Pizza Ontology

"a review of core concepts for building a pizza ontology"

presented by:

presentation material based on:

Horridge, Matthew.

"A Practical Guide To Building OWL Ontologies Using Protégé 4 and CO-ODE Tools – Edition 1.3". The University of Manchester (2011).

Outline

- Disclaimer
 - I am **not** an ontology engineer
- Goal
 - duration ~ 30 mins
 - review some basic ontology components
 - concepts, object properties, data properties, individuals
 - classification
 - introduce Protégé ontology editor
 - share my experience building the Pizza Ontology

Core Terminology

Ontology

"An ontology is a **formal**, **explicit** specification of a **shared** conceptualization" R. Studer (1998)

- Components
 - concepts define <u>aggregation</u> of things
 - *individuals* are **instances** of concepts
 - properties <u>link</u> concepts/individuals

Core Terminology

- Triples
 - a <u>representation</u> of ontological components
 - using the following notation

Subject verb Object

- example: "a pizza has a deep pan base"

Pizza hasBase DeepPanBase

Why Use Ontologies

- Precision of:
 - representation/expression
 - information sharing
 - knowledge inference

"Now! *That* should clear up a few things around here!"

http://photos1.blogger.com/blogger2/1715/1669/1600/larson-oct-1987.gif

Creating a Pizza Ontology

Define Core Concepts

- Identify core concepts
 - Pizza
 - Pizza Base
 - Pizza Toppings

Define Core Concepts

- Unique name assumption
 - need to explicitly define
 sameness & uniqueness using
 - Equivalent to
 - Disjoint with

example1.owl

Jan 14th, 2013 pizza ontology review 10

Define Properties

- Link concepts using properties
 - a pizza has a deep pan base (hasBase)
 - a pizza has a mozzarella cheese topping (hasCheeseTopping)
 - a pizza has a tomato and cheese topping (hasTomatoTopping) and (hasCheeseTopping)
- Property Hierarchy

hasBase ► hasIngrediant < hasTopping

Define Inverse Properties

- Inverse property
 - each object property may have a corresponding inverse property
 - "a pizza has a deep pan base"
 - a deep pan is a base of a pizza

(isBaseOf) is inverse of (hasBase) (hasBase) is inverse of (isBaseOf)

Characteristics of Properties

- OWL primitives to enrich relationship definitions (see §4.6)
 - functional & inverse functional
 - transitive
 - symmetric & anti-symmetric
 - reflexive & irreflexive

Property Domains & Ranges

Definition

 properties link individuals from the <u>domain</u> to individuals from the <u>range</u>

Property Restrictions

- Restriction ≈ Anonymous Class
 - a restriction <u>is a class</u> definition that <u>groups</u> individuals together based on one or more <u>object properties</u>

- Example
 - class of <u>individuals</u> that have <u>at least one</u>
 "<u>hasTopping</u>" relationship to individuals that are members of <u>MozzarellaTopping</u>

Existential Restrictions

- Intention
 - describe "some values from" restrictions
- Example
 - a pizza must have a pizza base

Existential Restrictions

Existential Restrictions

- Implication of "hasBase some PizzaBase"
 - if something is a Pizza then it is
 <u>necessary</u> for it to have a kind of PizzaBase

Figure 4.34: A Schematic
Description of a Pizza — In order
for something to be a Pizza it is
necessary for it to have a (at least
one) PizzaBase — A Pizza is a
subclass of the things that have at
least one PizzaBase

(M. Horridge, 2011)

Using the Reasoner (Classifier)

- Using a reasoner we can
 - determine class inconsistencies
 - e.g. inconsistent pizza
 - discovering implicit information
 - using necessary and sufficient conditions
 - e.g. cheesy pizza

Inconsistent Pizza Topping

23

Inconsistent Pizza Topping

Using the Reasoner (Classifier)

- Using a reasoner we can
 - determine class inconsistencies
 - e.g. inconsistent pizza
 - discovering implicit information
 - using necessary and sufficient conditions
 - e.g. cheesy pizza

Cheesy Pizza

Explicit & Implicit definitions

- NamedPizza and its sub-classes are explicitly defined
- Discover sub-classes of CheesyPizza

Cheesy Pizza

- Intention
 - describe "all and <u>only</u> values from" restrictions
- Example
 - a "vegetarian pizza"
 can only have
 cheese or vegetable toppings

Jan 14th, 2013

- Run the reasoner
 - expected behaviour:
 - Soho pizza and Margherita pizza should be classified as vegetarian pizzas
 - actual behaviour
 - reasoner does not find any vegetarian pizza subclasses

Open World Assumption

- OWA What it means:
 - missing information is **not** confirmation of negation
 - in other words:
 - SohoPizza and MargheritaPizza toppings must be explicitly limited to their toppings

SohoPizza:

hasTopping **only** (
 MozzarellaTopping
 or TomatoTopping
 or OliveTopping
 or ParmezanTopping)

MargheritaPizza:

hasTopping **only** (MozzarellaTopping or TomatoTopping)

Working with Protégé

- Protégé is simply an ontology IDE
 - editing
 - visualization
 - validation
- not required but extremely useful for
 - managing large ontologies
 - discovering existing ontologies