon,
Inc(Psimple,Pcon, Hausdorff), has appeared in the literature.

2 Preliminary Observations

In this section we make several observations about properties of polygons, convex polygons,
and the Hausdorff distance in the context of the discussed problem. These observations will
be useful in later sections in establishing our main results. Due to lack of space, we omit the
proofs.

3

A B C D E

Figure 1: A. The input polygon P . B. “Shrinking” the polygon. C. Shrink until the convex
hull is contained in P . D. The solution returned by the Chassery and Coeurjolly algorithm.
E. An actual solution.

Given a polygon P and a convex polygon Q inside P , it suffices to optimize the maximum
distance from points p ∈ P to polygon Q to obtain a Q with a minimum Hausdorff distance:

Observation 1 Given any simple polygon P and any convex polygon Q contained in P ,
maxp∈P minq∈Q d(p, q) ≥ maxq∈Q minp∈P d(p, q). Therefore,

H(P, Q) = max
p∈P

min
q∈Q

d(p, q).

Among the points of P and Q, the Hausdorff distance is realized at the vertices of P .
Furthermore, it occurs between Q and vertices that lie on the convex hull of P :

Lemma 1 Given a simple polygon P and a convex polygon Q contained in P ,

H(P, Q) = H(CH(P)V , Q),

where CH(P) denotes the convex hull of set P and for any polygon A, AV denotes the set of
vertices of set A.

H(P, Q) is determined by the vertices of P that lie on the convex hull of P , however
all vertices and edges of P must be considered to determine whether Q is contained in P .
The decision version of the Hausdorff core problem with parameter k is defined as follows;
we consider circles of radius k centered at vertices CH(P)V and ask whether there exists a
convex polygon Q such that it intersects all such circles:

Observation 2 Let Ck(p) denote a circle of radius k centred at p. Given a simple polygon
P and a convex polygon Q contained in P ,

H(P, Q) ≤ k ⇔ ∀p ∈ CH(P), Ck(p) ∩Q 6= ∅.

Finally, we wish to know some point contained in Q. If the 1-centre of P is not in Q,
then Q intersects some vertex of P :

Lemma 2 Given a simple polygon P and a convex polygon Q contained in P , let P1c be the
constrained 1-centre of P . At least one point in the set {P1c, PV } is contained in Q if Q is a
Hausdorff core of P . Let a point chosen arbitrarily from this set be Qp.

3 Hausdorff Core Minimization Problem

In this section we outline an algorithm to solve the Hausdorff core problem which operates
by shrinking circles centred on selected vertices of P (which vertices have circles is discussed
shortly). Invariant 1 must hold for a solution to exist:
Invariant 1. There exists a set of points {p1, p2, . . . , pk}, where k is the current number of

4

circles, such that ∀i pi ∈ Ci and ∀i, j, i 6= j pipj does not cross outside the original simple
polygon.

Invariant 1 implies that a solution Q with H(P,Q) = r exists, where r is the radius of the
circles. We sketch the solution in Algorithm 1, and we illustrate an example of the operation
of the algorithm in Figure 2. We find P1c using the technique of [6]; there may be multiple
such vertices, but we can choose one arbitrarily. A solution is not unique in general, but we
find a polygon Q which minimizes H(P, Q).

Algorithm 1 Hausdorff Core Minimization Algorithm
HCORE(P)
Q = ∅, rmin = ∞
for each Qp ∈ {P1c, PV } do

Begin with circles of radius r0 centred on the vertices v ∈ CH(P)V , where r0 =
dist(vf , Qp) and vf = arg maxp∈P dist(p,Qp).
Any circle centred at a vertex v where dist(Qp, v) < r contains Qp; such circles are
ignored for now.
Reduce the radius such that at time ti ∈ [0, 1], each circle has radius r(ti) = r0×(1−ti).
Let Q(ti) be a solution at time ti, if it exists. The radius is reduced until one of three
events occurs:
(1) r(ti) = dist(Qp, vn), where vn is the farthest vertex from Qp that is not the centre
of a circle. Add a circle centred at vn with radius r(ti).
(2) Q(ti) cannot cover Qp. In this case, we break and if r(ti) < rmin, then set Q = Q(ti)
and rmin = r(ti).
(3) A further reduction of r will prevent visibility in P between two circles. Again, we
break and if r(ti) < rmin, then set Q = Q(ti) and rmin = r(ti).

end for
return Q

3.1 Proof of Correctness

The solution Q is a convex polygon that intersects every circle. If each circle Ci touches
the solution convex polygon Q, we know that the distance from each vertex with a circle
to Q is at most r, the radius of Ci. If a vertex v ∈ CH(P)V does not have a circle, then
dist(v, Qp) ≤ r. Therefore, given a simple polygon P , this algorithm finds a convex polygon
Q contained in P such that ∀p ∈ CH(P)V , ∃q ∈ Q s.t. d(p, q) ≤ r. By Lemma 1, we know
that Q is a solution where H(P, Q) = r. It remains to be shown that there does not exist a
convex polygon Q′ such that dist(p, q′) ≤ r′, where r′ < r. This cannot be the case, for if the
circles were shrunk any further, no convex polygon could intersect some pair of the circles by
Invariant 1. Therefore, the polygon would necessarily be of distance dist(p, q′) > r′ for some
vertex p.

Finally, the optimality of the algorithm is guaranteed since we search different possibilities
for the point Qp which is contained in the solution Q. By Lemma 2, we know that at least
one such point Qp is contained in the optimal solution. By trying all possibilities, we ensure
that the globally optimal solution is obtained.

5

(a) (b)

(c) (d)

Figure 2: (a) Two circles are centred on the critical points vf . (b) dist(E, 1c) = r, so we
add a new circle centred on E of radius r. The orange (light) lines indicate lines of visibility
between the circles. (c) Another circle is added centred at point B. (d) We cannot shrink
the circles any further, otherwise Invariant 1 would be violated. Therefore, a solution can be
composed from the orange line segments.

4 Algorithmic Complexity of the Problem

The decision version of the exact problem consists of determining whether we can draw a
polygon with one vertex in or on each circle and each successive pair of vertices is able to
see each other around the obstructions formed by vertices of the input. For any fixed choice
of the obstructing vertices, this consists of a system of quadratic constraints of the form
“variable point in circle” and “two variable points collinear with one constant point.” For
the optimization version we need only make the circle radius a variable and minimize that.
This is a simple mathematical programming problem, potentially tractable with a general
solver.

Solving systems that include quadratic constraints is in general NP-hard; we can easily
reduce from 0-1 programming by means of constraints of the form x(x−1) = 0. Nonetheless,
some kinds of quadratic constraints can be addressed by known efficient algorithms. Lobo
et al. [13] describe many applications for second-order cone programming, a special case of
semidefinite programming. The “point in circle” constraints of our problem can be easily
expressed as second-order cone constraints, so we might hope that our problem could be
expressed as a second-order cone program and solved by their efficient interior point method.

However, the “two variable points collinear with one constant point” constraints are not
so easy to handle. With (x1, y1) and (x2, y2) the variable points and (xC, yC) the constant

6

I A B
C

D

EFG

H

Figure 3: Two disconnected solution intervals

point, we have the following:

y1 − yC

x1 − xC
=

y2 − yC

x2 − xC
(1)

x2y1 − x2yC − xCy1 = x1y2 − x1yC − xCy2 (2)

This constraint is hyperbolic because of its cross-product terms. The techniques of Lobo
et al. [13] can be applied to some hyperbolic constraints, subject to limitations whose basic
purpose is to keep the optimization region convex.

As shown in Figure 3, it is possible for our problem to have two disconnected sets of
solutions, even with as few as four circles. For a point A on the first circle, we can trace the
polygon through the constant point B to that edge’s intersection with the second circle at C,
then through the constant point D and so on around to H. The lines AB and GH intersect
at I, which is our choice for one vertex of the polygon, the others being C, E, and G. If I
is inside the circle, we have a feasible solution. But the heavy curves show the locus of I for
different choices of A, and the portion of it inside the circle is in two disjoint pieces. The set
of solutions to the problem as shown is disjoint, corresponding to a slice (for a constant value
of the circle-radius variable) through a non-convex optimization region. As a result, neither
second-order cone programming nor any other convex optimization technique is immediately
applicable.

5 An Approximation Algorithm Hausdorff Core

5.1 The Decision Problem

First we discuss the decision version of the approximation algorithm, where were are given a
distance r and wish to know whether there is an approximate Hausdorff core solution with
H(P, Q′) ≤ r + 2ε′. This approximation scheme seeks to grow circles by an additive factor
ε′, and determine whether there exists a solution for these expanded circles. We still require
that the approximate solution Q′ must not cross outside P , and that Invariant 1 holds. Given
ε as input, where ε is a small positive constant, we calculate ε′ = dvf ·ε as the approximation
factor of H(P,Q). Recall that dvf is the distance from the constrained 1-centre P1c to the
most distant vertex vf ∈ P . Notice that this method of approximation maintains a scale
invariant approximation factor, and the size of the of the approximation factor for a given P
is constant, regardless of Q and the magnitude of r.

The strategy behind this approximation scheme is that by growing the circles by ε′, they
may be discretized. Consequently, it is possible to check for strong visibility between discrete

7

intervals, which avoids some of the problems faced by the exact formulation of the problem.
One of the challenges of this approach is the selection of the length of the intervals on the
new circles of radius r+ε′. We require that the intervals be small enough so that we will find
a solution for the approximation if one existed for the original circle radius. In other words,
given an exact solution Q for the original radius r such that H(P, Q) ≤ r, we are guaranteed
that at least one interval on each of the expanded circles will be contained inside Q.

First we determine whether the polygon can be approximated by a single line segment.
We construct an arc segment of radius 2dvf (the maximum diameter of P) and arc length
ε′. The interior angle of the circular segment Cϕ formed by this arc is ϕ = ε′/2dvf = ε/2. If
an interior angle of Q′ is less than or equal to ϕ, then Q′ may be fully covered by Cϕ since
Q′ is convex. In this case, there exists a line segment Q` which approximates Q′ such that
H(Q′, Q`) < ε′.

To determine whether Q can be approximated by a line segment, we grow all existing
circles by a further factor of ε′, so that they have radius r? = r + 2ε′. Since Q is convex,
this operation means that a line segment which approximates Q will now intersect at least
one arc from each circle. By Lemma 2, we know that Pc ∈ {P1c, PV } is contained in Q.
Therefore, we attempt to find a line intersecting a point Pc and a segment of each circle of
radius r? for each Pc. For a selected Pc, we build an interval graph in the range [0...π]. For
each circle Ci, if a line at angle θ mod π from an arbitrary reference line intersects a segment
of Ci contained in P before intersecting P itself, then Ci covers θ in the interval graph. If
there is a non-zero intersection between all circles in the interval graph, then the solution is
a line segment Q` at angle θ to the reference line, intersecting Pc with endpoints at the last
circles that Q` intersects. Therefore, if there exists a solution H(P, Q) ≤ r where Q can be
approximated by a line segment Q` with H(Q,Q`) < 2ε′, then we will find Q`.

If we have not found a solution Q`, we know that all interior angles of Q are greater than
ϕ, and so we wish to determine an approximating polygon Q′. If we divide the expanded
circle of radius r + ε′ into 12π/(ε2dvf) equal intervals, at least one would be fully contained
in Q regardless of where the intervals are placed on the circle. Now finding Q′ is simply a
matter of finding a set of intervals such that there exists one interval on each circle which
has strong visibility with an interval on all the other circles, and then selecting one point
from each interval. A solution has the form Q′ = {q1 . . . qk}, where qi is a point on Ci in the
interval contained in the solution.

We use a dynamic programming algorithm to find a solution given a set of circles in the
input polygon. We use a table A[i, j] that stores, for a pair of intervals i and j in different
circles, a range of possible solutions that include those intervals (See Figure 4). We find
the convex polygon that includes intervals i and j by combining two convex polygons, one
that includes i and an interval k∗ and another that includes j and k∗. In order to compute
A[i, j] we lookup the entries for A[i, k1] . . . A[i, km] and A[k1, j] . . . A[km, j], where k1, . . . , km

are the intervals of a circle k, to determine if there is such k∗ for which there are solutions
A[i, k∗] and A[k∗, j] that can be combined into one convex polygon. There are many solutions
that include a certain pair of intervals, but we store only O(n) solutions for each pair. For
example, for the entry A[i, j] we would store the edge coming out of j that minimizes the
angle Θ for each choice of an edge coming out of interval i, as shown in Figure 4. This would
be done recursively at each level, which would make partial solutions easier to combine with
other solutions while keeping convexity. Note that a particular choice of pairs of circles to
form the solution Q′ corresponds to a triangulation of Q′, and since there are O(n) pairs of
vertices joined in the triangulation, we need to store entries for the intervals of O(n) pairs
of circles. Given the clique of strongly visible intervals, we may now freely choose a point

8

i j

A[i, j]

k∗

A[i, k∗]

Θ

A[k∗, j]

Figure 4: The convex polygon that includes intervals i and j is built by combining a polygon that
includes i and k∗ and one that includes j and k∗ (painted in grey).

from each interval to obtain the solution polygon Q′. We run the dynamic programming
algorithm iteratively for each Pc ∈ {P1c, PV }, using only circles centred on vertices v ∈ PV

where dist(v, Pc) < r. If no solution Q′ is found for any Pc, then there is no solution where
H(P, Q) = r.

We present the following observations pertaining to Q and Q′:

• ∃Q ⇒ ∃Q′, ¬∃Q′ ⇒ ¬∃Q. The intervals are defined such that at least one interval from
each circle will be contained in Q′.

• ∃Q′ ; ∃Q. The existence of Q′ does not imply the existence of Q because the optimal
solution may have circles of radius r + νdvf , where ν < ε.

5.2 The Minimization Problem

Given an optimal solution polygon Q where H(P, Q) = rOPT , our algorithm finds an ap-
proximate solution Q′ such that H(P, Q′) < rOPT + 3ε′. To determine a value of r′ such
that r′ ≤ rOPT + 3ε′, it suffices to perform a binary search over possible values for r′ in the
range of [0 . . . vf] executing the decision approximation algorithm at each iteration. At the
ith iteration of the algorithm, let the current radius be ri. If the algorithm finds a solution
Qi such that H(P,Qi) = ri, we shrink the circles and use ri+1 = ri−dvf/2i. If the algorithm
fails to find a solution, we use ri+1 = ri + dvf/2i. Initially, r0 = dvf , and the stopping
condition is met when we find an approximate solution for radius r, and the approximate
decision algorithm fails for radius r−ε′. Thus, the minimization version of the approximation
algorithm requires O(log(ε−1)) iterations of the decision algorithm to find a solution. In the
decision version, we showed that H(Q,Q′) < 2ε′, if Q exists. In the minimization version,
the best solution for a value of r may approach ε′ less than the optimal value located on one
of the radius intervals. Therefore, the minimization algorithm returns a solution Q′ where
H(P, Q′) < rOPT + 3ε′.

5.3 Running Time and Space Requirements

First we estimate the space and running time of the approximate decision algorithm. We
compute the 1-centre using the technique in [6], which takes O(n2) time. The line solution
tests a line against O(n) circles, each of which may have O(n) segments. This procedure is
repeated O(n) times, so this requires O(n3) time in total. In the dynamic programming table,
there are O(n) pairs of circles. The number of intervals on each circle is bounded by O(ε−2),

9

so we have O(ε−4) possible combinations of intervals between two circles. Therefore there
are O(nε−4) entries in the table, and each of them stores a description of O(n) solutions.
Hence the table needs roughly O(n2ε−4) space. If the number of entries in the table is
O(nε−4), the dynamic programming algorithm should run in time O(nε−6), since in order to
calculate each entry we need to check all the O(ε−2) intervals of one circle. The algorithm
may require O(n) iterations to test each value of Pc, so the approximate decision algorithm
requires O(n3 + n2ε−6) time. Finally, the minimization version of the algorithm performs
O(log(ε−1)) iterations of the approximate decision algorithm, so the complete algorithm
requires O((n3 + n2ε−6) log(ε−1)) time to find an approximate solution.

6 Discussion and Directions for Future Research

The d-core problem is defined for any metric on polygons; we chose the Hausdorff metric, but
many others exist. A natural extension of the Hausdorff metric might consider the average
distance between two polygons instead of the maximum. This metric could be defined as
follows:

H ′(P, Q) = max
{∫

p∈P
min
q∈Q

dist(p, q) dp,

∫

q∈Q
min
p∈P

dist(p, q) dq

}
,

where dist(p, q) denotes the Euclidean (`2) distance between points p and q. If Q is a point,
then finding a point Q that minimizes H ′(P,Q) for a given polygon P corresponds to the
continuous Weber problem, also known as the continuous 1-median problem. In the dis-
crete setting, no algorithm is known for finding the exact position of the Weber point [4].
Furthermore, the problem is not known to be NP-hard nor polynomial-time solvable [11].
That suggests our problem may be equally poorly-behaved. Fekete et al. [10] considered the
continuous Weber problem under the `1 distance metric.

In our original application, we hoped to create a hierarchy of simplified polygons, from
full-resolution contour lines down to the simplest possible approximations. Then we could test
paths against progressively more accurate, and more expensive, approximations until we got
a definitive answer. We would hope to usually terminate in one of the cheaper levels. But our
definition of d-core requires the core to be convex. Convexity has many useful consequences
and so is of theoretical interest, but it represents a compromise to the original goal because it
only provides one non-adjustable level of approximation. It would be interesting to consider
other related problems that might provide more control over the approximation level.

Therefore, a direction for further work would be to define some other constraint to require
of the simplified polygon. For instance, we could require that it be star-shaped, i.e. there is
some point p ∈ P such that every q ∈ P can see p. A similar but even more general concept
might be defined in terms of link distance.

Acknowledgements

The authors would like to thank Diego Arroyuelo and Barbara Macdonald for their partic-
ipation in early discussions of the problem, and the anonymous reviewers for their useful
comments and suggestions.

10

References

[1] P.K. Agarwal, L. Arge, T.M. Murali, K.R. Varadarajan, and J.S. Vitter. I/O-efficient
algorithms for contour-line extraction and planar graph blocking. In Proc. SODA, pages
117–126. SIAM, 1998.

[2] A. Aggarwal, M.M. Klawe, S. Moran, P. Shor, and R. Wilber. Geometric applications
of a matrix-searching algorithm. Algorithmica, 2(1):195–208, 1987.

[3] A. Aggarwal and J. Park. Notes on searching in multidimensional monotone arrays. In
Proc. SFCS, pages 497–512. IEEE, 1988.

[4] C. Bajaj. The algebraic degree of geometric optimization problems. Disc. & Comp.
Geom., 3:177–191, 1988.

[5] B.K. Bhattacharya and A. Mukhopadhyay. On the minimum perimeter triangle enclosing
a convex polygon. In Proc. JCDCG, volume 2866 of LNCS, pages 84–96. Springer, 2002.

[6] P. Bose and G. Toussaint. Computing the constrained Euclidean geodesic and link center
of a simple polygon with applications. In Proc. CGI, page 102. IEEE, 1996.

[7] J. S. Chang and C. K. Yap. A polynomial solution for the potato-peeling problem. Disc.
& Comp. Geom., 1(1):155–182, 1986.

[8] J.-M. Chassery and D. Coeurjolly. Optimal shape and inclusion. In Mathematical Mor-
phology: 40 Years On, volume 30, pages 229–248. Springer, 2005.

[9] D.P. Dobkin and L. Snyder. On a general method for maximizing and minimizing among
certain geometric problems. In Proc. SFCS, pages 9–17, 1979.

[10] S. P. Fekete, J. S. B. Mitchell, and K. Weinbrecht. On the continuous Fermat-Weber
problem. Oper. Res., 53:61–76, 2005.

[11] S.L. Hakimi. Location theory. In Rosen, Michaels, Gross, Grossman, and Shier, editors,
Handbook Disc. & Comb. Math. CRC Press, 2000.

[12] D. Kirkpatrick. Optimal search in planar subdivisions. SIAM J. Comp., 12(1):28–35,
1983.

[13] M.S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. Applications of second-order cone
programming. Lin. Alg. & App., 284(1–3):193–228, 1998.

[14] M.A. Lopez and S. Reisner. Hausdorff approximation of convex polygons. Comp. Geom.
Theory & App., 32(2):139–158, 2005.

[15] E.A. Melissaratos and D.L. Souvaine. On solving geometric optimization problems using
shortest paths. In Proc. SoCG, pages 350–359. ACM, 1990.

[16] J. O’Rourke, A. Aggarwal, S. Maddila, and M. Baldwin. An optimal algorithm for
finding minimal enclosing triangles. J. Alg., 7:258–269, 1986.

[17] C. Schwarz, J. Teich, A. Vainshtein, E. Welzl, and B.L. Evans. Minimal enclosing
parallelogram with application. In Proc. SoCG, pages 434–435. ACM, 1995.

11

