Relational Logic

HOW DO WE REPRESENT SOFTWARE DESIGNS?

Alloy®-87 is a first-order logic with relations and transitive closure.

Relation is a fancy word for table; tuple is a fancy word for row. An

intuition for transitive closure is ‘where can we get to from here?’

sig Tree { root : Node }
sig Node {
left , right : lone Node,
value one Int,
}
value: 3
Node2 Node3
value: 0 value: 5
y
Node6 Nodel Node5 NodeO
value: -2 value: 2 value: 4 value: 6
union
left + right transitive closure transitive closure
Nodeq | Nodez2 Neft Aright
Node2 | Node6 Nodes4 | Nodez Nodes | Nodes
Node3 | Nodes Node2 | Node6 Node2 | Node1
Node4 | Nodes Node3 | Nodes Node3 | Nodeo
Node2 | Node1 Node4 | Node6 Node4 | Nodeo
Node3 | Nodeo
root.A(left + right) Comprehension questions:
Treeo | Nodeo 1. Why isn’t Nodeg included in this relation?
jom Treeo | Nodet 2. How could the expression be changed so that
_Treeoroot Treeo | Node2 Node4 would be included?
Nodes Treeo | Node3 4 ’
Treeo | Nodes 3. What does the expression Treeo.root."(left +
Treeo Node6 I'lght) evaluate to?

reflexive transitive closure: *r = "r + iden

33

% Daniel Jackson. Software Abstractions:
Logic, Language, and Analysis. The MIT
Press, Cambridge, Mass., April 2006.
ISBN 978-0-262-10114-1

87 http:/ /alloy.mit.edu

Figure 7: An Alloy model of a binary
tree. An intuition, good to a first-order
approximation, is to read this like

class declarations in an object-oriented
language. Going beyond this intuition,
root, left, right, and value are really
binary relations; see the example below.

Figure 8: An instance of a binary tree. If
we write the relations from this figure
out in tabular form they look like this:

Tree root
Treeo Treeo [Nodeyg

Node value
Nodeo Nodeo 6
Node1 Node1 2
Node2 Node2 o
Node3s Node3 | 5
Nodeyg Nodeg | 3
Nodes Nodes | 4
Node6 Node6 | -2

left right

Nodeg | Node2 Nodesg | Nodes
Node2 | Node6 Node2 | Noder
Node3 | Nodes Node3 | Nodeo

Int is the set of all integers, and iden is
the identity relation (a binary relation
that maps every atom to itself).
iden
"~ Treeo | Treeo
Nodeo | Nodeo
Node1 | Node1

Int Node2 | Nodez
-8 Node3 | Nodes
-7 Nodes | Nodes4

Nodes | Nodes
: Node6 | Node6
6 8| -8

7 7| -7
616
717

