A Hybrid Construction of a Medical Decision Support System using Semantic Web & Machine Learning Techniques (W3C HCLS IG - Presentation)

Atif Khan John Doucette Robin Cohen

David R. Cheriton School of Computer Science University of Waterloo

March 5, 2013

Medical Decision Support Systems (MDSS)

• can a drug/procedure be administered to Alice?

- information constraints access, completeness
- expert knowledge who is treating Alice

Medical Decision Support Systems (MDSS)

can a drug/procedure be administered to Alice?

- information constraints access, completeness
- expert knowledge who is treating Alice
- temporal aspects emergency medical scenarios

Medical Decision Support Systems (MDSS)

can a drug/procedure be administered to Alice?

- information constraints access, completeness
- expert knowledge who is treating Alice
- temporal aspects emergency medical scenarios

Medical Decision Support Systems (MDSS)

can a drug/procedure be administered to Alice?

- information constraints access, completeness
- expert knowledge who is treating Alice
- temporal aspects emergency medical scenarios

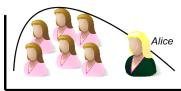
Medical Decision Support Systems (MDSS)

can a drug/procedure be administered to Alice?

- information constraints access, completeness
- expert knowledge who is treating Alice
- temporal aspects emergency medical scenarios

Build a medical decision support system with the capability to handle the following *knowledge* features:

- black swan theory & Alice
- Alice's medical history
- nature of the drug/procedure
- expert knowledge
- information availability



Outline

- Background
- 2 Architecture
- Experimental Validation
- Conclusion

Medical Decision Support Systems (MDSS)

Definition

computer systems designed to impact clinician decision making about individual patients.

(Berner, 2007)

Definition

clinical decision support systems **link** health **observations** with health **knowledge** to influence health choices by clinicians for **improved** health **care**.

(Dr. R. Hayward, 2004)

Medical Decision Support Systems (MDSS)

Definition

computer systems designed to impact clinician decision making about individual patients.

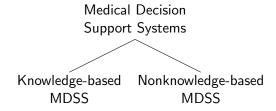
(Berner, 2007)

Definition

clinical decision support systems **link** health **observations** with health **knowledge** to influence health choices by clinicians for **improved** health **care**.

(Dr. R. Hayward, 2004)

MDSS Classification (Berner, 2007)



Characteristics

Knowledge-based MDSS

- structured data representation (schema)
- knowledge is persisted in data-stores
- ullet expert knowledge ightarrow system rules
 - heuristics based
 - evidence based
- reasoning capacity using inference engines

- learn from raw data (semi/un-structured)
- based on probabilistic techniques
 - patterns in the data
 - past examples/cases
- learning capacity
- probabilistic prediction capability

Characteristics

Knowledge-based MDSS

- structured data representation (schema)
- knowledge is persisted in data-stores
- ullet expert knowledge ightarrow system rules
 - heuristics based
 - evidence based
- reasoning capacity using *inference* engines

- learn from raw data (semi/un-structured)
- based on probabilistic techniques
 - patterns in the data
 - past examples/cases
- learning capacity
- probabilistic prediction capability

Advantages & Disadvantages

Knowledge-based MDSS

- quite capable and robust when "knowledge" is complete
- system made decisions are
 - logic-based rules/axioms
 - can be easily explained to end users √
 - can be verified using *logic* proofs √

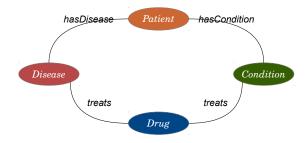
- generally tolerant to noise √
- may mistake weaker signals in data as noise
- computationally expensive to build and maintain
 - require a training phase
 - specific to a line of inquir
 - require retraining as more information becomes

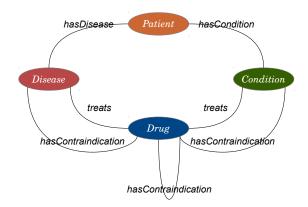
Advantages & Disadvantages

Knowledge-based MDSS

- quite capable and robust when "knowledge" is complete
- system made decisions are
 - logic-based rules/axioms
 - can be easily explained to end users √
 - can be verified using *logic* proofs √

- generally tolerant to noise √
- may mistake weaker signals in data as noise
- computationally expensive to build and maintain
 - require a training phase
 - specific to a line of inquiry
 - require retraining as more information becomes available





Ontology

Let $\mathcal V$ be the set of structured vocabulary, and $\mathcal A$ axioms about $\mathcal V$, which are formulated in formal language $\mathcal L$. An ontology is a sign-system:

$$\mathcal{O} = \{\mathcal{L}, \mathcal{V}, \mathcal{A}\}$$

where: the symbols of $\mathcal V$ denote categories, and relations between categories or between their instances; and $\mathcal L$ is a formal language associated to a vocabulary $\mathcal V$ and used to declare a set of $\mathcal L(\mathcal V)=\mathcal A$, which are usually a declarative formulae.

(Hussain, 2009)

Ontology

Let $\mathcal V$ be the set of structured vocabulary, and $\mathcal A$ axioms about $\mathcal V$, which are formulated in formal language $\mathcal L$. An ontology is a sign-system:

$$\mathcal{O} = \{\mathcal{L}, \mathcal{V}, \mathcal{A}\}$$

where: the symbols of $\mathcal V$ denote categories, and relations between categories or between their instances; and $\mathcal L$ is a formal language associated to a vocabulary $\mathcal V$ and used to declare a set of $\mathcal L(\mathcal V)=\mathcal A$, which are usually a declarative formulae.

(Hussain, 2009)

Knowledge Inference & Reasoning

Inference using entailment rules:

discover implicit knowledge from explicitly stated facts

$$\{f_1, f_2, \dots, f_n\} \to \{c_1, c_2, \dots\}$$

Reasoning

result ightarrow query answer

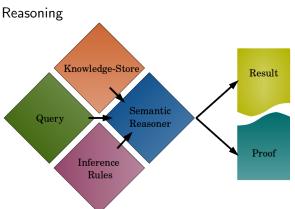
proof → based on first order logic, represents a <u>unique</u> traversal path through the knowledge graph

Knowledge Inference & Reasoning

Inference using entailment rules:

• discover implicit knowledge from explicitly stated facts

$$\{f_1, f_2, \ldots, f_n\} \to \{c_1, c_2, \ldots\}$$



result → query answer

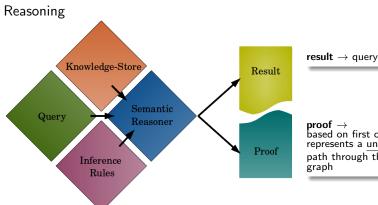
proof →
based on first order logic,
represents a unique traversal
path through the knowledge
graph

Knowledge Inference & Reasoning

Inference using entailment rules:

discover implicit knowledge from explicitly stated facts

$$\{f_1, f_2, \ldots, f_n\} \to \{c_1, c_2, \ldots\}$$



result \rightarrow query answer

based on first order logic, represents a unique traversal path through the knowledge

Knowledge Base

```
:Alice a :Patient; :hasSystolic 119; :hasDiastolic 75.

:Kate a :Patient; :hasSystolic 144; :hasDiastolic 91.

:Dave a :Patient; :hasSystolic 120; :hasDiastolic 101.

:Bob a :Patient; :hasCondition :HighBloodPressure.

:John a : Patient.
```

Inference rules

```
{?P a :Patient; :hasSystolic ?SYS. ?SYS math:greaterThan 140.}
=> {?P :hasCondition :HighBloodPressure}.

{?P a :Patient; :hasDiastolic ?DIA. ?DIA math:greaterThan 90.}
=> {?P :hasCondition :HighBloodPressure}.
```

Query

```
_:WHO :hasCondition :HighBloodPressure.
```

Knowledge Base

```
:Alice a :Patient; :hasSystolic 119; :hasDiastolic 75.

:Kate a :Patient; :hasSystolic 144; :hasDiastolic 91.

:Dave a :Patient; :hasSystolic 120; :hasDiastolic 101.

:Bob a :Patient; :hasCondition :HighBloodPressure.

:John a : Patient.
```

Inference rules

```
{?P a :Patient; :hasSystolic ?SYS. ?SYS math:greaterThan 140.}
=> {?P :hasCondition :HighBloodPressure}.

{?P a :Patient; :hasDiastolic ?DIA. ?DIA math:greaterThan 90.}
=> {?P :hasCondition :HighBloodPressure}.
```

Query

```
_:WHO :hasCondition :HighBloodPressure.
```

Knowledge Base

```
:Alice a :Patient; :hasSystolic 119; :hasDiastolic 75.
:Kate a :Patient; :hasSystolic 144; :hasDiastolic 91.
:Dave a :Patient; :hasSystolic 120; :hasDiastolic 101.
:Bob a :Patient; :hasCondition :HighBloodPressure.
:John a : Patient.
```

Inference rules

```
{?P a :Patient; :hasSystolic ?SYS. ?SYS math:greaterThan 140.}
=> {?P :hasCondition :HighBloodPressure}.

{?P a :Patient; :hasDiastolic ?DIA. ?DIA math:greaterThan 90.}
=> {?P :hasCondition :HighBloodPressure}.

5
```

Query

```
_:WHO :hasCondition :HighBloodPressure.
```

Result & Proof

 $\{: Bob : hasCondition : HighBloodPressure\} e: evidence < kb.n3#_12>. 1$

```
{{:Kate a :Patient} e:evidence <kb.n3#_10>.
  {:Kate :hasSystolic 144} e:evidence <kb.n3#_10>.
  {144 math:greaterThan 140} e:evidence <math#kb>} => {
  {:Kate :hasCondition :HighBloodPressure} e:evidence <rules.n3#
  _3>}.
```

But what about John? \rightarrow open vs. closed world

Result & Proof

```
{{:Kate a :Patient} e:evidence <kb.n3#_10>.
  {:Kate :hasSystolic 144} e:evidence <kb.n3#_10>.
  {144 math:greaterThan 140} e:evidence <math#kb>} => {
  {:Kate :hasCondition :HighBloodPressure} e:evidence <rules.n3#
  _3>}.
```

But what about John? \rightarrow open vs. closed world

Result & Proof

```
{:Bob : hasCondition : HighBloodPressure} e:evidence <kb.n3#_12>. 1
```

```
{{:Kate a :Patient} e:evidence <kb.n3#_10>.
  {:Kate :hasSystolic 144} e:evidence <kb.n3#_10>.
  {144 math:greaterThan 140} e:evidence <math#kb>} => {
  {:Kate :hasCondition :HighBloodPressure} e:evidence <rules.n3#
  _3>}.
```

```
{{:Dave a :Patient} e:evidence <kb.n3#_11>.
{:Dave :hasDiastolic 101} e:evidence <kb.n3#_11>.
{101 math:greaterThan 90} e:evidence <math#kb>} => {
{:Dave :hasCondition :HighBloodPressure} e:evidence <rules.n3#
_7>}.
```

But what about John? \rightarrow open vs. closed world

Result & Proof

```
{:Bob :hasCondition :HighBloodPressure} e:evidence <kb.n3#_12>.
{{:Kate a :Patient} e:evidence <kb.n3#_10>.
{: Kate : hasSystolic 144} e: evidence < kb.n3#_10>.
                                                                  3
 {144 math:greaterThan 140} e:evidence <math#kb>} => {
{:Kate :hasCondition :HighBloodPressure} e:evidence <rules.n3#
   _3>}.
```

```
{{:Dave a :Patient} e:evidence <kb.n3# 11>.
{:Dave :hasDiastolic 101} e:evidence <kb.n3#_11>.
{101 math:greaterThan 90} e:evidence <math#kb>} => {
{:Dave :hasCondition :HighBloodPressure} e:evidence <rules.n3#
   _7>}.
```

But what about John? \rightarrow open vs. closed world

1

Machine Learning

Key Tasks:

- classification: predict the class of an instance of data
- regression: prediction of a numeric value
- clustering: group similar items together

Machine Learning

Key Tasks:

- supervised learning
 - classification: predict the class of an instance of data
 - regression: prediction of a numeric value
- unsupervised learning
 - clustering: group similar items together

Machine Learning

Our focus:

- supervised learning
 - classification: predict the class of an instance of data

Machine Learning-Classification

Definition

Let X be the input space and Y be the output space.

Then a training set of examples can be defined as:

$$D = \{(x_1, y_1), (x_2, y_2) \dots (x_n, y_n)\}.$$

The machine learning task is to induce a function $p: X \to Y$ that **best** explains the training data.

where.

best \rightarrow minimizing "loss", via a loss function $L = f(p(x_i), y_i)$

 $p(x_i)$ is predicted output, and y_i is actual output

x; is represented as a feature vector.

(Lin and Kolcz, 2012)

Machine Learning-Classification

Definition

Let X be the input space and Y be the output space.

Then a training set of examples can be defined as:

$$D = \{(x_1, y_1), (x_2, y_2) \dots (x_n, y_n)\}.$$

The machine learning task is to induce a function $p: X \to Y$ that **best** explains the training data.

where.

```
best → minimizing "loss", via a loss function L = f(p(x_i), y_i)
```

 $p(x_i)$ is predicted output, and y_i is actual output

x_i is represented as a *feature* vector

(Lin and Kolcz, 2012)

Machine Learning-Classification

Definition

Let X be the input space and Y be the output space.

Then a training set of examples can be defined as :

$$D = \{(x_1, y_1), (x_2, y_2) \dots (x_n, y_n)\}.$$

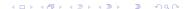
The machine learning task is to induce a function $p: X \to Y$ that **best** explains the training data.

where,

<u>**best**</u> → minimizing "loss", via a loss function $L = f(p(x_i), y_i)$ $p(x_i)$ is predicted output, and y_i is actual output.

 x_i is represented as a *feature* vector.

(Lin and Kolcz, 2012)



Machine Learning-Classification: Example

Based on the data below build a prediction model to classify if a person is happy or sad based on his income and age.

age income

Machine Learning-Classification: Example

Based on the data below build a prediction model to classify if a person is happy or sad based on his income and age.

f(x): y = mx + bage happy people feature1 sad people income

feature2

Machine Learning-Classification: General Approach

Steps

- data collection & pre-processing
- data analysis (abnormal values, outliers etc.)
- feature selection & labelling
- train build a classifier based on the training examples
- test evaluate the classifier based on the test examples
- system integration of the classifier

Outline

- Background
- 2 Architecture
- 3 Experimental Validation
- 4 Conclusion

Proposed Solution

Design Goals

- patient-centric, evidence-based
- automated (machine processable)
- operate in constrained environments
- decisions are easy to explain and validate
- lacktriangledown tolerant to noise in patient data o information challenge

Note: A knowledge-based MDSS meets 1-4 design objectives but fails to meet 5

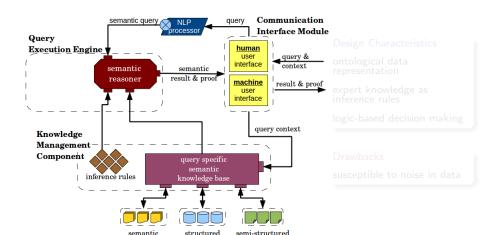
Proposed Solution

Design Goals

- 1 patient-centric, evidence-based
- automated (machine processable)
- operate in constrained environments
- decisions are easy to explain and validate
- tolerant to noise in patient data → information challenge

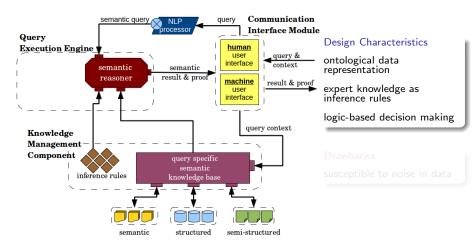
Note: A knowledge-based MDSS meets 1-4 design objectives but fails to meet 5

Proposed Solution: OMeD – Knowledge-based MDSS



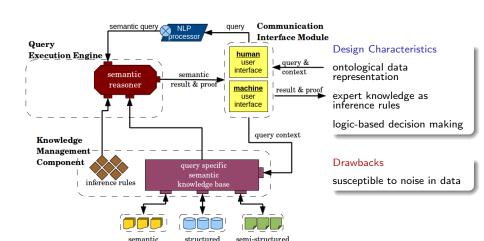
(Khan et al., 2011)

Proposed Solution: OMeD – Knowledge-based MDSS



(Khan et al., 2011)

Proposed Solution: OMeD – Knowledge-based MDSS



(Khan et al., 2011)

Proposed Solution: Nonknowledge-based Engine

Recall: ML techniques are tolerant to noise

Design update: Replace semantic reasoner with a ML-based classifier

Validation strategy

- line of inquiry: drug prescription
- synthetic dataset: { Patient, Drug, Disease}
 - patient-to-drug interactions
 - drug-to-drug interactions
 - disease-to-drug interactions
- result: ML based classifiers performed poorly at prescribing the right drugs to the right patients

(Doucette, Khan, and Cohen, 2012)

Proposed Solution: Nonknowledge-based Engine

Recall: ML techniques are tolerant to noise

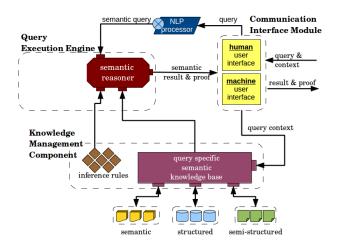
Design update: Replace semantic reasoner with a ML-based classifier

Validation strategy

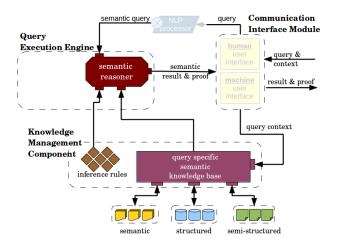
- line of inquiry: drug prescription
- synthetic dataset: { Patient, Drug, Disease}
 - patient-to-drug interactions
 - drug-to-drug interactions
 - disease-to-drug interactions
- result: ML based classifiers performed poorly at prescribing the right drugs to the right patients

(Doucette, Khan, and Cohen, 2012)

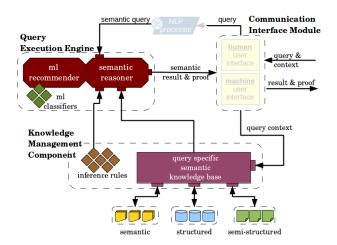
Proposed Solution - Hybrid MDSS



Proposed Solution - Hybrid MDSS

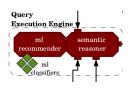


Proposed Solution - Hybrid MDSS



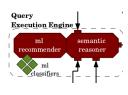
Algorithm 1: Hybrid Decision Making Algorithm

```
Input: query, KB: knowledge base, rules: set of inference
      rules, reasoner: semantic reasoning,
      mlrecommender: machine learning based classifier.
Output: result, proof, conf confidence in the result.
reponse[r, p] = reasoner.doProof(query, KB, rules);
if reponse[r, p] not empty then
if noresult and not unknownresult then
end
if unknownresult then
    KB = KB + predictedValues[];
   reponse[r, p] = reasoner.doProof(query, KB, rules);
   con f = based on the combined probabilities of all
end
```



Algorithm 1: Hybrid Decision Making Algorithm

```
Input: query, KB: knowledge base, rules: set of inference
      rules, reasoner: semantic reasoning,
      mlrecommender: machine learning based classifier.
Output: result, proof, conf confidence in the result.
reponse[r, p] = reasoner.doProof(query, KB, rules);
if reponse[r, p] not empty then
   return (reponse.r, reponse.p, 1.0);
end
if noresult and not unknownresult then
end
if unknownresult then
    KB = KB + predictedValues[];
   reponse[r, p] = reasoner.doProof(query, KB, rules);
   con f = based on the combined probabilities of all
end
```

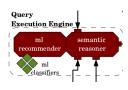


Algorithm 1: Hybrid Decision Making Algorithm

```
Input: query, KB: knowledge base, rules: set of inference
      rules, reasoner: semantic reasoning,
      mlrecommender: machine learning based classifier.
Output: result, proof, conf confidence in the result.
reponse[r, p] = reasoner.doProof(query, KB, rules);
if reponse[r, p] not empty then
   return (reponse.r, reponse.p, 1.0);
end
noresult = inspectForFalseModel(proof);
unknownresult = inspectForCounterModel(proof);
if noresult and not unknownresult then
   return (null, null, 1.0);
end
if unknownresult then
   KB = KB + predictedValues[];
   reponse[r, p] = reasoner.doProof(query, KB, rules);
   con f = based on the combined probabilities of all
end
```

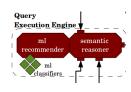
False model: deduction fails due to the facts themselves

Counter model: deduction fails due to incomplete facts



Algorithm 1: Hybrid Decision Making Algorithm

```
Input: query, KB: knowledge base, rules: set of inference
      rules, reasoner: semantic reasoning,
       mlrecommender: machine learning based classifier.
Output: result, proof, conf confidence in the result.
reponse[r, p] = reasoner.doProof(query, KB, rules);
if reponse[r, p] not empty then
   return (reponse.r, reponse.p, 1.0);
end
noresult = inspectForFalseModel(proof);
unknownresult = inspectForCounterModel(proof);
if noresult and not unknownresult then
   return (null, null, 1.0);
end
//predict missing values
if unknownresult then
   predictedValues[] = Use \ mlrecommender to predict
   values of the missing attributes.
   KB = KB + predictedValues[];
   reponse[r, p] = reasoner.doProof(query, KB, rules);
   con f = based on the combined probabilities of all
   recommended attributes used
   return (reponse.r, reponse.p, con f);
end
```



Outline

- Background
- 2 Architecture
- Experimental Validation
- 4 Conclusion

Experimental Validation

Line of Inquiry: Sleeping pill prescription

which patients can be prescribed what sleep medications?

prescribing sleep medication is not trivial

Dataset - BRFSS

Patient Records

- Behavioral Risk Factor Surveillance System (BRFSS)
 Center of Disease Control and Prevention
- 2010 dataset (records: 450K+, features: 400+)
- multi-dimensional
 - demographic information
 (age, race, sex, geographic location)
 - medical information (cancer, asthma, mental illness, diabetes)
 - behavioural information
 (alcohol consumption, drug use, sleep deprivation)

Dataset - BRFSS

Patient Records

- Behavioral Risk Factor Surveillance System (BRFSS)
 Center of Disease Control and Prevention
- 2010 dataset (records: 450K+, features: 400+)
- multi-dimensional
 - demographic information (age, race, sex, geographic location)
 - medical information (cancer, asthma, mental illness, diabetes)
 - behavioural information
 (alcohol consumption, drug use, sleep deprivation)

Additional Dataset: Expert Knowledge

Mayo clinic sleeping pill prescription protocol

 describes expert rules dictating what sleeping drugs can be administered under a given set of medical conditions

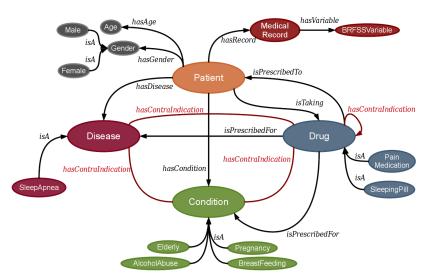
• available online (HTML format)

drug-to-drug interaction rules

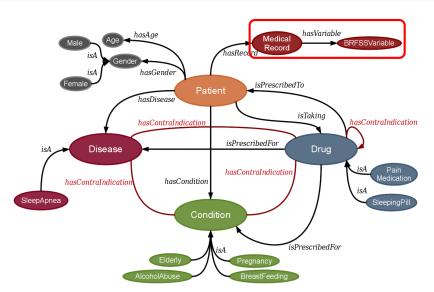
- from drug.com online registry
- pain and sleeping medication interactions



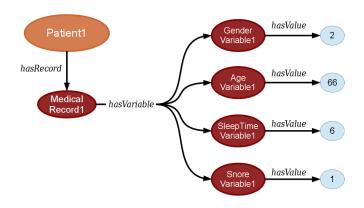
Ontological Knowledge Representation



Ontological Knowledge Representation



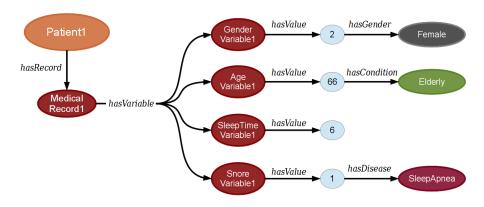
BRFSS Data to Patient Records



Data mapping

• BRFSS code book defined the **semantics** of the raw values

BRFSS Data to Patient Records



Data mapping

- BRFSS code book defined the **semantics** of the raw values
- the raw values were then mapped to ontological concepts

Expert Knowledge Representation

Mayo Clinic Sleeping Pill Prescription Protocol SleepApnea BreastFeeding Ramelteon hasContraIndication Asthma hasContraIndication isPrescribedFor Insomnia Depression hasContraIndication Eszopiclone hasContraIndication LiverDisorder LungDisorder hasContraIndication Propoxyphene

Expert Knowledge Representation

Drug-to-Drug Interactions

```
:Propoxyphene a :Drug;
  :isPrescribedFor :Pain:
  :isContraIndictive :
      Eszopiclone.
:Wygesic a :Drug;
                                   6
  :isPrescribedFor :Pain:
  :isContraIndictive :
      Eszopiclone.
                                   8
:Trycet a :Drug;
  :isPrescribedFor :Pain:
                                   10
                                   11
  :isContraIndictive :
      Eszopiclone.
                                   12
                                   13
:Propacet100 a :Drug;
                                   14
  :isPrescribedFor :Pain:
                                   15
  :isContraIndictive :
      Eszopiclone.
```

```
:Aspirin a :Drug;
:isPrescribedFor :Pain.

:Tylenol1 a :Drug;
:isPrescribedFor :Pain.

6
:Tylenol2 a :Drug;
:isPrescribedFor :Pain;
:isContraIndictive
:SleepingMedication.
```

Inference Rules

Drug-to-Drug Interactions

If a patient is taking an existing drug D1 and D1 has contraindication to another drug D2 then drug D2 should not be prescribed to the patient

N3 Representation

Inference Rules

Drug-to-Disease Interactions

If a patient has a condition that has a contraindication to a drug then the patient should not be given the drug

N3 Representation

```
{ ?P a :Patient.
 ?D a :Drug.
 ?P :hasDisease ?DIS.
 ?D :hasContraIndication ?DIS.} => {?P :cannotBeGiven ?D}.
```

Putting it All Together

Dataset

- BRFSS-2010
- Mayo Clinic sleeping pill prescription protocol
- sleeping pill-to-pain medication interaction

Knowledge engineering:

- Resource Description Framework (RDF)/Notation-3 (N3) based ontological model
- scenario specific ontology
- inference rules

Semantic Reasoner

EulerSharp

Machine Learning toolkit

Weka

Evaluation Criteria

Sensitivity

identify true positives

$$Sens = \frac{tp}{tp + fn}$$

Specificity identify true negatives

$$Spec = \frac{tn}{tn + fp}$$

Balanced Accuracy simple average of specificity and sensitivity

$$balAcc = \frac{Spec + Sens}{2}$$

where,

 $t_p = \text{true positive},$

 $f_p =$ false positive,

 $t_n = \text{true negative},$ $f_n = \text{false negative},$

Evaluation Criteria

Sensitivity

identify true positives

$$Sens = \frac{tp}{tp + fn}$$

Specificity

identify true negatives

$$Spec = \frac{tn}{tn + fp}$$

Balanced Accuracy simple average of specificity and sensitivity

$$balAcc = \frac{Spec + Sens}{2}$$

where,

 $t_p = \text{true positive},$

 f_p = false positive,

 $f_n = \text{true negative},$ $f_n = \text{false negative},$

Evaluation Criteria

Sensitivity

identify true positives

$$\mathit{Sens} = \frac{\mathit{tp}}{\mathit{tp} + \mathit{fn}}$$

Specificity

identify true negatives

$$Spec = \frac{tn}{tn + fp}$$

Balanced Accuracy

simple average of specificity and sensitivity

$$\mathit{balAcc} = \frac{\mathit{Spec} + \mathit{Sens}}{2}$$

where.

 $t_p =$ true positive,

 $f_p =$ false positive,

 $f_n = \text{true negative},$ $f_n = \text{false negative},$

System Evaluation

3 Stage Experiment:

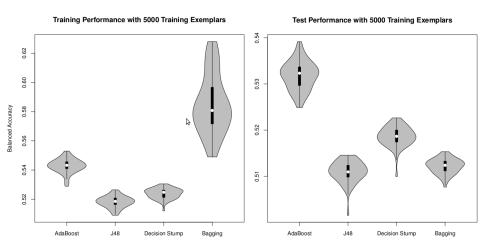
- evaluate machine learning based MDSS on BRFSS patient dataset
- introduce information challenge
- evaluate the hybrid construction

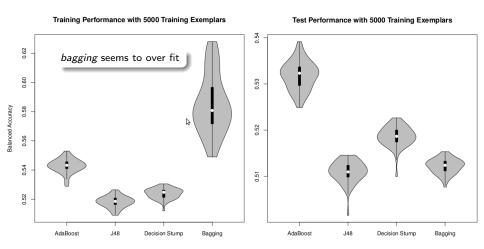
Goal

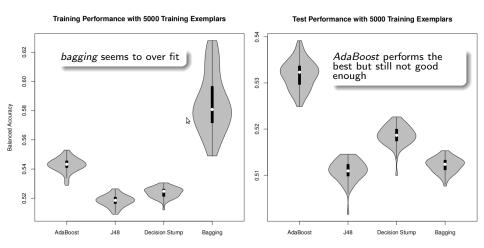
determine the best performing machine learning algorithm for BRFSS dataset to prescribe sleeping aids

Setup

- **1 algorithms**: decision stump, C4.5-J8, Bagging and AdaBoost
- example data: 50 different randomly selected training sets (of two sizes: 2500 exemplars and 5000 exemplars)
- **features**: *information gain-based* feature selection algorithm (Yang and Pedersen, 1997) to select **30 features**
- labelling: ground truth was established using the output of the knowledge-based reasoner where possible







¹Violin plots are a combination of a box plot and a density plot ➤ < ≥ ➤ < ≥ ➤ < > < <

Ex 2 – Tolerance to Missing Information

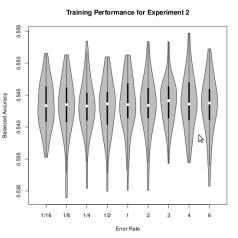
Goal

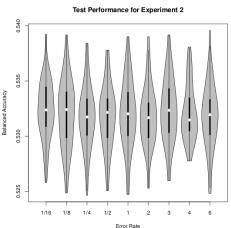
study the impact of data missingness (ϵ) for **AdaBoost** based classifiers

Setup

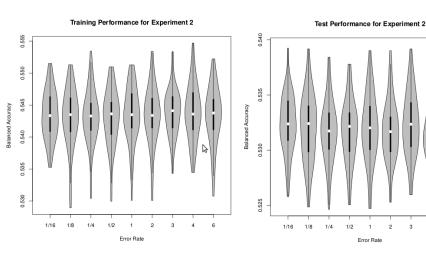
- noise → missing data: removing known values from the patient records
- **② noise factor** ϵ : describes the probability of introducing noise at random across all insomnia related features
- **1 information challenge**: for each value of ϵ ,
 - create sample dataset
 (50 sets of 5000 exemplars from the noised data)
 - train AdaBoost based classifier

Ex 2 – Tolerance to Missing Information





Ex 2 – Tolerance to Missing Information



AdaBoost based classifiers are tolerant to 'missingness'

Goal

hybrid construction to impute missing information

Data imputation:

$$R_{org} = \{f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8, f_9\}$$

$$R_{n\epsilon_i} = \{f_1, \Box, f_3, f_4, \Box, \Box, f_7, f_8, f_9\}$$

$$R_{imp} = \{f_1, \mathbf{p_2}, f_3, f_4, \mathbf{p_5}, \mathbf{p_6}, f_7, f_8, f_9\}$$

Goal

hybrid construction to impute missing information

Data imputation:

$$R_{org} = \{f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8, f_9\}$$

$$R_{n\epsilon_i} = \{f_1, \Box, f_3, f_4, \Box, \Box, f_7, f_8, f_9\}$$

$$R_{imp} = \{f_1, \mathbf{p_2}, f_3, f_4, \mathbf{p_5}, \mathbf{p_6}, f_7, f_8, f_9\}$$

Goal

hybrid construction to impute missing information

Data imputation:

$$R_{org} = \{f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8, f_9\}$$

$$R_{n\epsilon_i} = \{f_1, \Box, f_3, f_4, \Box, \Box, f_7, f_8, f_9\}$$

$$R_{imp} = \{f_1, \mathbf{p_2}, f_3, f_4, \mathbf{p_5}, \mathbf{p_6}, f_7, f_8, f_9\}$$

Setup

- **1** transform $R_{org} \rightarrow R_{n\epsilon}$
- $oldsymbol{@}$ from $R_{n\epsilon}$ generate an example dataset for training and testing
- learn an AdaBoost classifier for each missing feature to impute
- openies predict the missing value using the feature classifier
- observe the impact of *missingness* on the knowledge-based MDSS

Setup

- **1** transform $R_{org} \rightarrow R_{n\epsilon}$
- ② from $R_{n\epsilon}$ generate an example dataset for training and testing
- learn an AdaBoost classifier for each missing feature to impute
- openies predict the missing value using the feature classifier
- observe the impact of missingness on the knowledge-based MDSS

Setup

- **1** transform $R_{org} \rightarrow R_{n\epsilon}$
- **②** from $R_{n\epsilon}$ generate an example dataset for training and testing
- Rorg is used for establishing ground truth for labelling
- learn an AdaBoost classifier for each missing feature to impute
- operation predict the missing value using the feature classifier
- observe the impact of missingness on the knowledge-based MDSS

Setup

- **1** transform $R_{org} \rightarrow R_{n\epsilon}$
- ② from $R_{n\epsilon}$ generate an example dataset for training and testing
- learn an AdaBoost classifier for each missing feature to impute
- operation predict the missing value using the feature classifier
- observe the impact of missingness on the knowledge-based MDSS

Setup

- **1** transform $R_{org} \rightarrow R_{n\epsilon}$
- ② from $R_{n\epsilon}$ generate an example dataset for training and testing
- Rorg is used for establishing ground truth for labelling
- learn an AdaBoost classifier for each missing feature to impute
- predict the missing value using the feature classifier
- observe the impact of *missingness* on the knowledge-based MDSS

Setup

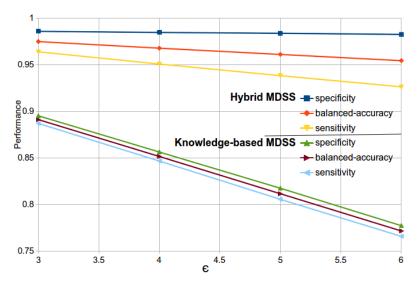
- **1** transform $R_{org} \rightarrow R_{n\epsilon}$
- ② from $R_{n\epsilon}$ generate an example dataset for training and testing
- learn an AdaBoost classifier for each missing feature to impute
- predict the missing value using the feature classifier
- observe the impact of missingness on the knowledge-based MDSS

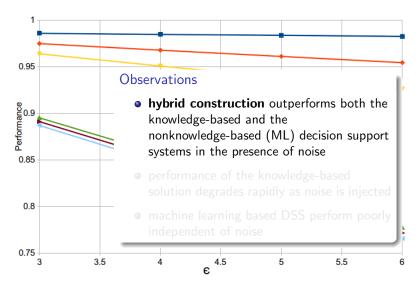
Setup

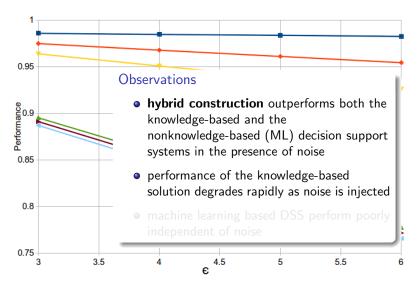
For a given ϵ (noise/missingness):

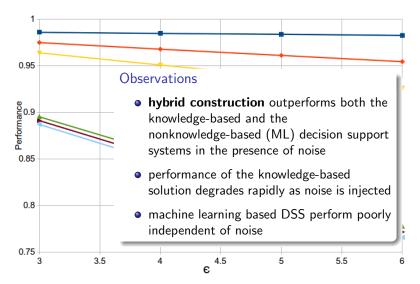
- **1** transform $R_{org} \rightarrow R_{n\epsilon}$
- ② from $R_{n\epsilon}$ generate an example dataset for training and testing
- learn an AdaBoost classifier for each missing feature to impute
- predict the missing value using the feature classifier
- observe the impact of missingness on the knowledge-based MDSS

repeated for top four ϵ values









Outline

- Background
- 2 Architecture
- Experimental Validation
- 4 Conclusion

Conclusion

Hybrid Construction for MDSS

- demonstrated the value of a hybrid MDSS that combines ontological and machine learning approaches on real-world dataset
- the hybrid construction fulfils all design goals

Future Work

- False Information
 - missing vs. false information (what if the patient provides wrong details)
 - the hybrid construction fulfils all design goals
- Confidence Estimations
- POC
 - deployable implementation

Thank You!

Atif Khan

John Doucette

Robin Cohen

References

- [1] E.S. Berner. *Clinical decision support systems: theory and practice.* Springer Verlag, 2007.
- [2] John Doucette, Atif Khan, and Robin Cohen. "A Comparative Evaluation of an Ontological Medical Decision Support System (OMeD) for Critical Environments". In: IHI 2012 - 2nd ACM SIGHIT International Health Informatics Symposium. 2012.
- [3] S. Hussain. "K-MORPH: A Semantic Web Based Knowledge Representation and Context-Driven Morphing Framework". In: *Advances in Artificial Intelligence* (2009), pp. 279–282.
- [4] Atif Khan et al. "An Ontological Approach To Data Mining For Emergency Medicine". In: 2011 Northeast Decision Sciences Institute Conference Proceedings 40th Annual Meeting. Montreal, Quebec, Canada, 2011, pp. 578–594.

References (cont.)

- [5] J. Lin and A. Kolcz. "Large-scale machine learning at twitter". In: Proceedings of the 2012 international conference on Management of Data. ACM. 2012, pp. 793–804.
- [6] Y. Yang and J. O. Pedersen. "A comparative study on feature selection in text categorization". In: *Proceedings of ICML-97, 14th International Conference on Machine Learning.* 1997, pp. 412–420.