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Motivation

Medical Decision Support Systems
(MDSS)

can a drug/procedure be administered to Alice?

Challenges

information constraints – access, completeness

expert knowledge – who is treating Alice

temporal aspects – emergency medical scenarios
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Motivation

Build a medical decision support system with the capability to handle
the following knowledge features:

black swan theory & Alice

Alice’s medical history

nature of the drug/procedure

expert knowledge

information availability
...
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1 Background

2 Architecture

3 Experimental Validation

4 Conclusion
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Background

Medical Decision Support Systems (MDSS)

Definition

computer systems designed to
impact clinician decision making
about individual patients.

(Berner, 2007)

Definition

clinical decision support systems link
health observations with health
knowledge to influence health choices
by clinicians for improved health care.

(Dr. R. Hayward, 2004)
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Background

MDSS Classification (Berner, 2007)
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Medical Decision
Support Systems

Knowledge-based
MDSS

Nonknowledge-based
MDSS



Background

Characteristics

Knowledge-based MDSS

structured data
representation (schema)

knowledge is persisted in
data-stores

expert knowledge →
system rules

heuristics based
evidence based

reasoning capacity
using inference engines

Nonknowledge-based MDSS

learn from raw data
(semi/un-structured)

based on machine learning
techniques

patterns in the data
past examples/cases

learning capacity

probabilistic prediction
capability
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Background

Advantages & Disadvantages

Knowledge-based MDSS

quite capable and robust
when the knowledge base is
complete

system made decisions are

based on logical
rules/axioms
can be easily explained to
end users X
can be verified using logic
proofs X

Nonknowledge-based MDSS

generally tolerant to noise X

may mistake weaker signals
in data as noise

computationally expensive
to build and maintain

require a training phase
specific to a line of inquiry
require retraining as more
information becomes
available

Khan et al. (Computer Science) Hybrid MDSS September 13, 2012 8 / 48



Background

Advantages & Disadvantages

Knowledge-based MDSS

quite capable and robust
when the knowledge base is
complete

system made decisions are

based on logical
rules/axioms
can be easily explained to
end users X
can be verified using logic
proofs X

Nonknowledge-based MDSS

generally tolerant to noise X

may mistake weaker signals
in data as noise

computationally expensive
to build and maintain

require a training phase
specific to a line of inquiry
require retraining as more
information becomes
available

Khan et al. (Computer Science) Hybrid MDSS September 13, 2012 8 / 48



Background

Ontology-based Structured Knowledge Representation
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Ontology-based Structured Knowledge Representation

Patient

Disease

Drug

Condition

hasConditionhasDisease

treatstreats
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Background

Ontology-based Structured Knowledge Representation

Ontology

Let V be the set of structured vocabulary, and Ax axioms about V , which
are formulated in formal language L.

An ontology is a sign-system: ont = (L,V ,Ax),

where, the symbols of V denote categories, and relations between categories or
between their instances.

(Hussain, 2009)
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Background

Knowledge Inference & Reasoning

Rules-based inference:

discover implicit knowledge;
{assertions} → {implications}

Reasoning
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result → query answer

proof →
based on first order logic,
represents a unique traversal
path through the knowledge
graph
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Background

A Simple Example – Who has high blood pressure?

Knowledge Base

: A l i c e a : P a t i e n t ; : h a s S y s t o l i c 1 1 9 ; : h a s D i a s t o l i c 7 5 .
: Kate a : P a t i e n t ; : h a s S y s t o l i c 1 4 4 ; : h a s D i a s t o l i c 9 1 .
: Dave a : P a t i e n t ; : h a s S y s t o l i c 1 2 0 ; : h a s D i a s t o l i c 1 0 1 .
: Bob a : P a t i e n t ; : h a s C o n d i t i o n : H i g h B l o o d P r e s s u r e .
: John a : P a t i e n t .

Inference Rule

{?P a : P a t i e n t ; : h a s S y s t o l i c ?SYS . ?SYS math : g r e a t e r T h a n 1 4 0 .}
=> {?P : h a s C o n d i t i o n : H i g h B l o o d P r e s s u r e } .

{?P a : P a t i e n t ; : h a s D i a s t o l i c ?DIA . ?DIA math : g r e a t e r T h a n 9 0 .}
=> {?P : h a s C o n d i t i o n : H i g h B l o o d P r e s s u r e } .

Query

:WHO : h a s C o n d i t i o n : H i g h B l o o d P r e s s u r e .
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Background

A Simple Example – Who has high blood pressure?

Result & Proof

{ : Bob : h a s C o n d i t i o n : H i g h B l o o d P r e s s u r e } e : e v i d e n c e <kb . n3# 12> .

{{ : Kate a : Pat i e n t } e : e v i d e n c e <kb . n3# 10> .
{ : Kate : h a s S y s t o l i c 144} e : e v i d e n c e <kb . n3# 10> .
{144 math : g r e a t e r T h a n 140} e : e v i d e n c e <math#kb>} => {

{ : Kate : h a s C o n d i t i o n : H i g h B l o o d P r e s s u r e } e : e v i d e n c e < r u l e s . n3# 3>} .

{{ : Dave a : Pat i e n t } e : e v i d e n c e <kb . n3# 11> .
{ : Dave : h a s D i a s t o l i c 101} e : e v i d e n c e <kb . n3# 11> .
{101 math : g r e a t e r T h a n 90} e : e v i d e n c e <math#kb>} => {

{ : Dave : h a s C o n d i t i o n : H i g h B l o o d P r e s s u r e } e : e v i d e n c e < r u l e s . n3# 7>} .

But what about John? → open vs. closed world assumptions.
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Background

Machine Learning

Key Tasks:

1 supervised learning

classification: predict the class of an instance of data
regression: prediction of a numeric value

2 unsupervised learning

clustering: group similar items together
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Background

Machine Learning
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classification: predict the class of an instance of data
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Background

Machine Learning–Classification

Definition

Let X be the input space and Y be the output space.
Then a training set of examples can be defined as :
D = {(x1, y1), (x2, y2) . . . (xn, yn)}.

The machine learning task is to induce a function p : X → Y that best
explains the training data.

where,
best → minimizing “loss”, via a loss function L = f (p(xi ), yi )
p(xi ) is predicted output, and yi is actual output.
xi is represented as a feature vector.

(Lin and Kolcz, 2012)
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Background

Machine Learning–Classification: General Approach

Steps

data collection & pre-processing

data analysis (abnormal values, outliers etc.)

feature selection & labelling

train – build a classifier based on the training examples

test – evaluate the classifier based on the test examples

system integration of the classifier
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Architecture

Outline

1 Background

2 Architecture

3 Experimental Validation

4 Conclusion
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Architecture

Proposed Solution

Design Goals

1 patient-centric, evidence-based

2 automated (machine processable)

3 operate in constrained environments

4 decisions are easy to explain and validate

5 tolerant to noise in patient data → information challenge

Note: A knowledge-based MDSS meets 1-4 design objectives
but fails to meet 5
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Architecture

Proposed Solution: OMeD – Knowledge-based MDSS

(Khan et al., 2011)

Khan et al. (Computer Science) Hybrid MDSS September 13, 2012 19 / 48

Design Characteristics

ontological data
representation

expert knowledge as
inference rules

logic-based decision making

Drawbacks

susceptible to noise in data
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Architecture

Proposed Solution: Nonknowledge-based Engine

Recall: ML techniques are tolerant to noise

Design update: Replace semantic reasoner with a ML-based classifier

Validation strategy

line of inquiry: drug prescription

synthetic dataset: {Patient,Drug ,Disease}
patient-to-drug interactions
drug-to-drug interactions
disease-to-drug interactions

result: ML based classifiers performed poorly at prescribing the right
drugs to the right patients

(Doucette, Khan, and Cohen, 2012)
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Architecture

Proposed Solution – Hybrid MDSS
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Architecture

Algorithm
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False model: deduction fails
due to the facts themselves

Counter model: deduction fails
due to incomplete facts
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Experimental Validation

Outline

1 Background

2 Architecture

3 Experimental Validation

4 Conclusion
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Experimental Validation

Experimental Validation

Line of Inquiry: Sleeping pill prescription

which patients can be prescribed what sleep medications?

prescribing sleep medication is not trivial
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Experimental Validation

Dataset – BRFSS

Patient Records

Behavioral Risk Factor Surveillance System (BRFSS)
Center of Disease Control and Prevention

2010 dataset (records: 450K+ , features: 400+)

multi-dimensional

demographic information
(age, race, sex, geographic location)
medical information
(cancer, asthma, mental illness,diabetes)
behavioural Information
(alcohol consumption, drug use, sleep deprivation)
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Experimental Validation

Additional Datasets: Expert Knowledge

Mayo clinic sleeping pill prescription protocol

describes expert rules dictating what sleeping
drugs can be administered under a given
set of medical conditions

available online (HTML format)

drug-to-drug interaction rules

from drug.com online registry

pain and sleeping medication interactions
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Experimental Validation

Ontological Knowledge Representation
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Experimental Validation

BRFSS Data to Patient Records

Data mapping

BRFSS code book defined the semantics of the raw values

the raw values were then mapped to ontological concepts
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Experimental Validation

Expert Knowledge Representation

Mayo Clinic Sleeping Pill Prescription Protocol
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Experimental Validation

Expert Knowledge Representation

Drug-to-Drug Interactions

: Propoxyphene a : Drug ;
: i s P r e s c r i b e d F o r : Pain ;
: i s C o n t r a I n d i c t i v e : E s z o p i c l o n e .

: Wygesic a : Drug ;
: i s P r e s c r i b e d F o r : Pain ;
: i s C o n t r a I n d i c t i v e : E s z o p i c l o n e .

: T r y c e t a : Drug ;
: i s P r e s c r i b e d F o r : Pain ;
: i s C o n t r a I n d i c t i v e : E s z o p i c l o n e .

: Propacet100 a : Drug ;
: i s P r e s c r i b e d F o r : Pain ;
: i s C o n t r a I n d i c t i v e : E s z o p i c l o n e .

: A s p i r i n a : Drug ;
: i s P r e s c r i b e d F o r : Pain .

: T y l e n o l 1 a : Drug ;
: i s P r e s c r i b e d F o r : Pain .

: T y l e n o l 2 a : Drug ;
: i s P r e s c r i b e d F o r : Pain ;
: i s C o n t r a I n d i c t i v e

: S l e e p i n g M e d i c a t i o n .

N3 Tripple representation
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Experimental Validation

Inference Rules

Drug-to-Drug Interactions

If a patient is taking an existing drug D1 and
D1 has contraindication to another drug D2
then drug D2 should not be prescribed to the patient

N3 Representation

{ ?P a : P a t i e n t .
?D1 a : Drug .
?D2 a : Drug .
?P : i s T a k i n g ?D1 .
?D1 : h a s C o n t r a I n d i c a t i o n ?D2 . } => {?P : cannotBeGiven ?D2} .
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Experimental Validation

Inference Rules

Drug-to-Disease Interactions

If a patient has a condition that has a contraindication to a drug
then the patient should not be given the drug

N3 Representation

{ ?P a : P a t i e n t .
?D a : Drug .
?P : h a s D i s e a s e ? DIS .
?D : h a s C o n t r a I n d i c a t i o n ? DIS .} => {?P : cannotBeGiven ?D} .
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Experimental Validation

Putting it All Together

DataSets

BRFSS-2010
Mayo Clinic sleeping pill prescription protocol
sleeping pill-to-pain medication interaction

Knowledge engineering:

Resource Description Framework (RDF)/Notation-3 (N3) based
ontological model
scenario specific ontology
inference rules

Semantic Reasoner

EulerSharp

Machine Learning toolkit

Weka
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Experimental Validation

Evaluation Criteria

Sensitivity

identify true positives

Sens =
tp

tp + fn

Specificity

identify true negatives

Spec =
tn

tn + fp

Balanced Accuracy

simple average of specificity
and sensitivity

balAcc =
Spec + Sens

2

where,
tp = true positive,
fp = false positive,
tn = true negative,
fn = false negative,
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Experimental Validation

System Evaluation

3 Stage Experiment:

1 evaluate machine learning based MDSS on BRFSS patient dataset

2 introduce information challenge

3 evaluate the hybrid construction
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Experimental Validation

Ex 1 – ML Evaluation

Goal

determine the best performing machine learning algorithm for
BRFSS dataset to prescribe sleeping aids

Setup

1 algorithms: decision stump, C4.5-J8, Bagging and AdaBoost

2 example data: 50 different randomly selected training sets
(of two sizes: 2500 exemplars and 5000 exemplars)

3 features: information gain-based feature selection algorithm (Yang
and Pedersen, 1997) to select 30 features

4 labelling: ground truth was established using the output of the
knowledge-based reasoner where possible
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Experimental Validation

Ex 1 – ML Evaluation
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Experimental Validation

Ex 2 – Tolerance to Missing Information

Goal

study the impact of data missingness (ε) for AdaBoost based classifiers

Setup

1 noise → missing data:
removing known values from the patient records

2 noise factor ε: describes the probability of introducing noise at
random across all insomnia related features

3 information challenge: for each value of ε,

create sample datasets
(50 sets of 5000 exemplars from the noised data)
train AdaBoost based classifier
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Experimental Validation

Ex 2 – Tolerance to Missing Information
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Experimental Validation

Ex 3 – Hybrid Construction Evaluation

Goal

hybrid construction to impute missing information

Data imputation:

Rorg = {f1, f2, f3, f4, f5, f6, f7, f8, f9}

Rnεi = {f1,�, f3, f4,�,�, f7, f8, f9}

Rimp = {f1,p2, f3, f4,p5,p6, f7, f8, f9}
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Experimental Validation

Ex 3 – Hybrid Construction Evaluation

Setup

For a given ε:

1 transform Rorg → Rnε

2 from Rnε generate an example dataset for training and testing

3 Rorg is used for establishing ground truth for labelling

4 learn an AdaBoost classifier for each missing feature to impute

5 predict the missing value using the feature classifier

6 observe the impact of missingness on the knowledge-based MDSS

repeated for top four ε values
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Ex 3 – Hybrid Construction Evaluation
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Conclusion

Conclusion

Hybrid Construction for MDSS

demonstrated the value of a hybrid MDSS that combines ontological
and machine learning approaches on real-world datasets

the hybrid construction fulfils all design goals
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Conclusion

Future Work

1 False Information
missing vs. false information
(what if the patient provides wrong details)
the hybrid construction fulfils all design goals

2 Confidence Estimations
3 POC

deployable implementation
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Conclusion

Thank You!
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