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Abstract. The intersection of large ordered sets is a common problem in the context of the evaluation of boolean
queries to a search engine. In this paper we propose several improved algorithms for computing the intersection of
sorted arrays, and in particular for searching sorted arrays in the intersection context. We perform an experimental
comparison with the algorithms from the previous studies from Demaine, López-Ortiz and Munro [ALENEX 2001],
and from Baeza-Yates and Salinger [SPIRE 2005]; in addition, we implement and test the intersection algorithm
from Barbay and Kenyon [SODA 2002] and its randomized variant [SAGA 2003]. We consider both the random
data set from Baeza-Yates and Salinger, the Google queries used by Demaine et al., a corpus provided by Google
and a larger corpus from the TREC Terabyte 2006 efficiency query stream, along with its own query log. We
measure the performance both in terms of the number of comparisons and searches performed, and in terms of the
CPU time on two different architectures. Our results confirm or improve the results from both previous studies in
their respective context (comparison model on real data and CPU measures on random data), and extend them to
new contexts. In particular we show that value-based search algorithmsperform well in posting lists in terms of the
number of comparisons performed.

1 Introduction

The intersection of large ordered sets is a common problem inthe context of the evaluation of relational queries to
databases as well as boolean queries to a search engine. The worst case complexity of this problem has long been well
understood, dating back to the algorithm by Hwang and Lin from over three decades ago [13, 14], and the average case
has been studied in the case of the intersection of two sets, when the elements are uniformly distributed [9].

In 2000, Demaine et al. [11] introduced a new intersection algorithm, termedAdaptive, which intersects all
the sets in parallel so as to compute the intersection in timeproportional to the shortest proof of the result set. In a
subsequent study [12], they compared its performance in practice, relative to a straightforward implementation of an
intersection algorithm, and proposed a new and better adaptive algorithm which outperformed both in practice. They
measured the number of comparisons performed, on the index of a collection of plain text from web pages. In 2002,
Barbay and Kenyon [4] introduced another intersection algorithm, which adapts to the correlation between the terms
of the query, and one year later Barbay [3] introduced a randomized variant. To the best of our knowledge, neither of
these algorithms were implemented before our study. In 2004, Baeza-Yates [1] introduced an intersection algorithm,
based on an alternative technique. Baeza-Yates and Salinger [2] measured the performance of the algorithm in terms
of CPU time, on pairs of random arrays.

In this paper we consider the number of comparisons and searches performed, as well as the CPU time on two
different architectures (RISC and CISC), on three different data sets: (i) a random data set similar to the one considered
by Baeza-Yates and Salinger [2], (ii) the query log used by Demaine et al. [12] on a larger data set provided by Google,

⋆ A preliminary version of this paper appeared in [6].
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and (iii) and the GOV2 corpus, of size361GB, with a larger query log, both from the TREC Terabyte2006 efficiency
query stream. This combines the previous studies and allowsus to compare all the aforementioned algorithms on
common platforms. We propose several variants for the intersection and search in sorted arrays in the context of their
intersection:

– We propose a variant of the algorithm from Baeza-Yates [1], which performs the intersection of more than two
sorted arrays without sorting the intermediary results. This variant is significantly faster than the original algorithm
on real instances, both in terms of the number of comparisonsperformed and in terms of CPU time.

– We reduce the number of comparisons performed by each intersection algorithm by introducing value-based search
algorithms, and we further improve their performance by introducing an adaptive value-based search algorithm.

– We show that a variant of binary search optimizes cache usageover the original version, when the arrays are too
large to fit in memory.

The paper is structured as follows: in the next Section we describe the data sets and the architectures on which we
evaluated the various algorithms discussed. In Section 3 wedescribe in detail the intersection and search algorithms
studied. In Section 4 we present and analyze our experimental measures in the various contexts. We conclude in
Section 5 with a summary of our experiments.

2 Experimental Set-up

In this paper we measure the performance of the algorithms from Demaine et al. [12] and from Baeza-Yates and
Salinger [2] which were previously studied in different contexts (random or practical) and under different measures
(CPU or number of comparisons), so they had not until now beendirectly compared. We perform this comparison
under each of the previous settings, as well as using a largercorpus, on which the performance of algorithms is more
sensitive to cache effects.

2.1 Data sets

Random, uniformly distributed data: We compare the performance of the algorithms on pairs of sorted sets gener-
ated in the same way as Baeza-Yates and Salinger [2]: sequences of integer random numbers, uniformly distributed in
the range[1, 109]. The lengthn of the longest sequence varies from1, 000 to 22, 000 by steps of3, 000. The lengthm
of the shortest sequence varies from100 to 400 by steps of100.

For each algorithm and each pair of sizes(n,m), we generate20 instances. We measure the number of comparisons
once for each algorithm and instance, and we average the running time over1, 000 executions. Each execution, for
a given combination of algorithm and instance, is separatedfrom the next one with the same combination by the
execution of all the other algorithms on all the instances. This ensures a realistic simulation of the cache behavior.

Google Corpus and Query Log: We compare the performance of the intersection algorithms to answer real queries
on a sample web corpus, both provided by Google. This is the same query log used by Demaine et al. [12], but on a
substantially larger and more recent data set.

The set of web pages contains678, 760 text documents in6.85 gigabytes of text. As the documents or web pages
of the corpus were not given a numerical identifiera priori, we numbered the documents as they were stored, by
assigning them a sequential number indicating their order in the indexing process. The resulting inverted word index
has2, 604, 335 alphanumeric keywords with HTML markup removed.

The query log corresponds to5, 000 entries. For more details on the query log we refer the readerto Demaine et
al. [12], where its properties are discussed in detail.
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TREC GOV2 Corpus and Query Log: We consider a larger web corpus and an associated query log, which form
the data set TREC GOV2. This web corpus was collected by the TREC competition in information retrieval, through
a partial crawl of US government websites.

The GOV2 web corpus corresponds to approximately361GB of text, which once indexed associates38, 515, 138
keywords to the references of25, 197, 524 documents. Each document is on average13.37KB long, most are in HTML
but some are in PDF. The document numbering scheme is such that certain groups of documents have numbers close
to each other. As a result, this creates gaps in the numberingscheme where certain numbers between document groups
do not appear.

The query log provided with the TREC GOV2 corpus correspondsto 100, 000 queries with click-through to.gov
domains. We randomly selected a sample of5, 000 queries for our simulations. There were105 queries involving only
one keyword, and305 queries where a keyword did not appear in the inverted word index. This leaves4590 non-trivial
queries, which corresponds to a query log of similar size to the one used on the Google data set. The average size of
a query is4.42 keywords. Table 2.1 shows the number of keywords distribution in the queries: most queries have less
than11 keywords.

# of keywords (k) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# of queries 105 778 12661217793 414 198 98 53 44 14 7 4 5 2 0 1 1

Table 1.The distribution of the sizes of TREC queries: on average,4.42 keywords per query.

2.2 Machines and Compilers

We implemented the algorithms inC++, and we ran our experiments on two architectures. For each architecture,
we measured only the performance of the intersection on sorted arrays once they have been loaded in memory (and
eventually cached on the swap partition of the hard-drive).In particular, we did not measure the performance of the
indexing structure, which retrieves those arrays from the index on the hard-drive.

The INTEL platform: For all data sets we used a PC runningLinux version 2.4.20-31.9 on a processor
Intel(R) Pentium(R) 4, at2.66GHz with a low level 1 cache of8K, a level 2 cache of512K, 1GB of memory
and a swap partition of size4.16GB. We measured the CPU time using therdtscl function, specific to the Pentium,
which measures the number of processor cycles, and hence includes the time taken by hard-drive accesses to the
swapped partition, and by cache misses. The programs were compiled on this machine usinggcc 3.2.2 with the
optimization option-O3.

For the largest data set, we also measured the CPU time using thetimes function, from thesys/times.h
library, to allow the comparison with the equivalent measures on the other platform, which does not support the
rdtscl function.

The SUN platform: For very large instances we ran additional simulations using anUltraSparc III server from
Sun running Unix on8 processors at900MHz, with 16GB of RAM. As the largest sorted array uses216MB, and as
each instance is composed of at most18 arrays, no instance uses more than4GB, hence all intersection instances hold
in main memory on this machine. This is a RISC architecture, which means in particular that certain multiplications
and divisions may not be directly supported by the processorbut computed through function calls.
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Algorithm 1 Pseudo-code forSvS
SvS(set, k)

1: Sort the sets by size (|set[0]| ≤ |set[1]| ≤ . . . ≤ |set[k]|).
2: Let the smallest setset[0] be the candidate answer set.
3: for each setS from set do initialize ℓ[S] = 0.
4: for each setS from set do
5: for each elemente in the candidate answer setdo
6: search fore in S in the rangeℓ[S] to |S|,
7: and updateℓ[S] to the rank ofe in S.
8: if e was not foundthen
9: removee from candidate answer set,

10: and advancee to the next element in the answer set.
11: end if
12: end for
13: end for

The CPU time was measured on this machine using thetimes function from thesys/times.h library, which
returns the elapsed real time, including time taken by cachemisses. The programs were compiled on this machine
usinggcc 2.95.2 with the optimization option-O3.

3 Algorithms

In this paper we define search and melding algorithms separately, so that we can study the impact of new search
algorithms on all melding algorithms, and find the best combination over all possible ones.

3.1 Melding Algorithms

Various algorithms for the intersection ofk sets have been introduced in the literature [4, 11, 12, 1–3].Among those,
we do not consider the naïve algorithm, which traverses eacharray linearly, as both theoretical and experimental
analysis show that its performance in the comparison model is significantly worse than the ones studied here. For
similar reasons we do not consider either theAdaptive intersection algorithm, proposed by Demaine et al. [11], nor
the algorithm proposed by Hwang et al. [12]. Instead we focuson four main algorithms, some of them with minor
variants.

SvS and Swapping SvS:SvS is a straightforward algorithm widely used, which intersects the sets two at a time in
increasing order by size, starting with the two smallest (see Algorithm 1). It performs a binary search to determine if
an element in the first set appears in the second set. We also consider variants of it which replace the binary search
with various other searches.

Demaine et al. considered the variantSwapping_SvS, where the searched element is picked from the set with
the least remaining elements, instead of the first (initially smallest) set inSvS. This algorithm was first proposed by
Hwang et al. [13]: it performs better when the size of the second set is substantially reduced after a search although
experiments show that this does not happen often.
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Small Adaptive: Small_Adaptive is a hybrid algorithm, which combines the best properties ofSvS andAdaptive
(see Algorithm 2). For each element in the smallest set, it performs a galloping search on the second smallest set.
If a common element is found, a new search is performed in the remainingk − 2 sets to determine if the element
is indeed in the intersection of all sets, otherwise a new search is performed. Observe that the algorithm computes
the intersection from left to right, producing the answer inincreasing order. After each step, each set has an already
examined range and an unexamined range.Small_Adaptive selects the two sets with the smallest unexamined range
and repeats the process described above until there is a set that has been fully examined.

Algorithm 2 Pseudo-code forSmall_Adaptive
Small_Adaptive(set, k)

1: while no set is emptydo
2: Sort the sets by increasing number of remaining elements.
3: Pick an eliminatore = set[0][0] from the smallest set.
4: elimset← 1.
5: repeat
6: search fore in set[elimset].
7: incrementelimset;
8: until s = k or e is not found inset[elimset]
9: if s = k then

10: adde to answer.
11: end if
12: end while

Sequential and Random Sequential:Barbay and Kenyon [4] introduced a fourth algorithm, calledSequential,
which is optimal for a different measure of difficulty, basedon the non-deterministic complexity of the instance. It
cycles through the sets performing one entire gallop searchat a time in each (as opposed to a single gallopingstep
in Adaptive), so that it performs at mostk searches for each comparison performed by an optimal non-deterministic
algorithm: its pseudo-code is given in Algorithm 3.

A randomized variant [3],RSequential, performs less comparisons thanSequential on average on instances
where the searched elements are present in roughly half of the arrays, rather than in almost all or almost none of the
arrays. The difference withSequential corresponds to a single line, the choice of the next set whereto search for
the “eliminator” (line12 in Algorithm 3): Sequential takes the next set available whileRSequential chooses one
at random among all the sets not yet known to contain the eliminator.

Baeza-Yates and Baeza-Yates Sorted:BaezaYates algorithm was originally intended for the intersection of two
sorted lists. It takes the median element of the smaller listand searches for it in the larger list. The element is added to
the result set if present in the larger list. The median of thesmaller list and the rank insertion of the median in the larger
set divide the problem into two sub-problems. The algorithmsolves recursively the instances formed by each pair of
subsets, always taking the median of the smaller subset and searching for it in the larger subset. If any of the subsets is
empty, it does nothing. In order to use this algorithm on instances with more than two lists, Baeza-Yates [1] suggests
to intersect the lists two-by-two, intersecting the smallest lists first. As the intersection algorithm works for sorted lists
and the result of the intersection may not be sorted, the result set needs to be sorted before intersecting it with the next
list, which would be highly inefficient. The pseudo-code forBaezaYates algorithm is shown in Algorithm 4.
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Algorithm 3 Pseudo-code forSequential
Sequential(set, k)

1: Choose an eliminatore = set[0][0], in the setelimset← 0.
2: Consider the first set,i← 1.
3: while the eliminatore 6=∞ do
4: search inset[i] for e
5: if the search founde then
6: increase the occurrence counter.
7: if the value of occurrence counter isk then outpute end if
8: end if
9: if the value of the occurrence counter isk, or e was not foundthen

10: update the eliminator toe← set[i][succ(e)].
11: end if
12: Consider the next set in cyclic orderi← i + 1 modk.
13: end while

To avoid the cost of sorting each intermediate result set, weintroduceSo_BaezaYates, a minor variant of
BaezaYates, which does not move the elements found from the input to the result set as soon as it finds them,
but only at the last recursive step. This ensures that the elements are added to the result set in order and trades the cost
of explicitly sorting the intermediate results with the cost of keeping slightly larger subsets.

Algorithm 4 Pseudo-code forBaezaYates
BaezaYates(set, k)

1: Sort the sets by size (|set[0]| ≤ |set[1]| ≤ . . . ≤ |set[k]|).
2: Let the smallest setset[0] be the candidate answer set.
3: for each setset[i], i = 1 . . . k do
4: candidate← BYintersect(candidate, set[i], 0, |candidate| − 1, 0, |set[i]| − 1)
5: sort the candidate set.
6: end for

BYintersect(setA, setB, minA, maxA, minB, maxB)

1: if setA or setB are emptythen return∅ endif.
2: Letm = (minA + maxA)/2 and letmedianA be the element atsetA[m].
3: Search formedianA in setB.
4: if medianA was foundthen
5: addmedianA to result.
6: end if
7: Letr be the insertion rank ofmedianA in setB.
8: Solve the intersection recursively on both sides ofr andm in each set.

Each of those algorithms has linear time worst case behaviorin the sum of the sizes of the arrays, and each
performs better than the others on a set of instances. Note thatBaezaYates, So_BaezaYates, Small_Adaptive and
SvS take active advantage of the difference of sizes of the sets,and thatSmall_Adaptive is the only one that takes
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advantage of how this size varies as the algorithm eliminates elements, whileSequential andRSequential ignore
this information.

3.2 Search Algorithms

We extend the set of search algorithms tested to value-basedalgorithms, such asInterpolation, Extrapolation
or Extrapol_Ahead; and to some cache oblivious search algorithms, such asRounded_Binary.

Binary Search and variants: Binary search is well known in the literature. The adequate implementation1 finds the
insertion rankp of a keyx in a sorted setA of sizen in 1 + log

2
n comparisons. In the context of the intersection of

sorted arrays, several elements are searched in each array,and in many applications those elements are of increasing
size, so that the position of the last lookup during the previous search is a lower bound for the position of the currently
searched element. While using this lower bound reduces the number of comparison (we call thisAdaptive_Binary),
it yields a slower CPU performance when the array is very large and partially cached.Total_Binary ignores this
lower bound and uses the cache more efficiently.

We test a third variant,Rounded_Binary, which represents a trade-off betweenAdaptive_Binary and
Total_Binary: it performs the same comparisons thanTotal_Binary so long as the compared elements are larger
than the lower bound obtained from the previous search, at which point it switches to a more sophisticated mode taking
advantage both of the positions of the previous comparisons, and of the lower bound. This variant always performs
more comparisons thanAdaptive_Binary and less thanTotal_Binary, but it performs better in terms of CPU on
instances where the array searched is very large, due to cache effects.

Galloping Search: Originally introduced by Bentley and Yao [7],unbounded search is the problem of searching
for the insertion rankp of a keyx in a sorted setA of unbounded size. The algorithm probes thei keys with index
{1, 3, 7, 15, . . . , 2i − 1} in sequence till it finds a keyA[2i − 1] larger thanx, and then performs a binary search inA

between positions2i−1 − 1 and2i − 1. This technique is sometimes calledone sided binary search [15], exponential
search [8], doubling search [4], or galloping [11, 12]: we will use this last name for our implementation,Galloping

search. It solves the unbounded search problem in2 log
2
(p+1) comparisons.

Interpolation and Extrapolation Search: Interpolation search has long been known to perform significantly
better in terms of comparisons over binary search on data randomly drawn from a uniform distribution, and recent
developments suggest that interpolation search is also a reasonable technique for non-uniform data [10]. Searching for
an element of valuee in an arrayset[i] on the rangea to b, the algorithm probes positionI(a, b, e) defined as follows:

I(a, b, e) =

⌊

e − set[i][a]

set[i][b] − set[i][a]
(b − a)

⌋

+ a

We propose a variant,Extrapolation search, which involves extrapolating on the current and previous positions
in set[i]. Specifically, the extrapolation step probes the indexI(p′

i
, pi, e), wherep′

i
is the previous extrapolation probe.

This has the advantage of using “explored data” as the basis for calculating the expected index: this strategy is similar
to galloping, which uses the previous jump value as the basisfor the next jump (i.e. the value of the next jump is the
double of the value of the current jump).

1 It can be implemented in two different ways, each of them optimizing a different performance measure, the number of two-
way comparisons, closer to CPU time, and the number of three-way comparisons, closer to the running time in the context of
hierarchical memory. As the latter implementation performed poorly on allcontexts, we discuss here only the one optimizing the
number of two-way comparisons.
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Extrapolation Look Ahead Search: We propose another search algorithm,Extrapol_Ahead, which is similar to
extrapolation, but rather than basing the extrapolation onthe current and previous positions, we base it on the current
position and a position that is further ahead. Thus, our probe index is calculated byI(pi, pi+l, e) wherel is a positive
integer that essentially measures the degree to which the extrapolation uses local information. The algorithm uses
the local distribution as a representative sample of the distribution betweenset[i][pi] and the eliminator: a large
value of l corresponds to an algorithm using more global information,while a small value ofl correspond to an
algorithm using only local information. If the index of the successorsucc(e) of e in set[i] is not far frompi, then
the distribution betweenset[i][pi] andset[i][pi + l] is expected to be similar to the distribution betweenset[i][pi]
andset[i][succ(e)], and the estimate will be fairly accurate. Thus if the set is bursty, or piecewise uniform, we would
expect this strategy to outperform interpolation because the set is locally representative. On the other hand, if the set
comes from a random uniform distribution then we would expect interpolation to be better because in this case using
a larger range to interpolate is more accurate than using a smaller range.

4 Experimental Results

In each of the contexts defined in Section 2 we test all the algorithms defined in Section 3 and we measure their
performance in terms of the number of searches and comparisons performed, and in terms of CPU time. The CPU
times for the Random and Google data sets correspond only to measures on theINTEL platform, as the instances are
too small for the execution time to be measured on theSUN platform. Both platforms are considered for the larger
TREC GOV2 data set.

Note that the number of searches for a fixed merging algorithmdoes not depend on which search algorithm is used
(they all return the same position), and that the number of comparisons performed does not depend on the architecture.
Despite the fact that the CPU time on a particular instance can slightly vary from one execution to another, we verified
on small samples (50 queries from the TREC data set, all queries from the Google data set) that the CPU measures
over a single run yield the same conclusion than averaging over50 runs: hence we report our results on larger samples
with a single run.

4.1 Experiments on random, uniformly distributed data

In the context of randomly generated data, we only measure the performance of the algorithms with two lists, in
a similar way to the study by Baeza-Yates and Salinger [2], which compare the CPU performance on random data
of the combinationsBaezaYates usingAdaptive_Binary, Small_Adaptive usingGalloping and of the naïve
linear algorithm;BaezaYates usingAdaptive_Binary was the best combination. We test a larger set of algorithms,
on random data generated in a similar way, and we measure boththe performance in CPU time and the number of
comparisons and searches. Note thatRSequential behaves exactly the same asSequential on two arrays and thus
is not represented.

We show on the plots the number of comparisons and CPU times for different intersection and search algorithms
as a function of the sizen of the largest list when the size of the smallest listm is fixed, for various values ofm. The
standard deviation is usually very low, hence we omit in the figures with more than two plots on them.

Comparison with Baeza-Yates and Salinger [2]: In terms of CPU time, our results agree with Baeza-Yates and
Salinger’s study: bothBaezaYates andSo_BaezaYates usingAdaptive_Binary outperform any other combination
of algorithms. Figure 1 shows the performance of the five bestcombinations of algorithms on this data set. As Figure 2
shows, none of the other search algorithms perform better than the initial choice proposed by Baeza-Yates and Salinger.
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The superiority ofAdaptive_Binary over all search algorithms when usingBaezaYates or So_BaezaYates
is easily explained: value based search algorithms such asInterpolation are too costly in CPU time, and adap-
tive search algorithms such asGalloping or Extrapol_Ahead are inefficient when the searched position is in
the middle of the array on average. The superiority ofBaezaYates among melding algorithms is relative, as
SvS and Swapping_SvS perform well for almost any search algorithm. The difference in CPU performance be-
tweenBaezaYates andSo_BaezaYates usingAdaptive_Binary, SvS, Swapping_SvS or Small_Adaptive using
Galloping is minimal (see Table 2).

Number of searches and comparisons:In terms of the number of searches,BaezaYates, SvS, Swapping_SvS and
Small_Adaptive perform the best, whileSequential andSo_BaezaYates perform much more searches (see again
Table 2). The difference of performance betweenBaezaYates andSo_BaezaYates is easily explained:BaezaYates
performs one more comparison per search to reduce the domainby one more value, which increases the number of
comparisons but reduces the number of searches in comparison to So_BaezaYates. The difference of performance
betweenSequential and the other algorithms is due to the fact thatSequential always chooses the new eliminator
on the array previously searched: in the context where the elements of the array are uniformly drawn and of very
different size, it always results in a worse performance than choosing the eliminator from the smallest array.

Algorithm Searches Comparisons Runtime
SvS 200 1024 (Extrapol_Ahead) 242986 (Rounded_Binary)

Swapping_SvS 200 1024 (Extrapol_Ahead) 230916 (Adaptive_Binary)
Small_Adaptive 200 1024 (Extrapol_Ahead) 435828 (Galloping)
BaezaYates 199 1066 (Interpolation) 188258 (Adaptive_Binary)

So_BaezaYates 328 1064 (Interpolation) 218156 (Adaptive_Binary)
Sequential 385 1198 (Extrapol_Ahead) 327075 (Adaptive_Binary)

Table 2. Total number of searches and comparisons and total running time performed by each algorithm on the Random data set,
when associated with the search algorithm performing the best with it. The number of searches and comparisons are correlated,
although the difference in terms of the number of searches performedbetweenBaezaYates andSo_BaezaYates does not corre-
sponds to the difference in the number of comparison performed. TheCPU times are not correlated with the two other measures.

In terms of the number of comparisons, the use of value based search algorithms such asInterpolation,
Extrapolation or Extrapol_Ahead results in a better performance for any melding algorithm: those algorithms
outperform other search algorithms on the uniform distribution of elements in the arrays.

The best combinations regarding the number of comparisons performed are Swapping_SvS using
Extrapol_Ahead andBaezaYates usingInterpolation, even though Figure 3 shows thatSwapping_SvS with
Extrapol_Ahead has a small advantage overBaezaYates with Interpolation.

Fixing the size of the smallest list to other sizes does not alter the relative ranking (see Figure 4), so we only report
the data form = 200. For completeness we summarize the results across all algorithms on the whole Random data set
in Table 3.

4.2 Experiments on the Google data set

Demaine et al. [12] studied the combinations of algorithmsSmall_Adaptive using Galloping, SvS and
Swapping_SvS usingAdaptive_Binary, and found the combinationSmall_Adaptive usingGalloping to out-
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SvS Swapping_SvS Sequential BaezaYates So_BaezaYates Small_Adaptive
cmp cpu cmp cpu cmp cpu cmp cpu cmp cpu cmp cpu

Total_Binary 28152623972815 254008439745754028112500184501 4025442815 677318
Adaptive_Binary 24692550642469 230916263232707516201882581620 2181562469 444476
Rounded_Binary 26232429862623 246871399743643826292427734190 3913472623 443064
Galloping 20872453332087 244216223733231124102559452373 2860402087 435828
Interpolation 10672791271067 280624124237477910662754631064 3046161067 466446
Extrapolation 12813755851281 371444144446420312613739471262 4019331281 547751
Extrapol_Ahead 10244132091024 404841119857610910854264521073 5060751024 584941

Table 3. Total number of comparisons and CPU times performed by each algorithm over the Random data set. In bold, the best
performance in terms of the number of comparisons, for various melding algorithms in combination withExtrapol_Ahead, and
the best performance in terms of CPU:BaezaYates usingAdaptive_Binary.

perform the others in terms of the number of comparisons performed on a set of queries provided by Google on the
index of their own web-crawl.

We measured the performance of each combinations of algorithms on the same queries, but on the index of a larger
web crawl, also provided by Google. Similarly to the resultsgiven by Demaine et al., we show on the plots the number
of comparisons and CPU times as a function of the numberk of keywords in the queries, which corresponds to the
number of arrays forming the instance. The standard deviation of the two by two difference of performance on each
instance, not represented here, was always very low. We omitthe standard deviation of the average performance of
each algorithm on instances composed ofk arrays: it mostly represents the variation of difficulty among queries with
k keywords, and not the stability of the results.

Comparison with Demaine et al. [12]: Considering the same algorithms studied by Demaine et al., our results agree
with the previous study:Small_Adaptive usingGalloping performs less comparisons than the other algorithms, but
in fact Small_Adaptive does not behave much differently fromSvS andSwapping_SvS, as the combinationsSvS
usingGalloping andSwapping_SvS usingGalloping performs almost equally: the improvement in the number of
comparisons performed is mainly due to the usage of theGalloping search algorithm (see Figure 5). This similarity
of performance is likely to come from the fact that with2.286 keywords per query on average:SvS, Swapping_SvS
andSmall_Adaptive behave the same on instances which consist of only two arrays.

The number of comparisons performed is further reduced by the use of value based search algorithms. All inter-
section algorithms benefit from the use ofInterpolation, and all exceptBaezaYates andSo_BaezaYates benefit
even more from the use ofExtrapol_Ahead, the interpolation search variant that we introduced (see again Figure 5).
As a result, the best combination of search and melding algorithms regarding the number of comparison performed are
Small_Adaptive, SvS andSwapping_SvS usingExtrapol_Ahead, and results in an important improvement over
the best solution proposed by Demaine et al..

Study of Barbay and Kenyon’s [4] algorithm: The algorithm proposed by Barbay and Kenyon [4] and its random-
ized variant [3] both perform noticeably more comparisons than the other intersection algorithms measured, indepen-
dently of the search algorithm chosen (see Table 4). This high number of comparisons is correlated with the high
number of searches performed: the algorithms fails to find a shorter proof by cycling through the arrays.

The searches performed bySequential are shorter on average than other similar algorithms: the ratio between
the number of comparisons and the number of searches is even smaller than for other algorithms such asSvS (see
again Table 4). This is probably explained by the fact thatSequential performs many searches of average size, as
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opposed to algorithms such asSvS which perform many small searches in the smallest arrays, but a few rather large
ones in the other arrays,

Algorithm ComparisonsSearchesRatio
SvS usingGalloping 16884 3542 4.77

Swapping_SvS usingGalloping 16884 3541 4.77
Small_Adaptive usingGalloping 16884 3542 4.77
Sequential usingGalloping 25440 5801 4.39
RSequential usingGalloping 24518 5873 4.17
BaezaYates usingGalloping 24285 3327 7.30

So_BaezaYates usingGalloping 20935 5209 4.02
BaezaYates usingAdaptive_Binary 18543 3327 5.57

So_BaezaYates usingAdaptive_Binary 15689 5209 3.01
Table 4. Number of comparisons and searches performed on the Google data set. The average cost of a search (the log of its
length), here measured in number of comparisons, is smaller forSequential andRSequential than forSvS, Swapping_SvS or
Small_Adaptive.

Note that the number of comparisons (and ratio) ofBaezaYates andSo_BaezaYates usingGalloping is not
representative: when usingAdaptive_Binary search, which is better suited to their behavior, the performance in
terms of the number of comparisons is much better (see again Table 4). The melding algorithmSo_BaezaYates is
more efficient in terms of the number of comparisons thanBaezaYates, although it performs more searches, which
still results in a slightly smaller number of comparisons per searches: this corresponds to the additional comparison
performed byBaezaYates to check if the searched element is present in the searched array.

Real time on real data: The CPU performance is correlated to the number of comparisons for all melding and search
algorithms, except for the value based search algorithms (see Figure 6). The fact thatInterpolation generally
performs more comparisons thanExtrapol_Ahead (see Table 5), but uses less CPU time indicates that the cost of
the extra memory accesses performed byExtrapol_Ahead is more significant than the reduction in the number of
comparisons: it might result in an additional cache miss, since it is at distancelg n of the previous access, wheren is
the number of remaining element in the array.

For completeness we summarize the results across all algorithms on the whole data set in Table 5.

4.3 Experiments on the TREC GOV2 data set

As for the Google data set, we measured the number of searchesand comparisons performed and the CPU time used
by the algorithms. As in the previous section, we show on the plots the number of comparisons and CPU times for
different melding and search algorithms as a function of thenumber of arrays forming the instances.

We restricted our study to the most promising algorithms from the study on Google data set: in particular, we did
not consider the melding algorithmRSequential on the TREC GOV2 data set. The fact that the data set is larger
allows us to compare the CPU performance of the algorithms ontwo different architectures: theSUN station has much
more memory but a reduced set of instructions, which makes multiplication and divisions much more costly; while the
INTEL station has a larger set of instructions, but much less memory, so that part of the arrays will be cached on the
swap partition of the hard-drive.
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SvS Swapping_SvS Sequential BaezaYates So_BaezaYates Small_Adaptive RSequential

cmp cpu cmp cpu cmp cpu cmp cpu cmp cpu cmp cpu cmp cpu
Total_Binary 582175.14258209 4.97693087 8.67457594 5.42683710 7.14058217 8.32594400 15.446
Adaptive_Binary 392213.76239221 3.93755817 6.70418543 3.28415689 3.11339225 7.20854210 13.401
Rounded_Binary 546744.68454671 4.83187267 8.26054286 5.32778511 6.90854679 7.99588509 14.873
Galloping 168842.79116884 2.87425440 4.80824285 3.95320935 3.76916884 5.98024518 11.525
Interpolation 121843.33812184 3.43417843 5.64015352 4.18212386 4.04612185 6.57717398 11.992
Extrapolation 134264.22913426 4.24819672 6.61717455 5.42614428 5.25813427 7.49319100 13.104
Extrapol_Ahead 121255.48012125 5.42417701 8.64116179 6.63713145 7.27912126 8.61417279 15.036

Table 5.Total number of comparisons and CPU times (in millions of cycles) performed by each algorithm over the Google data set.
In bold, the best performance in terms of number of comparisons,SvS andSwapping_SvS usingExtrapol_Ahead, and in terms
of CPU times,SvS usingGalloping.

Comparison with Demaine et al. [12]: In terms of the number of comparisons performed, the melding3
Small_Adaptive outperforms all the other melding algorithms, in combination with any search algorithm, which
confirms and extends the results reported by Demaine et al. [12] (see Table 6). As for the Google data set, the value-
based search algorithmExtrapol_Ahead improves the performance of each melding algorithm, and in particular
the performance ofSmall_Adaptive (again, see Table 6). However, unlike the Google data set, the performance of
Interpolation is similar to that ofGalloping. This decrease in performance is mainly due to the fact that the
numbering scheme of TREC documents left many “gaps” which contributes to the non-uniformity of posting sets.

Study of Barbay and Kenyon’s [4] algorithm: As for the Google data set, the algorithmSequential is much worse
than the other melding algorithms for any fixed search algorithm, in terms of the number of comparisons or searches
performed as well as in terms of CPU time (see Figure 7). This just hints that the instances from the TREC GOV2 data
set are not too different from those from the Google data set,just larger, both in terms of the sizes of the arrays and in
the number of arrays.

Impact of the cache: In contrast to the measures on the Google data set, the numberof comparisons is not always
correlated to the CPU timings, even for comparison based search algorithms. In particular, when using the melding
algorithmsSmall_Adaptive or Sequential, the search algorithmRounded_Binary performs more comparisons
thanAdaptive_Binary, but uses less CPU (see Figure 9). This indicates thatRounded_Binary generates less cache
misses, summing to a better over-all time.

The same is not true with the other melding algorithms, perhaps because the search queries generated by those
algorithms are either shorter (in which case no optimization of the cache is needed), or much larger (in which case
cache misses happen at a different level).

Impact of architecture differences: Not surprisingly, the cache optimization of theRounded_Binary search algo-
rithm does not give it any advantage on a machine where all thedata fits in memory, such as on platformSUN: then all
the binary variants perform very similarly (see Figure 10).

We were also able to measure a quantitative difference between the two architectures: the difference of CPU per-
formance between the comparison and value-based search algorithms, such asGalloping andInterpolation, is
much larger on theSUN platform than on theINTEL platform, and this independently of the melding algorithm consid-
ered (see Figure 11 and 12). In general, the hardware cost of interpolation search seems higher on a SUN architecture
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than an Intel architecture. We speculate that this might be caused by differences in RISC vs CISC instruction set but
remains to be studied further.

For completeness we summarize the results across all algorithms on the whole TREC GOV2 data set in Tables 6
and 7.

SvS Swapping_SvS Sequential BaezaYates So_BaezaYates Small_Adaptive
Adaptive_Binary 13.41 13.44 28.66 7.87 4.12 13.32
Total_Binary 21.70 21.64 39.90 22.43 28.73 21.54
Rounded_Binary 20.46 20.57 37.83 21.43 27.15 20.44
Galloping 4.468 4.473 10.57 9.40 5.52 4.44
Interpolation 4.60 4.61 11.13 8.55 4.76 4.57
Extrapolation 4.25 4.26 9.84 8.61 4.78 4.23
Extrapol_Ahead 3.76 3.77 8.09 8.05 4.23 3.74

Table 6. Total number of comparisons (in billions) performed by each algorithm over the TREC GOV2 data set. In bold, the best
results, obtained forSmall_Adaptive usingExtrapol_Ahead.

SvS Swapping_SvS Sequential BaezaYates So_BaezaYates Small_Adaptive
INTEL SUN INTEL SUN INTEL SUN INTEL SUN INTEL SUN INTEL SUN

Adaptive_Binary 11730315388757686 1591699012544095765336311240136273 98411180957 230258
Total_Binary 36052618085481227 1829745983873545589334118423988081 227041320692 244521
Rounded_Binary 6491017534363693 1801501697973485637573018217083717 223368108728 241526
Galloping 33255 96907 30686 1021971322452198165508812590440462 111422 59081 162243
Interpolation 4788313496049060 1402721273383275096706615766954331 142653 75162 200471
Extrapolation 4969414238550570 1478861369463283167759218594463244 171270 78606 208057
Extrapol_Ahead 6173115813862021 1635451553963385258730319410881922 192490 88674 223195

Table 7.Total CPU time performed by each algorithm over the TREC GOV2 data set. In bold, the smallest CPU times on theINTEL
platform, obtained usingSwapping_SvS; and on theSUN platform, obtained usingSvS, both in combination withGalloping
search.
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5 Conclusions

To summarize our results:

– In terms of the number of searches performed, the best melding algorithms areSmall_Adaptive, SvS and
Swapping_SvS on random data andSmall_Adaptive on real data.

– In terms of the number of comparisons performed, the best combinations on random data consist in one
of the melding algorithmsSmall_Adaptive, SvS and Swapping_SvS associated with the search algorithm
Extrapol_Ahead. On real data,Small_Adaptive leads over the others under this measure and performs best
when combined withExtrapol_Ahead, which improves on the previous results [12].

– In terms of CPU time, the best performance on random data corresponds to theBaezaYates algorithm using
Adaptive_Binary search (which confirms previous results [2]), closely followed by theSvS algorithm us-
ing Galloping search. On real data, the algorithmSvS leads over the others when used in combination with
Galloping search, as previously observed.

In terms of the number of searches or comparisons performed,the poor performance of sophisticated algorithms
such asSequential, designed to exploit short certificates of the intersection[4], or of its randomized variant [3], both
on random and real data, indicates the regularity of the instances in both settings: most instances have a long certificate.
On the other hand, the difference of performance of the intersection algorithmBaezaYates on random and real data
shows that real data are far from randomly uniform. In particular, the good performance of theExtrapol_Ahead
search algorithm shows that value-based search algorithmsare not only performing well on sorted arrays of random
elements, but also on posting lists.

In terms of CPU time, the architecture differences between the platforms led to both quantitative results variations
(the gaps between the performance of some algorithms was larger on the RISC architecture than on the CISC archi-
tecture), and qualitative result variations (Rounded_Binary optimizes the cache on the architecture with the smallest
amount of memory, but not on the other one). The difference ofsize between the Google and the GOV2 data set led to
qualitative changes in the CPU performance between the variants of binary search, as the variants optimized for cache
effects performed better than others on the largest data set, and worst on the smallest. As those search algorithms
are outperformed both in number of comparison performed andin CPU time by more sophisticated algorithms, this
does not yield any qualitative change, but it does hint that optimizing the best search algorithm in CPU time, such as
Galloping, so that it takes a better advantage of the cache, might yieldeven better CPU performance.

Finally, the best solution to compute the intersection of sorted arrays corresponding to conjunctive queries in an
indexed search engines seems to be one of the simplest melding algorithmSvS, already used in practice, but improved
by replacing the use of theAdaptive_Binary search algorithm by an adaptive search algorithm,Galloping search.
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the TREC GOV2 corpus and query log, Google for making their corpus and query log available, Mike Patterson for
his help concerning the simulations on theSUN platform, Mirela Andronescu for her help concerning the PERL scripts
processing the data, and Joshua Tam for his initial contribution to the coding of the algorithms, as an undergraduate
research assistant.
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