
Automatic Virtual Machine Configuration for Database
Workloads

Ahmed A. Soror†∗ Umar Farooq Minhas† Ashraf Aboulnaga†

Kenneth Salem† Peter Kokosielis‡ Sunil Kamath‡
†University of Waterloo ‡IBM Toronto Lab

†{aakssoro, ufminhas, ashraf, kmsalem}@cs.uwaterloo.ca
‡{pkolosie, sunil.kamath}@ca.ibm.com

ABSTRACT
Virtual machine monitors are becoming popular tools for
the deployment of database management systems and other
enterprise software applications. In this paper, we consider
a common resource consolidation scenario, in which several
database management system instances, each running in a
virtual machine, are sharing a common pool of physical com-
puting resources. We address the problem of optimizing the
performance of these database management systems by con-
trolling the configurations of the virtual machines in which
they run. These virtual machine configurations determine
how the shared physical resources will be allocated to the
different database instances. We introduce a virtualization
design advisor that uses information about the anticipated
workloads of each of the database systems to recommend
workload-specific configurations offline. Furthermore, run-
time information collected after the deployment of the rec-
ommended configurations can be used to refine the recom-
mendation. To estimate the effect of a particular resource
allocation on workload performance, we use the query opti-
mizer in a new what-if mode. We have implemented our ap-
proach using both PostgreSQL and DB2, and we have exper-
imentally evaluated its effectiveness using DSS and OLTP
workloads.

Categories and Subject Descriptors
H.2.2 [Database Management]: Physical Design

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Virtualization, Virtual Machine Configuration, Resource Con-
solidation
∗Supported by an IBM CAS Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-102-6/08/06 ...$5.00.

1. INTRODUCTION
Virtual machine monitors are becoming popular tools for

the deployment of database management systems and other
enterprise software systems. Virtualization adds a flexible
and programmable layer of software between “applications”,
such as database management systems, and the resources
used by these applications. This layer of software, called
the virtual machine monitor (VMM), maps the virtual re-
sources perceived by applications to real physical resources.
By managing this mapping from virtual resources to phys-
ical resources and changing it as needed, the VMM can be
used to transparently allow multiple applications to share
resources and to change the allocation of resources to appli-
cations as needed.

There are many reasons for virtualizing resources. For
example, some virtual machine monitors enable live migra-
tion of virtual machines (and the applications that run on
them) among physical hosts. This capability can be ex-
ploited, for example, to simplify the administration of phys-
ical machines or to accomplish dynamic load balancing. One
important motivation for virtualization is to support enter-
prise resource consolidation. Resource consolidation means
taking a variety of applications that run on dedicated com-
puting resources and moving them to a shared resource pool.
This can improve the utilization of the physical resources,
simplify resource administration, and reduce cost for the en-
terprise. One way to implement resource consolidation is to
place each application in a virtual machine (VM) which en-
capsulates the application’s original execution environment.
These VMs can then be hosted by a shared pool of physical
computing resources. This is illustrated in Figure 1.

When creating a VM for one or more applications, it is
important to correctly configure this VM. One of the most
important decisions when configuring a VM is deciding how
much of the available physical resources will be allocated to
this VM. Our goal in this paper is to automatically make this
decision for virtual machines that host database manage-
ment systems and compete against each other for resources.

As a motivating example, consider the following scenario,
We created two Xen [2] VMs, each running an instance of
PostgreSQL, and hosted them on the same physical server.1

On the first VM, we run a workload consisting of 1 copy
of TPC-H query Q17 on a 10GB database. We call this
Workload 1. On the second VM, we run a workload on an

1The full details of our experimental setup can be found in
Section 6.

953

Figure 1: Resource consolidation using virtual ma-
chines.

Figure 2: Motivating example.

identical 10GB TPC-H database consisting of 132 copies of a
modified version of TPC-H Q18 (we modified the sub-query
in Q18 so that it touches less data). We call this Workload 2.
As an initial configuration, we allocate 50% of the available
CPU capacity to each of the two VMs. When we apply our
configuration technique, it recommends allocating 20% of
the available CPU capacity to the VM running Workload 1
and 80% to the VM running Workload 2. Figure 2 shows the
execution time of the two workloads under the initial and
recommended configurations. Workload 1 suffers a slight
degradation in performance (4%) under the recommended
configuration as compared to the initial configuration. On
the other hand, the recommended configuration boosts the
performance of Workload 2 by 34%. This is because Work-
load 1 is very I/O intensive in our execution environment,
so its performance is not sensitive to changes in CPU al-
location. Workload 2, in contrast, is CPU intensive, so it
benefits from the extra CPU allocation. This simple exam-
ple illustrates the potential performance benefits that can
be obtained by adjusting resource allocation levels based on
workload characteristics.

Our approach to virtual machine configuration is to use in-
formation about the anticipated workloads of each database
management system (DBMS) to determine an appropriate
configuration for the virtual machine in which it runs. An
advantage of this approach is that we can avoid allocating
resources to DBMS instances that will obtain little benefit
from them. For example, we can distinguish CPU intensive

workloads from I/O intensive workloads and allocate more
CPU to the former. Our technique is implemented as a vir-
tualization design advisor, analogous to the physical design
advisors currently available for most relational DBMS. How-
ever, our virtualization design advisor differs from DBMS
physical design advisors in two significant ways. First, it
recommends a configuration for the virtual machine con-
taining the DBMS, rather than the DBMS itself. Second,
our advisor is used to recommend configurations for a set of
virtual machines that are sharing physical resources, while
most DBMS physical design tools guide the configuration of
a single DBMS instance. Once the configured virtual ma-
chines are up and running, our advisor is also capable of
collecting runtime information that allows it to refine its
recommendations online.

The rest of this paper is organized as follows. Section 2
presents an overview of related work. In Section 3, we
present a definition of the virtualization design problem.
Section 4 describes our virtualization design advisor and
presents a cost model calibration methodology that allows
the design advisor to leverage the query optimizer cost mod-
els of the DBMSes that are being consolidated. In Section 5,
we present an extension to the advisor that allows it to refine
its recommendations using runtime performance measure-
ments of the consolidated, virtualized DBMS instances. In
Section 6, we present an experimental evaluation of our ap-
proach using PostgreSQL and DB2 as our target DBMSes.
We conclude in Section 7.

2. RELATED WORK
There are currently several technologies for machine vir-

tualization [2, 14, 17, 23], and our proposed virtualization
design advisor can work with any of them. As these virtu-
alization technologies are being more widely adopted, there
is increasing interest in the problem of automating the de-
ployment and control of virtualized applications, including
database systems [9, 15, 16, 19, 24, 25]. Work on this prob-
lem varies in the control mechanisms that are exploited and
in the performance modeling methodology and optimization
objectives that are used. However, a common feature of
this work is that the target applications are treated as black
boxes that are characterized by simple models, typically gov-
erned by a small number of parameters. In contrast, the vir-
tualization design advisor described in this paper is specific
to database systems, and it attempts to exploit database
system cost models to achieve its objectives. There is also
work on application deployment and control, including re-
source allocation and dynamic provisioning, that does not
exploit virtualization technology [3, 8, 21, 22]. However, this
work also treats the target applications as black boxes.

The virtualization design problem that is considered here
was posed, but not solved, in our previous work [18]. This
paper builds on that previous work by proposing a complete
solution to the problem in the form of a virtualization design
advisor. We also incorporate quality of service constraints
into the problem definition, and we present an empirical
evaluation of the proposed solution.

There has been a substantial amount of work on the prob-
lem of tuning database system configurations for specific
workloads or execution environments [26] and on the prob-
lem of making database systems more flexible and adap-
tive in their use of computing resources [1, 6, 10, 12, 20].
However, in this paper we are tuning the resources to the

954

database system, rather than the other way around. Re-
source management and scheduling have also been addressed
within the context of database systems [4, 5, 7, 11]. That
work focuses primarily on the problem of allocating a fixed
pool of resources to individual queries or query plan op-
erators, or on scheduling queries or operators to run on
the available resources. In contrast, our resource alloca-
tion problem is external to the database system, and hence
our approach relies only on the availability of query cost
estimates from the database systems.

3. PROBLEM DEFINITION
Our problem setting is illustrated in Figure 1. N virtual

machines, each running an independent DBMS, are com-
peting for a pool of physical resources. For each DBMS, we
are given a workload description consisting of a set of SQL
statements (possibly with a frequency of occurrence for each
statement). We use Wi (1 ≤ i ≤ N) to represent the work-
load of the ith DBMS. In our problem setting, since we are
making resource allocation decisions across workloads and
not for one specific workload, it is important that the work-
loads represent the statements processed by the different
DBMSes in the same amount of time. Thus, a longer work-
load represents a higher rate of arrival for SQL statements.

We assume that there are M different types of physical
resources, such as memory, CPU capacity, or I/O band-
width, that are to be allocated to the virtual machines. Our
problem is to allocate a share, or fraction, of each physi-
cal resource to each of the virtual machines. We will use
Ri = [ri1, . . . , riM], 0 ≤ rij ≤ 1, to represent the resource
shares allocated to workload Wi’s virtual machine. The
shares are used to set configuration parameters in the vir-
tual machines so that the resource allocations described by
the shares are enforced by the virtual machine monitor.

We assume that each workload has an associated cost,
which depends on the resources allocated to the virtual ma-
chine in which the workload runs. We use Cost(Wi, Ri) to
represent the cost of workload Wi under resource allocation
Ri. Our goal is to find a feasible set of resource alloca-
tions rij such that the total cost over all of the workloads
is minimized. Specifically, we must choose rij (1 ≤ i ≤ N ,
1 ≤ j ≤M) such that

N∑
i=1

Cost(Wi, Ri)

is minimized, subject to rij ≥ 0 for all i, j and
∑N

i=1 rij = 1
for all j. This problem was originally defined (but not
solved) in [18], and was named the virtualization design
problem.

In this paper, we have also considered a constrained ver-
sion of the virtualization design problem. The constrained
version is identical to the original problem, except for an
additional requirement that the solution must satisfy qual-
ity of service (QoS) requirements imposed on one or more of
the workloads. The QoS requirements specify the maximum
increase in cost that is permitted for a workload under the
chosen resource assignment. We define the cost degradation
for a workload Wi under a resource assignment Ri as

Degradation(Wi, Ri) =
Cost(Wi, Ri)

Cost(Wi, [1, . . . , 1])

where [1, . . . , 1] represents the resource assignment in which

Figure 3: Virtualization design advisor.

all of the available resources are allocated to Wi. In the
constrained version of the virtualization design problem, a
degradation limit Li is specified for each workload Wi, and
the solution is required to obey the constraint

Degradation(Wi, Ri) ≤ Li

for all workloads. The degradation limit Li can be specified
to be infinite for workloads for which limiting degradation
is not desired.

We also introduce a mechanism for specifying relative pri-
orities among the different workloads. A benefit gain factor
Gi can be specified for each workload, indicating how impor-
tant it is to improve the performance of this workload com-
pared to other workloads. Each unit of cost improvement for
the workload is considered to be worth Gi cost units. The
default setting for the different workloads is Gi = 1, indicat-
ing that all workloads should be treated equally. Increasing
Gi for a particular workload may cause it to get more than
its fair share of resources since cost improvements to it are
amplified. Incorporating this metric into our problem defini-
tion requires us to change the cost equation being minimized
to the following:

N∑
i=1

Gi × Cost(Wi, Ri)

In this paper, we focus on the case in which the two re-
sources to be allocated among the virtual machines are CPU
time and memory, i.e., M = 2. Most virtual machine moni-
tors currently provide mechanisms for controlling the alloca-
tion of these two resources to VMs, but it is uncommon for
virtual machine monitors to provide mechanisms for control-
ling other resources, such as storage bandwidth. Neverthe-
less, our problem formulation and our virtualization design
advisor can handle as many resources as the virtual machine
monitor can control.

4. VIRTUALIZATION DESIGN ADVISOR
A high level overview of our virtualization design advisor

is given in Figure 3. The advisor makes initial, static re-
source allocation recommendations based on the workload
descriptions and performance goals. Two modules within
the design advisor interact to make these recommendations:
a configuration enumerator and a cost estimator. The con-
figuration enumerator is responsible for directing the explo-
ration of the space of possible configurations, i.e., allocations

955

Parameter Description

random page cost cost of non-sequential disk page
I/O

cpu tuple cost CPU cost of processing one tu-
ple

cpu operator cost per-tuple CPU cost for each
WHERE clause

cpu index tuple cost CPU cost of processing one in-
dex tuple

shared buffers shared database bufferpool size
work mem amount of memory to be used

by sorting and hashing opera-
tors

effective cache size size of the file system’s page
cache

Figure 4: PostgreSQL optimizer parameters.

of resources to virtual machines. The configuration enumer-
ator is described in more detail in Section 4.3. To evaluate
the cost of a workload under a particular resource allocation,
the advisor uses the cost estimation module. Given a work-
load Wi and a candidate resource assignment Ri, selected by
the configuration enumerator, the cost estimation module is
responsible for estimating Cost(Wi, Ri). Cost estimation is
described in more detail in Section 4.1.

In addition to recommending initial virtual machine con-
figurations, the virtualization design advisor can also adjust
its recommendations dynamically based on observed work-
load costs to correct for any cost estimation errors at the
original recommendation phase. This online refinement is
described in Section 5.

4.1 Cost Estimation
Given a workload Wi and a candidate resource alloca-

tion Ri, the cost estimator is responsible for estimating
Cost(Wi, Ri). Our strategy for cost estimation is to leverage
the cost models that are built into the database systems for
query optimization. These models incorporate a wealth of
information about query processing within the DBMS, and
we would like to avoid reinventing this for the purpose of
virtualization design.

A DBMS cost model can be described as a function
CostDB(Wi, Pi, Di), where Wi is a SQL workload, Pi =
[pi1, pi2, . . . , PiL] is a vector of optimizer configuration pa-
rameters, and Di is the database instance. The parameters
Pi are used to describe both the available computing re-
sources and relevant parts of the DBMS configuration to
the cost model. For example, Figure 4 lists the relevant
configuration parameters used by PostgreSQL version 8.1.3.

There are two difficulties in directly applying the DBMS
cost model for cost estimation for virtualization design. The
first problem is the difficulty of comparing cost estimates
produced by different DBMSes. This is required for vir-
tualization design because the design advisor is required to
assign resources to multiple database systems, each of which
may use a different cost model. DBMS cost models are in-
tended to produce estimates that can be used to compare
the costs of alternative query execution strategies for a single
DBMS and a fixed execution environment. In general, com-
paring cost estimates from different DBMS may be difficult
because they may have very different notions of cost. For

Figure 5: Cost estimation for virtualization design.

example, one DBMS’s definition of cost might be response
time, while another’s may be total computing resource con-
sumption. Even if two DBMSes have the same notion of
cost, the cost estimates are typically normalized, and dif-
ferent DBMSes may normalize costs differently. The first
of these two issues is beyond the scope of this paper, and
fortunately it is often not an issue since many DBMS opti-
mizers define cost as total resource consumption. For our
purposes we will assume that this is the case. The normal-
ization problem is not difficult to solve, but it does require
that we renormalize the result of CostDB(Wi, Ri, Di) so that
estimates from different DBMS will be comparable.

The second problem is that the DBMS cost estimates de-
pend on the parameters Pi, while the virtualization design
advisor is given a candidate resource allocation Ri. Thus, to
leverage the DBMS query optimizer, we must have a means
of mapping the given candidate resource allocation to a set
of DBMS configuration parameter values that reflect the
candidate allocation. We use this mapping to define a new
“what-if” mode for the DBMS query optimizer. Instead of
generating cost estimates under fixed settings of Pi, we map
a given Ri to the corresponding Pi, and we use the Pi to an-
swer the question: “if the parameter settings were to be set
in a particular way, what would be the cost of the optimal
plan for the given workload?”.

To address these problems, we construct cost estimators
for virtualization design as shown in Figure 5. A calibra-
tion step is used to determine a set of DBMS cost model
configuration parameters corresponding to the given candi-
date resource allocation Ri. Once these parameter values
have been set, the DBMS cost model is then used to gen-
erate CostDB for the given workload. Finally, this cost is
renormalized to produce the cost estimate required by the
virtualization design advisor.

The calibration and renormalization steps shown in Fig-
ure 5 must be custom-designed for each type of DBMS for
which the virtualization design advisor will be recommend-
ing designs. To test the feasibility of this approach, we
have designed calibration and renormalization steps for both
PostgreSQL and DB2. In the following, we describe how
these steps were designed, using PostgreSQL as an illustra-
tive example. The methodology for DB2 is very similar.

As has already been noted, we assume that the DBMS
defines cost as total resource consumption and, as a result,
the renormalization step is simple. For example, in Post-
greSQL, all costs are normalized with respect to the time
required for a single sequential I/O operation. We have
chosen to express costs in units of seconds. Thus, renor-

956

malization for PostgreSQL simply requires that we multiply
CostDB by the number of seconds required for a sequential
I/O operation. To determine this renormalization factor, we
created a simple calibration program that sequentially reads
8 kilobyte (the PostgreSQL page size) blocks of data from
the virtual machine’s file system and reports the average
time per block.

The calibration of the optimizer configuration parameters
Pi is more involved. We can distinguish two types of pa-
rameters. Prescriptive parameters define the configuration
of the DBMS itself. Changing the value of these param-
eters changes the configuration of the DBMS itself. For
PostgreSQL, shared buffers and work mem are prescriptive
parameters. Descriptive parameters, in contrast, exist only
to characterize the execution environment. Changing these
parameters affects the DBMS only indirectly through the
effect that they have on cost estimates. In PostgreSQL,
parameters like cpu tuple cost, random page cost, and
effective cache size are descriptive parameters.

Values for prescriptive parameters must be chosen to re-
flect the mechanisms or policies that determine the DBMS
configuration. For example, if the PostgreSQL work mem

parameter will be left at its default value regardless of
the amount of memory that our design advisor allocates
to the virtual machine in which the DBMS will run, then
the calibration procedure should simply assign that default
value to the work mem parameter. If, on the other hand,
the DBMS’s configuration will be tuned in response to the
amount of memory that is allocated to the virtual machine,
then the calibration procedure should model this tuning pol-
icy. For example, in our experiments our policy was to
set shared buffers to 1/16 of the memory available in the
host virtual machine, and to set work mem to 5MB regardless
of the amount of memory available. Thus, our calibration
procedure mimics these policies, setting shared buffers ac-
cording to the virtual machine memory allocation described
by Ri and setting work mem to 5MB regardless of Ri.

For each descriptive parameter pik, we wish to determine
a calibration function Calik that will define a value for pik

as a function of the candidate resource allocation Ri. To
do this, we use the following basic methodology for each
parameter pik:

1. Define a calibration query Q and a calibration database
D such that CostDB(Q,Pi, D) is independent of all
descriptive parameters in Pi except for pik.

2. Choose a resource allocation Ri, instantiate D, and
run Q under that resource allocation, and measure its
execution time TQ.

3. Solve Renormalize(CostDB(Q,Pi, D)) = TQ for pik,
and associate the resulting pik value with the resource
allocation Ri. Here the Renormalize() function rep-
resents the application of the renormalization factor
that was determined for the DBMS.

4. Repeat the two preceding steps for a variety of different
resource allocations Ri, associating each with a value
of pik.

5. Perform regression analysis on the set of (Ri, pik) value
pairs to determine calibration function Calik from re-
source allocations to pik values.

A specific instance of this general methodology must be
designed for each type of DBMS that will be considered
by the virtualization design advisor. The primary design
tasks are the design of the calibration queries Q and calibra-
tion database D (Step 1), the choice of resource allocations
for which calibration measurements will be taken (Step 2),
and the choice of function to be fit to the calibration data
(Step 5). The design of the calibration methodology de-
mands deep expertise in the implementation of the target
DBMS for the selection of calibration queries and database
in Step 1. For example, it is important to ensure that the
cost of the calibration queries is dependent only on the pa-
rameter that is being calibrated. It is also important to
choose the calibration database in such a way that all opti-
mizer assumptions are satisfied, so that the cost estimates
it produces are accurate. For example, if the optimizer
assumes a uniform data distribution then the calibration
database should be uniformly distributed. The expertise re-
quired for designing the calibration methodology is not a
major constraint on our approach, since this methodology
need only be designed once for each type of DBMS.

In practice, the basic methodology can be refined and gen-
eralized in several ways. One improvement is to choose cal-
ibration queries in Step 1 that have minimal non-modeled
costs. For example, one cost that is typically not modeled
is the cost of returning the query result to the application.2

This cost can be minimized by choosing calibration queries
that return few rows. Care is also required in defining the
calibration database. For example, it should be just large
enough to allow query execution times to be measured ac-
curately. Larger databases will increase the run times of the
calibration queries and hence the cost of calibration. Ideally,
a single calibration database would be designed to be shared
by all of the calibration queries so that it is not necessary
to instantiate multiple databases during calibration.

Another potential problem with the basic methodology is
that it may not be possible to choose a single query that
isolates a particular cost model parameter in Step 1. In this
case, one can instead identify a set of k queries that de-
pend on k parameters (only). In Step 3 of the algorithm,
a system of k equations is solved to determine values for
the k parameters for a given resource allocation. As a sim-
ple example, consider the design of a calibration method
for the cpu tuple cost parameter. PostgreSQL models the
cost of a simple sequential table scan as a linear function
of cpu tuple cost that involves no other cost model pa-
rameters. Thus, we could use a simple single-table selec-
tion query without predicates as our calibration query for
cpu tuple cost in Step 1. However, such a query would po-
tentially return many tuples, leading to a large unmodeled
cost. To eliminate this problem, we could instead choose
a select count(*) query without predicates, since such a
query will return only a single row. However, the use of
aggregation in the query introduces a second cost model
parameter (cpu operator cost) into the query cost model.
Thus, a second calibration query involving the same two pa-
rameters will be required. One possibility is to use another
select count(*) query with a group by clause. The mea-
sured run times of these two queries will then define a system
of two equations that can be solved to determine appropri-

2DBMS cost models ignore this cost because it is the same
for all plans for a given query, and thus is irrelevant for the
task of determining which plan is cheapest.

957

Figure 6: Variation in cpu tuple cost.

Figure 7: Variation in cpu operator cost.

ate values for cpu operator cost and cpu tuple cost for
each tested resource allocation.

4.2 Optimizing the Calibration Process
One of our major concerns was “How can we reduce the

number of different virtual machines we need to realize and
the number of calibration queries we need to run in order to
calibrate the query optimizer?” If we have N CPU settings
and M memory settings for the calibration experiments, a
simplistic approach would be to realize N ×M virtual ma-
chines and calibrate the parameters for each one. However,
we could significantly reduce the calibration effort by relying
on the observation that CPU, I/O, and memory optimizer
parameters are independent of each other and hence can be
calibrated independently. We have verified this observation
experimentally on PostgreSQL and DB2.

For example, we have observed that the PostgreSQL CPU
optimizer parameters vary linearly with 1/(allocated CPU
fraction). This is expected since if the CPU share of a VM
is doubled, its CPU costs would be halved. At the same
time, the CPU parameters do not vary with memory since
they are not describing memory. Thus, instead of needing
N ×M experiments to calibrate CPU parameters, we only
need N experiments for the N CPU settings. Figures 6–8
show the linear variation of the three CPU parameters of
the PostgreSQL optimizer with 1/(CPU share). The fig-
ures show for each parameter the value of the parameter
obtained from a VM that was given 50% of the available

Figure 8: Variation in cpu index tuple cost.

Figure 9: Objective function for two workloads not
competing for CPU.

memory, the average value of the parameter obtained from
7 different VMs with memory allocations of 20%–80%, and
a linear regression on the values obtained from the VM with
50% of the memory. We can see from the figures that CPU
parameters do not vary too much with memory, and that the
linear regression is a very accurate approximation. Thus, in
our calibration of PostgreSQL, we calibrate the CPU pa-
rameters at 50% memory allocation, and we use a linear
regression to model how parameter values vary with CPU
allocation. We have found similar optimization opportuni-
ties for memory parameters, which can be calibrated at one
CPU setting, and I/O parameters, which do not depend on
CPU or memory and can be calibrated once.

We expect that for all database systems, the optimizer pa-
rameters describing one resource will be independent of the
level of allocation of other resources, and we will be able to
optimize the calibration process as we did for PostgreSQL.
This requires expert knowledge of the DBMS, but it can be
considered part of designing the calibration process for the
DBMS, which is performed once by the DBMS expert and
then used as many times as needed by users of the virtual-
ization design advisor.

4.3 Configuration Enumeration
The shape of the objective function we are minimizing is

fairly smooth and concave. For example, Figures 9 and 10
show the shape of this function for two workload mixes from
the TPC-H benchmark running on PostgreSQL. In Figure 9,

958

Figure 10: Objective function for two workloads
competing for CPU.

// start with equal resource shares for all workloads

foreach i from 1 to N do

Ri = [1/N, . . . , 1/N]
Ci = Gi × Cost(Wi, Ri)

end

// greedily shift resources until no more benefit

repeat

MaxDiff = 0
foreach j from 1 to M do

MaxGainj = 0
MinLossj = ∞
foreach i from 1 to N do

// who benefits most from an increase?

// δ is a tunable algorithm parameter

C′ = Gi × Cost(Wi, [ri1, . . . , rij + δ, . . . , riM])
if (Ci − C′ > MaxGainj) then

MaxGainj = Ci − C′

igain = i
end

// who suffers least from a reduction?

C′ = Gi × Cost(Wi, [ri1, . . . , rij − δ, . . . , riM])
if (C′ − Ci < MinLossj) and

(C′ satisfies degradation limit Li) then

MinLossj = C′ − Ci

ilose = i
end

end

// maximum benefit from adjusting this resource?

if (igain 6= ilose) and

(MaxGainj − MinLossj > MaxDiff) then

MaxDiff = MaxGainj − MinLossj

imaxgain = igain

imaxlose = ilose

jmax = j
end

end

if (MaxDiff > 0) then

rimaxgainjmax = rigainjmax + δ
rimaxlosejmax = rilosejmax − δ

else

done = true

until done

Figure 11: Greedy configuration enumeration.

one workload is CPU intensive and the other is not, and in
Figure 10 both workloads are CPU intensive and are com-
peting for CPU. In both cases the shape of the cost function
remains smooth and concave. We have also verified this for
the case where we have N > 2 workloads. Hence, we adopt
a greedy search as our search algorithm. Due to the nature
of the objective function, greedy search is accurate and fast,
and is not likely to terminate at a local minimum. We have
observed that when the greedy search does terminate at a
local minimum, this minimum is not far off from the global
minimum.

Figure 11 illustrates our greedy configuration enumera-
tion algorithm. Initially, the algorithm assigns a 1/N share
of each resource to each of the N workloads. It then pro-
ceeds iteratively. In each iteration, it considers shifting a
share δ (say, 5%) of some resource from one workload to
another. The algorithm considers all such resource reallo-
cations, and if it finds reallocations of resources that are
beneficial according to the cost estimator, then it makes the
most beneficial reallocation and iterates again. If no benefi-
cial reallocations are found, algorithm terminates, reporting
the current resource allocations as the recommended alloca-
tions.

The algorithm is greedy in the sense that it always re-
moves resources from the workload whose estimated cost
will increase the least as a result of the reallocation, and
always adds resources to the workload whose estimated cost
will decrease the most as a result. If a workload has a per-
formance degradation limit, Li, the algorithm will only take
resources away from this workload if its performance after
its resource level is reduced still remains within its degra-
dation limit. If a workload has a benefit gain factor, Gi,
the algorithm will multiply its cost by Gi for all levels of
resource allocation. Since each iteration’s reallocation af-
fects only two workloads and the reallocation only occurs
if those workloads see a combined net cost reduction, each
iteration of the algorithm will decrease the total cost of the
N workloads.

Unlike the cost model calibration procedure described in
Section 4.1, the greedy search algorithm used for configura-
tion enumeration does not require any access to the virtual-
ization infrastructure and does not involve the execution of
any database queries, since it is based on cost models. The
algorithm does, however, call the DBMS query optimizer to
estimate costs, and these calls can potentially be expensive.
A simple way to reduce the number of optimizer calls is to
cache the estimated costs computed in one iteration of the
algorithm and reuse them in subsequent iterations. Since
the algorithm changes the resource allocation of only two
workloads in each iteration, there will be lots of opportuni-
ties for reusing cached costs.

5. ONLINE REFINEMENT
Our virtualization design advisor relies for cost estima-

tion on the query optimizer calibrated as described in the
previous section. This enables the advisor to make resource
allocation recommendations based on an informed and fairly
accurate cost model without requiring extensive experimen-
tation. However, the query optimizer – like any cost model –
may have inaccuracies that lead to suboptimal recommenda-
tions. When the virtual machines are configured as recom-
mended by our advisor, we can observe the actual comple-
tion times of the different workloads in the different virtual

959

machines, and we can refine the cost models used for making
resource allocation recommendations based on these obser-
vations. After this, we can re-run the design advisor using
the new cost models and obtain an improved resource allo-
cation for the different workloads. This online refinement
continues until the allocations of resources to the different
workloads stabilize. We emphasize that the goal of online
refinement is not to deal with dynamic changes in the na-
ture of the workload, but rather to correct for any query
optimizer errors that lead to suboptimal recommendations
for the given workload. Next, we present two approaches
to online refinement. The first is a basic approach that can
be used when recommending allocations for one resource,
and the second generalizes this basic approach to multiple
resources.

5.1 Basic Online Refinement
Our basic online refinement approach refines the cost mod-

els used for recommending resource allocations for one re-
source. A fundamental assumption in this approach is that
workload completion times are linear in the inverse of the
resource allocation level. This means that the cost of work-
load Wi under resource allocation level ri can be given by:

Cost(Wi, [ri]) =
αi

ri
+ βi

where αi and βi are the parameters of the linear model for
workloadWi. To obtain the αi and βi representing the query
optimizer cost model for Wi, we run a linear regression on
multiple points representing the estimated costs for differ-
ent 1/ri values that we obtain during the configuration enu-
meration phase. Subsequently, we refine the different cost
models by adjusting αi and βi based on the observed costs
(workload completion times).

Let the estimated cost for workload Wi at the resource
level recommended by the design advisor be Esti. At run-
time, we can observe the actual cost of running the work-
load, Acti. The difference between Esti and Acti guides our
refinement process. One important observation is that refin-
ing the cost models of the different workloads will not lead
to a different resource allocation recommendation unless the
refinement process changes the slopes of the cost equations
(i.e., the αi’s). If a cost model underestimates the real cost
we have to increase the slope, and if it overestimates the cost
we have to reduce the slope. This will cause the resource
allocation recommendation to move in the right direction.
The magnitude of the slope change should be proportional
to the observed error (the distance between Esti and Acti).
The further Acti is from Esti, the higher the adjustment
that is needed to correct the inaccuracy in resource alloca-
tion decisions. At the same time, the line for the adjusted
cost model should pass through the observed actual point,
Acti. These requirements lead us to the following heuristic
for refining the cost model: Scale the linear cost equation by
Acti
Esti

. Thus, the cost equation after refinement is given by:

Cost′(Wi, [ri]) =
Acti
Esti

· αi

ri
+
Acti
Esti

· βi

After observing the actual completion times of all work-
loads and refining their cost equations, we re-run the vir-
tualization design advisor using the new cost equations to
obtain a new resource allocation recommendation. If the
new recommendation is the same as the old recommenda-
tion, we stop the refinement process. Otherwise, we perform

another iteration of online refinement. In the second iter-
ation and beyond, we have multiple actual observed costs
for each workload from the different iterations of online re-
finement, so we obtain the linear cost equation by running
a linear regression based on these observed costs (without
using optimizer estimates). To prevent the refinement pro-
cess from continuing indefinitely, we place an upper bound
on the number of refinement iterations. In our experiments,
refinement always converges in one or two iterations.

5.2 Generalized Online Refinement
The basic online refinement approach is sufficient if we are

recommending allocations for one resource for which the as-
sumption of a linear cost equation holds. In general, we may
be recommending allocations for more than one resource.
Moreover, it is not always the case that we can assume a
linear cost equation for all resource allocation levels. We
deal with each of these issues in turn in the following para-
graphs.

To enable online refinement when we are recommend-
ing allocations for multiple resources, we extend our as-
sumption of a linear cost equation to multiple dimensions.
When recommending allocations for M resources, we as-
sume that the cost of workload Wi given resource allocation
Ri = [ri1, . . . , riM] can be given by:

Cost(Wi, Ri) =

M∑
j=1

αij

rij
+ βi

As in the one-resource case, we obtain the αij ’s and βi

representing the optimizer cost model for a workload by run-
ning a linear regression on estimated costs obtained during
configuration enumeration. In this case, the regression is a
multi-dimensional linear regression.

To refine the cost equation based on observed actual cost,
we use the same reasoning that we used for the basic refine-
ment approach, and therefore we scale the cost equation by
Acti
Esti

. Thus, the cost equation after refinement is given by:

Cost′(Wi, Ri) =

M∑
j=1

Acti
Esti

· αij

rij
+
Acti
Esti

· βi

=

M∑
j=1

α′ij
rij

+ β′i

where α′ij = Acti
Esti

αij and β′i = Acti
Esti

βi.

After refining the cost equations based on observed costs,
we re-run the design advisor using the new cost equations
to get a new resource allocation recommendation. Since the
linear cost equations may not hold for all resource alloca-
tion levels, we only allow the design advisor to change the
allocation level of any resource for any workload by at most
∆max (e.g., 10%). This is based on the assumption that the
linear cost equations will hold but only within a restricted
neighborhood around the original resource allocation recom-
mendation. This local linearity assumption is much more
constrained than the global linearity assumption made in
Section 5.1, so we can safely assume that it holds for all
workloads and all resources. However, the downside of us-
ing this more constrained assumption is that we can only
make small adjustments in resource allocation levels. This
is sufficient for cases where the query optimizer cost model
has only small errors, but it cannot deal with cases where

960

the errors in the optimizer cost model are large. Dealing
with situations where the optimizer cost model has large
errors is a subject for future investigation.

If the newly obtained resource allocation recommendation
is the same as the original recommendation, we stop the
refinement process. If not, we continue to perform iterations
of online refinement. When recommending allocations for
M resources, we need M + 1 actual cost observations to
be able to fit a linear model to the observed costs without
using optimizer estimates. Thus, for the first M iterations
of online refinement, we use the same procedure as the first
iteration. We compute an estimated cost for each workload
based on the current cost model of that workload, Esti. We
then observe the actual cost of the workload Acti and scale
the cost equation by Acti

Esti
. For example, the cost equation

after the second iteration would be as follows:

Cost′′(Wi, Ri) =

M∑
j=1

Acti
Esti

·
α′ij
rij

+
Acti
Esti

· β′i

=

M∑
j=1

α′′ij
rij

+ β′′i

where α′′ij = Acti
Esti

α′ij and β′′i = Acti
Esti

β′i. This refinement ap-

proach retains some residual information from the optimizer
cost model until we have sufficient observations to stop re-
lying on the optimizer.

If refinement continues beyond M iterations, we fit an
M -dimensional linear regression model to the observed cost
points (of which there will be more than M), and we stop
using optimizer estimates. Throughout the refinement pro-
cess, when we run the virtualization design advisor to ob-
tain a new resource allocation recommendation, we always
restrict the change in the recommended level of any resource
to be within ∆max of the original level recommended in the
first iteration. This ensures that we are operating in a re-
gion within which we can assume a linear cost model. To
guarantee that the refinement process terminates, we place
an upper bound on the number of refinement iterations.

6. EXPERIMENTAL EVALUATION

6.1 Experimental Setup
Environment: We conduct experiments using the DB2 V9
and PostgreSQL 8.1.3 database systems. The DB2 experi-
ments use a machine with two 3.4GHz dual core Intel Xeon
x64 processors and 1 GB of memory, running RedHat En-
terprise Linux 5. The PostgreSQL experiments use a ma-
chine with two 2.2GHz dual core AMD Opteron Model 275
x64 processors and 8GB memory, running SUSE Linux 10.1.
We use Xen as our virtualization environment [2], installing
both database systems on Xen-enabled versions of their re-
spective operating systems. The resource control capabil-
ities required by our configuration advisor are available in
all major virtualization environments, but we use Xen be-
cause of its growing popularity – most Linux distributions
now come with full Xen support as a standard feature.
Workloads: We use queries from the TPC-H benchmark
and an OLTP workload for our experiments. The two database
systems have different TPC-H databases. For DB2, we use
an expert-tuned implementation of the benchmark with scale
factor 1 (1GB). With indexes, the size of this database on

disk is 7GB. For PostgreSQL, we use the OSDL implemen-
tation of the benchmark [13], which is specifically tuned for
PostgreSQL. For most of our experiments, we use a database
with scale factor 1, which has a total size on disk with in-
dexes of 4GB. In Section 6.5, we use a PostgreSQL database
with scale factor 10, which has a total size on disk with in-
dexes of 30GB. The OLTP workload is run only on DB2.
This workload is modeled after a real customer workload
for a credit card transaction database. The database con-
sists of one table that has 112 character fields with a total
width of 2318 bytes. This table starts empty, and the work-
load accessing it consists of M client threads concurrently
inserting then retrieving then updating x rows each into this
table. For our experiments, we use M = 40 clients and we
vary x to get OLTP workloads of varying sizes.
Virtual Machines and Resource Allocation: The basic
setup for our experiments is that we run N different work-
loads in N virtual machines that all share the same physi-
cal machine. The Xen virtual machine monitor (known as
the hypervisor in Xen terminology), like all virtual machine
monitors, provides mechanisms for controlling allocation of
resources to the different virtual machines. The Xen hyper-
visor allows us to control a virtual machine’s CPU allocation
by varying the CPU scheduling time slice of this machine.
The hypervisor also allows us to control the amount of phys-
ical memory allocated to a virtual machine. Our virtualiza-
tion design advisor uses these mechanisms provided by Xen
to control the allocation of resources to the different virtual
machines. We have observed that for the workloads used in
our experiments, the amount of memory allocated to a vir-
tual machine has only a minor effect on performance. We,
therefore, focus our experimental evaluation on the effec-
tiveness of our virtualization design advisor at deciding the
CPU allocations of the different virtual machines. For most
of our experiments, we give each virtual machine a fixed
memory allocation of 512MB. We set the memory param-
eters of DB2 to 190MB for the buffer pool and 40MB for
the sort heap (we do not use the DB2 self-tuning memory
manager that automatically adjusts memory allocations).
For PostgreSQL, we set the shared buffers to 32MB and
the work memory to 5MB. When running experiments with
PostgreSQL on the TPC-H database with scale factor 10,
we give the virtual machine 6GB of memory, and we set
the PostgreSQL shared buffers to 4GB and work memory to
5MB. To obtain the estimated workload completion times
based on the query optimizer cost model, we only need to
call the optimizer with its CPU and memory parameters set
appropriately according to our calibration procedure, with-
out needing to run a virtual machine. To obtain the actual
workload completion times, we run the virtual machines in-
dividually one after the other on the physical machine, set-
ting the virtual machine and database system parameters to
the required values. We use a warm database for these runs.
We have verified that the performance isolation capability of
Xen ensures that running the virtual machines concurrently
or one after the other yields the same workload completion
times for our workloads.
Performance Metric: Without a virtualization design ad-
visor, the simplest resource allocation decision is to allocate
1/N of the available resources to each of the N virtual ma-
chines sharing a physical machine. We call this the default
resource allocation. To measure performance, we determine
the total execution time of the N workloads under this de-

961

fault allocation, Tdefault, and we also determine the total ex-
ecution time under the resource allocation recommended by
our advisor for the different workloads, Tadvisor. Our metric
for measuring performance is relative performance improve-

ment over the default allocation, defined as
Tdefault−Tadvisor

Tdefault
.

For most of our experiments, we compute this metric based
on the query optimizer cost estimates, but for some experi-
ments we compute the performance improvement based on
the actual run time of the queries.

6.2 Cost of Calibration and Search Algorithms
The cost of the query optimizer calibration process highly

depends on the targeted DBMS. Calibrating the DB2 opti-
mizer involved executing stand-alone programs to measure
the following three resource related parameters: CPU speed,
I/O bandwidth, and I/O overhead. The DB2 optimizer can
determine all of its remaining resource related parameters
from these three parameters. Calibrating CPU speed took
60 seconds for low CPU configurations and 20 seconds for
high CPU configurations. Calibrating I/O parameters took
105 seconds. For both DB2 and PostgreSQL, calibrating the
I/O parameters was done for only one CPU setting since we
have observed that these parameters are independent of the
virtual machine CPU configuration. In total, the DB2 cal-
ibration process for all CPU allocation levels to the virtual
machine took less than 6 minutes. Calibrating the Post-
greSQL optimizer involved executing SQL queries to cali-
brate CPU related parameters, and stand-alone programs to
measure I/O related parameters. Calibrating CPU param-
eters took an average of 90 seconds for low CPU configura-
tions and 40 seconds for high CPU configurations. Calibrat-
ing I/O parameters took 60 seconds. The entire PostgreSQL
calibration process took less than 9 minutes.

The cost of the search algorithm used by the virtualiza-
tion design advisor depends on whether we are doing the
initial recommendation or online refinement. For the ini-
tial recommendation, the search algorithm needs to call the
query optimizer multiple times for cost estimation. The al-
gorithm converged in 8 iterations of greedy search or less,
and it took less than 2 minutes. For online refinement, the
search algorithm uses its own cost model and does not need
to call the optimizer. Convergence still took 8 iterations or
less of greedy search, but this always completed in less than
1 minute. With these results we can see that the overhead
of our design advisor is acceptable: a one-time calibration
process that requires less than 10 minutes, and a search al-
gorithm that typically takes less than 1 minute.

6.3 Sensitivity to Workload Resource Needs
In this set of experiments, we verify that our advisor can

accurately respond to the different resource needs of differ-
ent workloads. For this experiment, we examine the behav-
ior of the 22 TPC-H queries for a database with scale factor
1, and we determine that Q18 is one of the most CPU inten-
sive queries in the benchmark (i.e., its performance improves
significantly if it is given more CPU), while Q21 is one of
the least CPU intensive queries in the benchmark (i.e., its
performance does not improve too much if it is given more
CPU). Thus, we use workloads consisting of multiple copies
of Q18 and Q21, and we vary the resource needs of the
workloads by varying the number of copies of the two query
types. One subtle point to note here is that Q21 has much
longer estimated and actual run times than Q18, so a vir-

Figure 12: Varying CPU intensity (DB2).

Figure 13: Varying CPU intensity (PostgreSQL).

tual machine that is running one copy of Q18 will appear
to be “less loaded” than a virtual machine that is running
one copy of Q21, and hence the Q21 VM will be given more
resources by our advisor. This would be the correct decision
in this case, but we want to make sure that any variation in
the resource allocation to the different workloads is due to
variations in their resource needs not simply due to having
different lengths. Thus, we use 25 copies of Q18 as our CPU
intensive workload “unit”, which we refer to as C, and 1
copy of Q21 as our CPU non-intensive workload unit, which
we refer to as I. To create workloads with different CPU
needs, we combine different numbers of C and I units. Note
that both C and I are decision support queries that both
have fairly high CPU demands, even though the demands
of C are greater than I. Hence, using C and I for our work-
loads leaves almost no slack for the advisor to improve per-
formance. Our purpose in this section is to illustrate that
the advisor can detect the different resource needs of the
different workloads and improve performance even in this
competitive environment.

In our first experiment, we use two workloads that run in
two different virtual machines. The first workload consists
of 5 C units and 5 I units (i.e., W1 = 5C + 5I). The second
workload has k C units and (10− k) I units for k = 0 to 10
(i.e., W2 = kC + (10 − k)I). As k increases, W2 becomes
more CPU intensive while W1 remains unchanged. The rel-
ative sizes of the workloads remain unchanged due to the
way we scale C and I to have the same size. Figures 12
and 13 show for DB2 and PostgreSQL, respectively, for dif-

962

Figure 14: Varying workload size and resource in-
tensity (DB2).

Figure 15: Varying workload size and resource in-
tensity (PostgreSQL).

ferent values of k, the amount of CPU allocated to W2 by
our virtualization design advisor (on the left y-axis) and the
estimated performance improvement of this allocation over
the default allocation of 50% CPU to each workload (on the
right y-axis). For small k, our design advisor gives most of
the CPU to W1 because W1 is more CPU intensive. As k
increases, our advisor is able to detect that W2 is becoming
more CPU intensive and therefore it gives W2 more CPU.
Overall performance is improved over the default allocation
except in the cases where the two workloads are similar to
each other so that the default allocation is optimal. The
magnitude of the performance improvement is small because
both workloads are fairly CPU intensive so the performance
degradation of W1 when more of the CPU is given to W2 is
only slightly offset by the performance improvement in W2.
The main point of this experiment is that the advisor is able
to detect the different resource needs of different workloads
and make the appropriate resource allocation decisions.

In our second experiment, we use two workloads that run
in two different virtual machines. The first workload con-
sists of 1 C unit (i.e., W3 = 1C). The second workload has k
C units for k = 1 to 10 (i.e., W4 = kC). As k increases, W4

becomes longer compared to W3, and hence more resource
intensive. The correct behavior in this case is to allocate
more resources to W4. Figures 14 and 15 show for DB2
and PostgreSQL, respectively, the CPU allocated by our
design advisor to W4 for different k and the performance

Figure 16: Varying workload size but not resource
intensity (DB2).

Figure 17: Varying workload size but not resource
intensity (PostgreSQL).

improvement due to this allocation. Initially, when k = 1,
both workloads are the same so they both get 50% of the
resources. However, as k increases and W4 becomes more
resource intensive, our search algorithm is able to detect
that and allocate more resources to this workload, resulting
in an overall performance improvement. The performance
improvements in this figure are greater than those in the
previous experiment since there is more opportunity due
to the larger difference in the resource demands of the two
workloads.

Our next experiment demonstrates that simply relying on
the relative sizes of the workloads to make resource allo-
cation decisions can result in poor decisions. For this ex-
periment, we use one workload consisting of 1 C unit (i.e.,
W5 = 1C) and one workload consisting of k I units for k = 1
to 10 (i.e., W6 = kI). Here the goal is to illustrate that even
though W6 may have a longer running time, the fact that it
is not CPU intensive should lead our algorithm to conclude
that giving it more CPU will not reduce the overall execu-
tion time. Therefore, the correct decision would be to keep
more CPU with W5 even as W6 grows. Figures 16 and 17
show for DB2 and PostgreSQL, respectively, that our search
algorithm does indeed give a lot less CPU to W6 than is war-
ranted by its length. W6 has to be several times as long as
W5 to get the same CPU allocation.

It is clear from these experiments that our virtualization
design advisor behaves as expected, which validates our op-

963

Figure 18: Effect of Li.

timizer calibration process and our search algorithm. It is
also clear that the advisor is equally effective for both DB2
and PostgreSQL, although the magnitudes of the improve-
ments are higher for DB2.

6.4 Supporting QoS Metrics
In this section, we demonstrate the ability of our virtu-

alization design advisor to make recommendations that are
constrained in accordance with user defined QoS parame-
ters (the degradation limit, Li, and the benefit gain factor,
Gi). For this experiment we use five identical workloads,
W7–W11, each consisting of 1 unit of the C workload used
in Section 6.3. The optimal allocation decision in this case is
to split the resources equally between the workloads, but we
set service degradation limits for two of the workloads to in-
fluence this decision. We vary the service degradation limit
of W7, L7, from 1 to 4, and we give W8 a fixed degradation
limit L8 = 2.5.

Figure 18 shows the service degradation of all workloads
for different values of L7. We can see that our virtualization
design advisor is able to meet the constraints specified by
L7 and L8 and limit the degradation that W7 and W8 suf-
fer. This comes at the cost of a higher degradation for the
other workloads, but that is expected since the Li parame-
ters specify goals that are specific to particular workloads.

We also verified the ability of our advisor to increase the
CPU allocation to workloads whose Gi is greater than 1.
We omit the details due to lack of space.

6.5 Random Workloads
The experiments in the previous sections are fairly “con-

trolled” in the sense that we know what to expect from the
design advisor. In this section, we demonstrate the effective-
ness of our advisor on random workloads for which we do
not have prior expectations about what the final configura-
tion should be. Our goal is to show that for these cases, the
advisor will recommend resource allocations that are better
than the default allocation.

Each experiment in this section uses 10 workloads. We
run each workload in a separate virtual machine, and we
vary the number of concurrently running workloads from 2
to 10. For each set of concurrent workloads, we run our
design advisor and determine the CPU allocation to each
virtual machine and the performance improvement over the
default allocation of 1/N CPU share for each workload.

We present results for two random workload experiments.

Figure 19: CPU allocation for N workloads on TPC-
H database.

Figure 20: CPU allocation for N OLTP + TPC-H
workloads.

Figure 21: Performance improvement for N work-
loads on TPC-H database.

964

The first experiment uses queries on a TPC-H database
with scale factor 10 stored in PostgreSQL. Using a database
with scale factor 10 allows us to test our design advisor
with long-running resource-intensive queries. For this ex-
periment, each of the 10 workloads consists of a random
mix of between 10 and 20 workload units. A workload unit
can be either 1 copy of TPC-H query Q17 or 66 copies of a
modified version of TPC-H Q18. We added a WHERE pred-
icate to the sub-query that is part of the original Q18 so that
the query touches less data, and therefore spends less time
waiting for I/O. The number of copies of the modified Q18
in a workload unit is chosen so that the two workload units
have the same completion time when running with 100% of
the available CPU.

The second random workload experiments uses 10 work-
loads running on DB2 in different virtual machines. Of these
workloads, 5 are OLTP workloads that touch x = 200 to
x = 6000 rows of the table in the OLTP database (W2, W4,
W6, W8, and W10). The other 5 workloads consist of up to
40 randomly chosen TPC-H queries.

Figures 19 and 20 show, for both of these experiments,
the changes in CPU allocation to the different workloads as
we introduce new workloads to the mix. It can be seen that
our virtualization design advisor is identifying the nature
of new workloads as they are introduced and is adjusting
the resource allocations accordingly. The slopes of the dif-
ferent CPU allocation lines are not constant. It can also
be seen that the advisor maintains the relative order of the
workloads’ CPU allocations even as new workloads are in-
troduced. The fact that some workload is more resource
intensive than another does not change due to the introduc-
tion of more workloads.

Figure 21 shows the actual performance improvement un-
der different resource allocations for the experiment on the
scale factor 10 TPC-H database. The figure shows the per-
formance improvement under the resource allocation recom-
mended by the virtualization design advisor, and under the
optimal resource allocation obtained by exhaustively enu-
merating all feasible allocations and measuring performance
in each one. The figure shows that our virtualization design
advisor, using a properly calibrated query optimizer and a
well-tuned database, can achieve near-optimal resource al-
locations.

6.6 Online Refinement
In some cases, the query optimizer cost model is inac-

curate so our resource allocation decisions are suboptimal
and the actual performance improvement we obtain is sig-
nificantly less than the estimated improvement. Most work
on automatic physical database design ignores optimizer er-
rors even if they result in suboptimal decisions. One of the
unique features of our work is that we try to correct for op-
timizer errors through our online refinement process. In this
section, we illustrate the effectiveness of this process using
the OLTP + TPC-H workloads from the previous section.
Since we are only allocating CPU to the different virtual
machines, and since CPU is a resource for which a linear
cost model is typically accurate, we use the basic online re-
finement approach that is described in Section 5.1.

We expect the query optimizer to be less accurate in mod-
eling OLTP workloads than DSS workloads such as TPC-H.
The optimizer cost model does not capture contention or up-
date costs, which are significant factors in OLTP workloads.

Figure 22: CPU allocation for N OLTP + TPC-H
workloads after online refinement.

Figure 23: Performance improvement for N OLTP
+ TPC-H workloads before and after online refine-
ment.

Thus, for our OLTP workload, the optimizer tends to un-
derestimate the CPU requirements. The OLTP workload is
indeed less CPU intensive than the workloads from TPC-H
since I/O is a much higher fraction of its work, but the query
optimizer sees it as much less CPU intensive than it really is.
It, therefore, leads the advisor to allocate a large portion of
the CPU to the workloads from TPC-H. Implementing the
CPU allocations recommended by the advisor results in ac-
tual performance improvements that are shown in Figure 23.
These recommendations are clearly inaccurate. However, if
we run our online refinement process on the different sets of
workloads, the process converges in at most two iterations
and gives the CPU allocations shown in Figure 22. We have
verified that these CPU allocations are the same as the opti-
mal allocations obtained by performing an exhaustive search
that finds the allocation with the lowest actual completion
time. In these CPU allocations, the workloads from TPC-
H are getting less CPU than before, even though they are
longer and more resource intensive. The CPU taken from
these workloads is given to the OLTP workloads and pro-
vides them with an adequate level of CPU. The resulting
actual performance improvements are much better than the
improvements without online refinement, and are also shown
in Figure 23. Thus, we are able to show that our advisor
can provide effective recommendations for different kinds of
workloads, giving us easy performance gains of up to 25%.

965

7. CONCLUSIONS
In this paper, we considered the problem of automatically

configuring multiple virtual machines that are all running
database systems and sharing a pool of physical resources.
Our approach to solving this problem is implemented as a
virtualization design advisor that takes information about
the different database workloads and uses this information
to determine how to split the available physical computing
resources among the virtual machines. The advisor relies
on the cost models of the database system query optimizers
to enable it to predict workload performance under differ-
ent resource allocations. We described how to calibrate and
extend these cost models so that they are used for this pur-
pose. We also presented an approach that uses actual per-
formance measurements to refine the cost models used for
recommendation. This provides a means of correcting cost
model inaccuracies. We conducted an extensive empirical
evaluation of the virtualization design advisor, demonstrat-
ing its accuracy and effectiveness.

8. REFERENCES
[1] R. Agrawal, S. Chaudhuri, A. Das, and V. R.

Narasayya. Automating layout of relational databases.
In Proc. Int. Conf. on Data Engineering (ICDE),
2003.

[2] P. T. Barham, B. Dragovic, K. Fraser, S. Hand, T. L.
Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
Proc. ACM Symposium on Operating Systems
Principles (SOSP), 2003.

[3] M. Bennani and D. A. Menasce. Resource allocation
for autonomic data centers using analytic performance
models. In Proc. IEEE Int. Conf. on Autonomic
Computing (ICAC), 2005.

[4] M. J. Carey, R. Jauhari, and M. Livny. Priority in
DBMS resource scheduling. In Proc. Int. Conf. on
Very Large Data Bases (VLDB), 1989.

[5] D. L. Davison and G. Graefe. Dynamic resource
brokering for multi-user query execution. In Proc.
ACM SIGMOD Int. Conf. on Management of Data,
1995.

[6] K. Dias, M. Ramacher, U. Shaft, V. Venkataramani,
and G. Wood. Automatic performance diagnosis and
tuning in Oracle. In Proc. Conf. on Innovative Data
Systems Research (CIDR), 2005.

[7] M. N. Garofalakis and Y. E. Ioannidis.
Multi-dimensional resource scheduling for parallel
queries. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, 1996.

[8] A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer,
M. Steinder, M. Sviridenko, and A. Tantawi. Dynamic
placement for clustered web applications. In Proc. Int.
Conf. on WWW, 2006.

[9] G. Khanna, K. Beaty, G. Kar, and A. Kochut.
Application performance management in virtualized
server environments. In Proc. IEEE/IFIP Network
Operations and Management Symp. (NOMS), 2006.

[10] P. Martin, H.-Y. Li, M. Zheng, K. Romanufa, and
W. Powley. Dynamic reconfiguration algorithm:
Dynamically tuning multiple buffer pools. In Proc.
Int. Conf. Database and Expert Systems Applications
(DEXA), 2000.

[11] M. Mehta and D. J. DeWitt. Dynamic memory
allocation for multiple-query workloads. In Proc. Int.
Conf. on Very Large Data Bases (VLDB), 1993.

[12] D. Narayanan, E. Thereska, and A. Ailamaki.
Continuous resource monitoring for self-predicting
DBMS. In Proc. IEEE Int. Symp. on Modeling,
Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), 2005.

[13] OSDL Database Test Suite 3.
http://sourceforge.net/projects/osdldbt.

[14] M. Rosenblum and T. Garfinkel. Virtual machine
monitors: Current technology and future trends. IEEE
Computer, 38(5), 2005.

[15] P. Ruth, J. Rhee, D. Xu, R. Kennell, and
S. Goasguen. Autonomic live adaptation of virtual
computational environments in a multi-domain
infrastructure. In Proc. IEEE Int. Conf. on
Autonomic Computing (ICAC), 2006.

[16] P. Shivam, A. Demberel, P. Gunda, D. E. Irwin, L. E.
Grit, A. R. Yumerefendi, S. Babu, and J. S. Chase.
Automated and on-demand provisioning of virtual
machines for database applications. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, 2007.
Demonstration.

[17] J. E. Smith and R. Nair. The architecture of virtual
machines. IEEE Computer, 38(5), 2005.

[18] A. A. Soror, A. Aboulnaga, and K. Salem. Database
virtualization: A new frontier for database tuning and
physical design. In Proc. Workshop on Self-Managing
Database Systems (SMDB), 2007.

[19] M. Steinder, I. Whalley, D. Carrera, and I. G. D. M.
Chess. Server virtualization in autonomic management
of heterogeneous workloads. In Proc. IFIP/IEEE Int.
Symp. on Integrated Network Mgmt., 2007.

[20] A. J. Storm, C. Garcia-Arellano, S. Lightstone,
Y. Diao, and M. Surendra. Adaptive self-tuning
memory in DB2. In Proc. Int. Conf. on Very Large
Data Bases (VLDB), 2006.

[21] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici. A
scalable application placement controller for enterprise
data centers. In Proc. Int. Conf. on WWW, 2007.

[22] G. Tesauro, R. Das, W. E. Walsh, and J. O. Kephart.
Utility-function-driven resource allocation in
autonomic systems. In IEEE Int. Conf. on Autonomic
Computing, 2005.

[23] VMware. http://www.vmware.com/.

[24] X. Wang, Z. Du, Y. Chen, and S. Li.
Virtualization-based autonomic resource management
for multi-tier web applications in shared data center.
Journal of Systems and Software, 2008.

[25] X. Wang, D. Lan, G. Wang, X. Fang, M. Ye, Y. Chen,
and Q. Wang. Appliance-based autonomic
provisioning framework for virtualized outsourcing
data center. In Proc. IEEE Int. Conf. on Autonomic
Computing (ICAC), 2007.

[26] G. Weikum, A. Mönkeberg, C. Hasse, and P. Zabback.
Self-tuning database technology and information
services: from wishful thinking to viable engineering.
In Proc. Int. Conf. on Very Large Data Bases
(VLDB), 2002.

966

