
Linux as a Case Study� Its Extracted Software Architecture

Ivan T� Bowman and Richard C� Holt

Dept� of Computer Science
University of Waterloo

Waterloo� Ontario N�L �G�
CANADA

�� �	�
� ���
�	�� x����
fitbowman�holtg�plg�uwaterloo�ca

Neil V� Brewster

Dept� of Electrical and Computer Engineering
University of Toronto

Toronto� Ontario M	S �A�
CANADA

�� �����
��
	���
brewste�cs�toronto�edu

ABSTRACT

Many software systems do not have a documented sys�
tem architecture� These are often large� complex sys�
tems that are di�cult to understand and maintain� One
approach to recovering the understanding of a system is
to extract architectural documentation from the system
implementation� To evaluate the e�ectiveness of this ap�
proach� we extracted architectural documentation from
the LinuxTM kernel� The Linux kernel is a good candi�
date for a case study because it is a large ��		 KLOC

system that is in widespread use and it is representative
of many existing systems� Our study resulted in doc�
umentation that is useful for understanding the Linux
system structure� Also� we learned several useful lessons
about extracting a system�s architecture�

Keywords

Software architecture� architecture recovery� redocu�
mentation

� INTRODUCTION

Recent research �
��
�� suggests that large software sys�
tems should be designed with a documented software
architecture� This architecture provides a building plan
for a system at a high level of abstraction� Individual
functions and even modules are not described in de�
tail� instead� subsystems and relations between them
are documented� This level of abstraction is appropri�
ate for understanding an entire software system� and
provides a good mechanism for system understanding�

We now know that using a documented software ar�
chitecture throughout the lifetime of a software system
can improve the quality and maintainability of the sys�
tem� However� many existing systems do not have a
documented system architecture� These systems are too
valuable to discard or re�develop� but are often plagued
by high maintenance costs� poor performance� or secu�

rity risks� There is an approach that appears to be
a promising way to get the bene�ts of a documented
software architecture for these legacy systems� we can
use automated tools to help extract architectural doc�
umentation from a system implementation� This ap�
proach has been used successfully by several researchers
��� ��
	�
�� �	� to extract an architectural description
from complex software systems�

Architectural redocumentation restores system under�
standing by abstracting important entities and their re�
lationships in a large software system� This enhanced
understanding can be used as part of a re�engineering
e�ort� as a way to reduce maintenance costs� or as an
input to a system evaluation� Unless architectural doc�
umentation is maintained� it will become obsolete as
the system undergoes further changes� Finnigan et al�
���
�� propose a way to keep architectural documenta�
tion up to date� First� automated tools are combined
with human e�ort to extract system documentation and
store it in a Software Bookshelf� As the system changes
after the documentation extraction� a librarian uses au�
tomated tools to compare the system�s implementation
with the documentation� The librarian updates the doc�
umentation to re�ect system changes �or perhaps pre�
vents system changes that cause architectural erosion as
described by Perry and Wolf �
��
�

LinuxTM is a UnixTM �like operating system that has
received much popular attention ���� Linux is based
on the Open SourceTM concept �
��� which means that
there are no barriers to discussing the details of the sys�
tem implementation� Linux has an interesting software
structure that is similar to other large software systems�
Linux is also a system that is growing rapidly� the source
code for the Linux system has approximately doubled
every year from
	 KLOC in
��
 to
�� MLOC in
���
����

Because Linux is an interesting representative of exist�
ing software systems� we chose to examine it as a case
study� In particular� we studied the Linux kernel� which
is responsible for process� memory� and hardware device
management� The Linux kernel is itself a large system
�approximately �		 KLOC
� Although there is some ex�

isting documentation about the Linux kernel ���
��� this
documentation describes individual subsystems and al�
gorithms� There is no architectural documentation that
describes the system structure at a high level of abstrac�
tion�

The Linux kernel is a good guinea pig for architectural
recovery� It is a large system in widespread use� and it
is an interesting representative of real software systems�
Because Linux is freely available� there are no barriers
to discussing its architectural structure in detail� To
promote further use of the Linux kernel as a case study�
we are making the architectural relations and system
architecture that we extracted from the system imple�
mentation available to other researchers �

��

Case Study Approach

Two types of architectural documentation are particu�
larly bene�cial to humans trying to understand a soft�
ware system� a conceptual architecture and a concrete
architecture� The conceptual architecture shows how
developers think about a system� it shows relationships
between subsystems that are �meaningful� to develop�
ers� For example� a subsystem might depend on another
only for debugging purposes� but this dependency might
not be shown in a conceptual architecture of the sys�
tem� In contrast� the concrete architecture of a system
shows the relationships that exist in the implemented
system� While the conceptual architecture is easier to
understand because it contains only essential relations�
the concrete architecture is necessary when making de�
cisions requiring implementation�speci�c knowledge�

Linux has neither a documented conceptual nor a doc�
umented concrete architecture� There is existing doc�
umentation that describes the kernel� but it describes
individual subsystems in detail instead of concisely de�
scribing the relations between subsystems� As a �rst
step in our recovery e�ort� we examined the existing
documentation to determine the conceptual architec�
ture of the Linux system� This conceptual architecture
helped when examining the system implementation to
form the concrete architecture�it allowed us to concen�
trate on important relationships� and provided an initial
system structure�

Our approach to extracting the concrete architecture of
the Linux kernel was as follows�

� Examine existing documentation to form a concep�
tual architecture of the Linux kernel�

� Group source �les into subsystems based on direc�
tory structure� naming conventions� source code
comments� and examination of the source code�
Use the conceptual architecture as a guide in to
what subsystems should be created and where �les
should be clustered�

� Extract relations between source �les in the Linux

implementation�
� Use the relations between source �les and clustering
of �les to determine relations between subsystems�

� Use the clustering and relationships to form a con�
crete architecture of the Linux system�

Paper Organization

The rest of this paper is organized as follows� Sec�
tion � describes the conceptual architecture of Linux�
Section � describes the process we used to extract the
Linux concrete architecture� Section � describes the
concrete architecture� Section � draws conclusions from
this work�

� CONCEPTUAL ARCHITECTURE

We began our study of the Linux kernel by forming its
conceptual architecture� This conceptual architecture
acts as a framework which we use while examining the
system implementation� The conceptual architecture
helps us understand the volume of detail in the imple�
mentation by providing a suggested system structure�

We used descriptions �
��
�� of related operating sys�
tems �Unix and Minix
 and existing Linux documenta�
tion to create an architectural description of the struc�
ture we expected to �nd in the Linux system� After
reviewing existing documentation ���
��� we arrived at
the conceptual architecture� shown at its highest level
of abstraction in Figure
�

N e t w o r k
In te r face

F i l e Sys t em

M e m o r y
M a n a g e r

In te r -Process
C o m m u n i c a t i o n

Process
S c h e d u l e r

depends onL e g e n d : S u b s y s t e m

Ini t ia l iza t ion L i b r a r y

Figure
� Linux Conceptual Architecture

The seven major subsystems are the following�

� The Process Scheduler is responsible for support�
ing multitasking by changing which user process
executes�

�� The Memory Manager subsystem provides a sepa�
rate memory space for each user process� and uses
swapping to support more processes than �t in
physical memory�

�

�� The File System provides access to hardware de�
vices� User processes can access keyboards� tape
drives� hard drives� and modems using one inter�
face that is implemented by the File System�

�� The Network Interface encapsulates access to net�
work devices in a similar manner to the File Sys�
tem� User processes can communicate with other
computers using several di�erent types of network
hardware and transmission protocols�

�� The Inter�Process Communication �IPC
 subsys�
tem allows user processes to communicate with
other processes on the same computer� Synchro�
nization� memory sharing� and inter�process mes�
saging primitives are supported by the IPC subsys�
tem�

�� The Initialization subsystem is responsible for ini�
tializing the rest of the Linux kernel with appropri�
ate user con�gured settings�

�� The Library subsystem contains routines which are
used throughout the kernel�

Each of the seven kernel subsystems has additional sub�
subsystems hierarchically nested within it� The rela�
tionships shown in Figure
 are �depends�on� relation�
ships� For example� the Memory Manager subsystem
depends on the File System to swap memory to and
from disk� For clarity� the relations from the Initializa�
tion subsystem and to the Library subsystem are omit�
ted� The Initialization subsystem depends on all other
kernel subsystems since it calls initialization routines
throughout the kernel� and all of the kernel subsystems
depend on the Library subsystem�

File System Conceptual Architecture

The Linux kernel is a large system that has a complex
system structure� Its subsystems have sub�architectures
of considerable size and complexity� Due to size limita�
tions� we will focus on only one of these in this paper�
the File System� Details of the other kernel subsystems
are available in previous papers �
� ���

There are three main roles that the File System per�
forms�

� It provides access to a wide variety of hardware
devices�

�� It supports several di�erent logical �le system for�
mats that control how �les are mapped to physical
locations on hardware devices�

�� It allows programs to be stored in several exe�
cutable �le formats� including interpreted scripts�

Figure � shows the conceptual architecture of the Linux
File System� In this �gure� double�headed arrows in�
dicate dependence on or from all of the File System
subsystems� This indicates that all of the File System
subsystems depend on the Library subsystem� and the

S y s t e m C a l l
In te r face

B u f f e r C a c h e

N e t w o r k
Inter face

M e m o r y
M a n a g e r

P r o c e s s
S c h e d u l e r

Logica l F i l e
S y s t e m s

D e v i c e
D r i v e r s

Vi r tua l F i l e
S y s t e m

depends on
L e g e n d : S u b s y s t e m

K e r n e l
S u b s y s t e m

I P C

File System

E x e c u t a b l e
F i l e Fo rma t s

F i l e Q u o t a

Init ial ization L i b r a r y

depends on a l l

Figure �� File System Conceptual Architecture

Initialization subsystem depends on all of the File Sys�
tem subsystems since it calls functions to initialize them�

Linux uses the facade design pattern ��� to allow user
processes and other parts of the kernel to use elements
of the File System through a single interface� The facade
design pattern uses a single subsystem which provides a
single� simple facade interface to the subsystems within
a system� Since clients only depend on the facade inter�
face� the subsystems that implement system function�
ality can change their implementation without a�ect�
ing clients� This design pattern allows clients to take
advantage of a wide variety of hardware devices� logi�
cal �le system formats� and executable formats without
depending directly on any of the subsystems that im�
plement speci�c functionality� Since user processes and
other parts of the kernel depend only on the System
Call Interface� subsystem interdependency is reduced
substantially� The architecture of the Linux File Sys�
tem follows the �object�oriented� or �data abstraction�
architectural style described by Shaw and Garlan �
���
The subsystems of the File System act to encapsulate
state and functionality related to hardware devices or
logical �le systems� These subsystems interact through
method calls�

The main roles of the File System are implemented in
�ve subsystems�

� The Device Drivers subsystem performs all com�
munication with hardware devices supported by
Linux�

�� The Logical File Systems implements several log�
ical �le systems that can be placed on hardware
devices� these di�erent �le systems allow interop�

�

erability with di�erent operating systems� and also
allow specialized functionality such as encryption�
compression� and high performance�

�� The Executable File Formats subsystem allows
clients to execute programs from several di�erent
executable �le formats� including not only compiled
programs� but also interpreted scripts�

�� The File Quota subsystem allows system admin�
istrators to limit the amount of �le storage that
individual users may use�

�� The Bu�er Cache subsystem provides memory
bu�ers for input�output operations� and reduces
hardware accesses by caching data and eliminating
redundant reads and writes�

There are two other subsystems in the File System� the
System Call Interface and Virtual File System subsys�
tems� These two subsystems are facade interfaces� The
Virtual File System combines functionality from the
Logical File Systems and Device Drivers into a single
interface� Other kernel subsystems can use the Virtual
File System and treat all hardware devices as �les� with�
out depending on any particular hardware device driver
or logical �le system� The System Call Interface subsys�
tem presents a similar uni�ed interface� User processes
can use the System Call Interface to access any func�
tionality in the File System� without depending on the
implementation of subsystems within the File System�

The dependency relations shown in Figure � are based
on existing system documentation� Some of the de�
pendencies that are perhaps unexpected are the follow�
ing�

� The Device Driver subsystem depends on the Pro�
cess Scheduler� While a hardware request is being
completed� the associated device driver informs the
Process Scheduler that the requesting user process
should be suspended so that another process can
execute�

� The Logical File System subsystem depends on the
Network Interface subsystem� Three of the logical
�le system implementations represent �les that are
stored on another computer and accessed using the
network� These three logical �le systems depend
on the Network Interface to communicate with the
remote computer�

� The Memory Manager subsystem depends on the
Virtual File System subsystem to swap memory to
and from secondary storage�

In our conceptual architecture� no kernel subsystem de�
pends on any particular File System Format subsystem�
Device Driver subsystem� or Executable File Format
subsystem� The Memory Manager subsystem is the only
subsystem to depend on the File System� and it does so

through the Virtual File System subsystem facade� Be�
cause of the facade design pattern� the Linux File Sys�
tem architecture is very �exible� It appears it would be
easily maintainable because there are few dependencies�

The documentation we reviewed provided us with a con�
ceptual architecture that indicates the Linux system
is implemented according to strong implementation�
hiding principles� and that the system should be easily
understandable and maintainable� To �nd out whether
the implementation matches this architecture� we need
to extract a concrete architecture from the system im�
plementation�

� EXTRACTION METHODOLOGY

To determine what relations exist in the system imple�
mentation� we need to look at the de�nitive artifact�
the system source code� The size of the Linux kernel
implementation ��		 KLOC
 makes it too costly to ex�
amine the source manually� Instead� we used automated
tools to extract relations from the source code then com�
bined these relations into a concrete system architec�
ture�

S o u r c e C o d e cfx

Symbo l s Used / De f ined
by Source F i l e s

grok
Hie ra r ch i ca l
S u b s y s t e m

C o m p o s i t i o n

S u b s y s t e m U s e s
S u b y s t e m

lsedit
v i e w s

crea tes

Figure �� Extraction Process

Figure � shows an overview of the process we used to
extract a concrete system architecture from the Linux
kernel� We began by determining which source �les were
part of the kernel� Next� we used a source�code extrac�
tor called cfx �

�� This tool extracts relations such as
�function x calls function y� and �source �le x�c de�nes
function x�� The tools extracts function call and vari�
able access relations� these imply control �ow and data
�ow dependencies�

The output of cfx is a set of relations between func�
tions and variables� These relations are too detailed for
human consumption� We used the grok ���

� tool to
determine relations between source �les based on the

�

relations between the functions and variables de�ned
within the source �les� With
��� source �les in the ker�
nel implementation� even relations between source �les
are at too low a level for easy system understanding� In�
stead of relations between source �les� we would like to
examine relations between subsystems� To achieve this
result� we manually created a tree structured decompo�
sition of the Linux system into subsystems� Each source
�le was manually assigned to a single subsystem� and
each subsystem was assigned to a single containing sub�
system� We used the subsystems from our conceptual
architecture as an initial set of subsystems� and assigned
source �les to subsystems based on several criteria� di�
rectory structure� �le naming conventions� source code
comments� documentation� or� as a last resort� exami�
nation of the source code� If a set of source �les seemed
logically related� we created a new subsystem to contain
them�

After we manually created a hierarchical description of
the subsystems and source �les in the Linux kernel� we
used the grok tool to determine what relations exist be�
tween subsystems� based on the relations between the
source �les that are contained in the subsystems� The
output of the grok tool is at the appropriate level of
abstraction �inter�subsystem
� but it is still di�cult to
understand directly� We used a visualisation tool called
lsedit ���

� to visualise the extracted system struc�
ture� After viewing the extracted structure� we re�ned
the hierarchical decomposition of the system by moving
some source �les to more appropriate subsystems�

Our extraction process combined tool support and hu�
man interpretation to extract the concrete architecture
of the Linux kernel�

Hierarchical Decomposition

Before viewing the concrete architecture of the Linux
kernel� we manually created a hierarchical decomposi�
tion of the system structure� assigning source �les to
subsystems� and subsystems hierarchically to subsys�
tems� Figure � shows part of this hierarchical decom�
position �some subsystems are omitted for brevity
�

The seven major subsystems from Figure
 are shown
in the second and third rows of Figure �� These subsys�
tems also have corresponding directories in the source
code implementation� which allowed us to quickly as�
sign �les within these directories to one of the major
subsystems� Two of these major subsystems �the File
System and Network Interface subsystems
 had further
subdirectories� Where possible� we used the directory
structure to assign source �les to appropriate subsys�
tems� Where directory structure was not su�cient� we
used �le naming conventions and examination of the
source code to place source �les in subsystems� After
applying these rules� we arrived at a tree�structured de�

Memory
Manager

Process
Scheduler

Network
Interface

IPC

Executable
Formats

Buffer
Cache

File
System

Device
Drivers

Virtual File
System

Logical File
Systems

File
Quota

L e g e n d :

S u b s y s t e m
omi t t ed subsys t emscon ta ined subsys t ems

LibraryInitialization

Linux

Figure �� Partial Subsystem Hierarchy

composition of the Linux kernel such that each source
�le was placed in a single subsystem�

We used this hierarchical decomposition to view rela�
tions between subsystems instead of relations between
source �les� This level of abstraction made it possible
for us to consider the structure of the entire Linux sys�
tem�

� CONCRETE ARCHITECTURE

A combination of automated extraction tools and hu�
man interpretation allowed us to determine the struc�
ture of the Linux kernel implementation� Figure � shows
the relations that we found at the highest level of ab�
straction�

ex t r ac t ed dependencyL e g e n d : S u b s y s t e m

N e t w o r k
In te r face

F i l e Sys t em

M e m o r y
M a n a g e r

In te r -Process
C o m m u n i c a t i o n

Process
S c h e d u l e r

In i t ia l iza t ion L i b r a r y

Figure �� Linux Concrete Architecture

�

The concrete architecture in Figure � has the same
subsystems as the conceptual architecture in Figure
�
However� the dependency relations appear to be quite
di�erent from the conceptual architecture� The con�
ceptual architecture has relatively few dependencies be�
tween top�level systems with only
� inter�subsystem
dependencies� In contrast� the concrete architecture
that we extracted is almost fully connected� with ��
inter�subsystem dependencies out of a possible ���

When we examined these unexpected dependency rela�
tions� we learned that they appeared for several reasons�
In some cases� Linux developers avoided existing inter�
faces for better e�ciency� in other cases� it appeared
that the dependencies appeared only for expediency�
Whether or not these dependencies are required or de�
sirable� we learned that a concrete implementation is
likely to have more dependencies than a conceptual ar�
chitecture indicates�

File System Concrete Architecture

To further compare the conceptual and concrete archi�
tectures of the Linux system� we examined the File Sys�
tem� Figure � shows the concrete architecture that we
extracted from the File System subsystem�

The di�erences that we noted at the highest level of ab�
straction were also present within the File System� The
concrete architecture of the File System has the same
subsystems as the conceptual architecture� but there are
substantially more dependency relations�

We studied the dependencies that appear in the con�
crete architecture but not in the conceptual architec�
ture� Some we found to be quite surprising� the Network
Interface subsystem depends on the Logical File System
implementation directly� which we did not predict in
the conceptual architecture� We found that two �le sys�
tems �NCPFS and SMBFS
 that use the network were
implemented by having the Network Interface directly
call functions in the implementation of these logical �le
systems� This is substantially di�erent from our con�
ceptual architecture� which predicted that the Network
Interface would not depend on the File System at all�
since network�oriented �le systems would call the Net�
work Interface to implement their functionality� From
this dependency� we learned that unexpected dependen�
cies can occur if control �ow is implemented di�erently
than expected�

Another dependency that we did not expect is the
dependency of the Process Scheduler on the Device
Driver subsystem� The Process Scheduler has a routine
�printk
 to print messages to the console� The printk
routine calls a routine which is implemented within the
Device Drivers subsystem of the File System� This de�
pendency wasn�t part of our conceptual architecture�

We found that all of the File System subsystems de�
pended on the Inter�Process Communication �IPC
 sub�
system� contrary to the conceptual architecture predic�
tion that none of these subsystems would depend on the
IPC subsystem� Upon examination� we found that the
IPC subsystem implements synchronization primitives
that are used not only by user processes� but also by
the rest of the kernel�

In addition to the above unexpected dependencies� we
found that several dependencies could not be explained
by an examination of the source and system documen�
tation� It appears that these dependencies are due to
developers avoiding existing interfaces for expediency�

Overall� the concrete structure of the File System is
similar to the conceptual architecture that we formed
based on available documentation and related systems�
However� we found that there were substantially more
dependency relations� caused by missed dependencies in
the documentation� functionality that was implemented
in multiple subsystems� and unexpected control �ow im�
plementations� Although there are substantially more
dependencies in the concrete architecture of the File
System than the conceptual architecture� the system is
still far from fully connected� It appears that it is not
as easy to maintain and update the File System as the
conceptual architecture indicates� but the File System
still appears �exible and open to change�

Logical File System Concrete Architecture

To further explore the concrete architecture of the Linux
kernel� we examined the Logical File Systems concrete
architecture� The Logical File Systems subsystem con�
tains seventeen di�erent logical �le systems� These �le
systems are responsible for mapping logical �les �which
are presented to user processes through the System Call
Interface
 to physical locations on storage devices� Fig�
ure � shows the concrete architecture of the Logical File
Systems subsystem�

In the conceptual architecture in Figure �� we predicted
that there would be a separation between the interface
to logical �le systems and their implementations� We
expected that other kernel subsystems would not de�
pend directly on any implementation of a logical �le
system� instead depending only on the Virtual File Sys�
tem subsystem� This separation follows the facade de�
sign pattern ���� When we extracted relations from the
system implementation� we found that the situation was
not so simple�

One set of dependencies that we did not expect are due
to the PROC �le system� This �le system is a spe�
cial �le system that reports status information about
the kernel� and allows access to the status and mem�
ory of executing processes� To accomplish this report�
ing� the PROC �le system relies on other kernel subsys�

�

S y s t e m C a l l
In te r face

B u f f e r C a c h e

N e t w o r k
Inter face

M e m o r y
M a n a g e r

P r o c e s s
S c h e d u l e r

Logica l F i l e
S y s t e m sD e v i c e

D r i v e r s

Vi r tua l F i l e
S y s t e m

depends onL e g e n d : S u b s y s t e m
K e r n e l

S u b s y s t e m

I n t e r - P r o c e s s
C o m m u n i c a t i o n

File System

E x e c u t a b l e
F i l e Fo rma t s

F i l e Q u o t a

Init

depends on a l l

F i l e Q u o t a

Figure �� File System Concrete Architecture

tems to perform reporting about their status� Because
the reporting functionality is implemented throughout
the kernel� the Process Scheduler and Network Interface
subsystems depend on the PROC �le system�

Another dependency that we did not expect is the de�
pendency of the ISO subsystem on the CD�ROM device
driver� We had expected that logical �le systems would
not depend on any particular device driver implemen�
tation� instead depending only on the Facade Interface
of the Device Driver subsystem� We found that the
ISO���	 logical �le system is only used on CD�ROM
devices� and there are data types that are de�ned by
the CD�ROM device driver and used by the ISO���	
�le system�

We did �nd that the di�erent Logical File Systems
are relatively independent of each other� The excep�
tions are those systems that reuse code� the SMBFS�
NCPFS� FAT� VFAT� UMSDOS� and MSDOS subsys�
tems implement access to various MS�DOSTM related
�le systems� Because these subsystems share function�
ality� they reuse code� This reuse leads to dependencies
between the subsystems� The implementation of the
EXT�� XIA� SYSV� EXT� and MINIX �le systems is
based on similar reuse� again leading to unexpected de�
pendencies�

The Logical File Systems subsystem of the Linux File
System has more dependencies than we had predicted in
our conceptual architecture� In addition� di�erent Logi�
cal File Systems are not isolated from each other to the
extent that we had expected based on system documen�
tation� However� the facade design pattern is apparent

in the extracted system structure� and it appears to be
relatively easy to add more logical �le systems or update
existing ones�

� CONCLUSIONS

In our study� we used existing documentation and
knowledge of related systems to form the conceptual
architecture of the Linux system� Next� we used au�
tomated tools and human interpretation to extract the
concrete architecture of the Linux kernel�

The conceptual architecture of the Linux kernel contains
abstractions �such as the facade design pattern
 which
appear to limit inter�system dependencies and promote
maintainability and extendibility� Although we were
able to �nd these abstractions in the concrete architec�
ture� we found that there were unexpected dependencies
at all levels of abstraction� These extra dependencies act
to reduce the maintainability of the Linux kernel� As
the system grows� it is possible that these dependencies
will need to be eliminated�

Lessons Learned

Our extraction e�ort showed us that automated tools
are very helpful in extracting the architecture from a
system�s implementation� Our tools automatically ex�
tracted facts� and showed us relations at any level of
abstraction that we wanted� However� we still needed
a human�s judgement to determine an appropriate hi�
erarchical decomposition of the system structure based
on idiosyncratic details such as directory structure� �le
naming conventions� and examination of source code�

We found that the concrete architecture of the Linux

�

N e t w o r k
Inter face

M e m o r y
M a n a g e r

P r o c e s s
S c h e d u l e r

affs

ufs

iso

hpfs

e x t 2

sysvm i n i x x i a

vfa t

smbfs ncpfs

ex t

m s d o s

fat

p r o c

u m s d o s

nfs

Logical File Systems

K e r n e l
S u b s y s t e m

s u b s y s t e m
depends on a l l

depends on

Virtual File System
C D - R O M

D r i v e r

I P C

L e g e n d :

Device Drivers

F a c a d e
In te r face

Figure �� Logical File System Concrete Architecture

kernel has substantially more dependencies than the
conceptual architecture� In fact� the Linux kernel is
almost completely connected at the highest level of ab�
straction� We found the following reasons for additional
dependencies�

� The conceptual architecture missed the use of some
subsystems� for example� the IPC subsystem im�
plements synchronization primitives that are used
throughout the kernel� but the conceptual architec�
ture shows the IPC subsystem used only by user
processes�

� Some functionality that the conceptual architec�
ture showed in a single subsystem was implemented
in several subsystems� leading to additional depen�
dencies� For example� the PROC �le system is im�
plemented throughout the kernel�

� The conceptual architecture might show control
�ow in one manner� but the implementation might
use a di�erent mechanism� For example� the
conceptual architecture showed that the network�
oriented �le systems depended on the Network In�
terface� In the concrete architecture� we found that
the Network Interface directly calls two of these log�
ical �le systems�

� In some cases� Linux developers improved system
e�ciency by bypassing existing interfaces�

In addition to the above reasons for additional depen�
dencies� it seems that some of these dependencies exist

for developer expediency� One comment in a header �le
states �The read�only stu� doesn�t really belong here�
but any other place is probably as bad and I don�t want
to create yet another include �le��

The Linux system could be restructured to remove some
unexpected dependencies� One thing that seems to have
a�ected the use of implementation details is the organi�
zation of the source code� most of the header �les that
de�ne system details are located in a single directory�
Thus it is di�cult to determine which header �les de�ne
interfaces that should be used throughout the kernel�
and which header �les de�ne interfaces for use within
a single subsystem� In some cases� the placement of
the header �les is required by the implementation tech�
nique� the super�block of the virtual �le system contains
a union of information for each of the di�erent logical
�le systems� This means that the �le system �and any
module that uses it
 needs to have knowledge about the
details of the implementation of each of the logical �le
systems�

After reviewing the concrete structure of the Linux ker�
nel� it would be possible to update the conceptual ar�
chitecture� Some dependencies in the conceptual archi�
tecture that we formed based on documentation were
missed by simple omission�we did not see mention of
the dependencies in the documentation� nor do they
appear in related systems� The concrete architecture
should be used to re�ne the conceptual architecture�
but it is not desirable to add all relations from the con�
crete architecture since many of these relations are not
essential� and hinder system understanding because of
the additional complexity� For example� the dependence
of the Process Scheduler on the Device Drivers subsys�
tem of the File System through the single call in the
implementation of printk could be omitted from the
conceptual architecture� The development of the con�
ceptual and concrete architectures seems to be best ac�
complished with an iterative process�

Although the structure of the Linux system is desirable
in many cases because of e�ciency or other considera�
tions� it is likely that many unnecessary dependencies
could be eliminated if the system was restructured to
avoid using implementation details directly� It may not
be reasonable to do this with Linux at this point� but
perhaps when new systems are implemented� automated
tools such as those used in this case study can detect
and prevent these spurious relations�

ACKNOWLEDGEMENTS

The authors would like to thank Gary Farmaner for his
support with the extraction tools� We would also like
to thank Meyer Tanuan and Saheem Siddiqi for their
help in extracting an earlier version of the architecture�
Susan Sim provided valuable feedback on an earlier draft

�

of this paper� The contribution of the Linux developer
community is gratefully acknowledged�

REFERENCES

�
� Ivan Bowman� Conceptual architecture of the linux
kernel� Available at http���plg�uwaterloo�ca�

�itbowman�CS���G�a	��
����

��� Ivan Bowman� Saheem Siddiqi� and Meyer Tan�
uan� Concrete architecture of the linux ker�
nel� Available at http���plg�uwaterloo�ca�

�itbowman�CS���G�a
��
����

��� P� J� Finnigan� R� C� Holt� I� Kalas� S� Kerr�
K� Kontogiannis� H� A� M�uller� J� Mylopoulos�
S� G� Perelgut� M� Stanley� and K� Wong� The soft�
ware bookshelf� IBM Systems Journal� ����
����
���� October
����

��� Erich Gamma� Richard Helm� Ralph Johnson� and
John Vlissides� Design Patterns� Addison�Wesley�

����

��� R�C� Holt� Structural manipulation of software
architecture using tarski relational algebra� In
Eighth Working Conference on Reverse Engineer�
ing �WCRE����� October
���� To appear�

��� Rick Kazman and Jeromy Carri!ere� View extrac�
tion and view fusion in architectural understand�
ing� In 	th International Conference on Software
Reuse� Victoria� BC� Canada� June
����

��� The linux kernel hacker�s guide� Available at
http���www�redhat�com������HyperNews�get�

khg�html�

��� Josh McHugh� Freeware children� Forbes Magazine�
August
����

��� Josh McHugh� Linux� The making of a global hack�
Forbes Magazine� August
����

�
	� Gail C� Murphy� David Notkin� and Kevin Sullivan�
Software re�exion models� Bridging the gap be�
tween source and high�level models� In Proceedings
of the Third ACM SIGSOFT Symposium on the
Foundations of Software Engineering� pages
� ���
Washington� DC� October
���� IEEE Computer
Society Press�

�

� PBS tools� Available at http���www�turing�

cs�toronto�edu�pbs�

�
�� Dewayne E� Perry and Alexander L� Wolf� Founda�
tions for the study of software architecture� ACM
SIGSOFT Software Engineering Notes�
���
��	
��� October
����

�
�� Eric S� Raymond� The cathedral and the bazaar�
Available at http���sagan�earthspace�net�

�esr�writings�cathedral
bazaar��
����

�
�� David A� Rusling� The linux kernel� Avail�
able at http���sunsite�unc�edu�Linux�LDP�

tlk�tlk�html�

�
�� Mary Shaw and David Garlan� Software Archi�
tecture
 Perspectives on an Emerging Discipline�
Prentice Hall Press� April
����

�
�� Abraham Silberschatz and Peter Baer Galvin� Op�
erating System Concepts� Addison�Wesley� �th edi�
tion�
����

�
�� Andrew S� Tanenbaum� Modern Operating Sys�
tems� Prentice Hall�
����

�
�� Vassilios Tzerpos and R�C� Holt� A hybrid process
for recovering software architecture� In Proceed�
ings of CASCON ����� Toronto� Canada� Novem�
ber
����

�
�� Vassilios Tzerpos� R�C� Holt� and Gary Farmaner�
Web�based presentation of hierarchic software ar�
chitecture� In Workshop on Software Engineer�
ing �on� the World�Wide Web� Boston� May
����
International Conference on Software Engineering

����

��	� Kenny Wong� Scott R� Tilley� Hausi A� M�uller� and
Margaret�Anne D� Storey� Structural redocumenta�
tion� A case study� IEEE Software�

��
��	
 ��	�
January
����

�

