Recognizing handwritten mathematics via fuzzy parsing

Scott MacLean George Labahn
smaclean@uwaterloo.ca glabahn@uwaterloo.ca

David R. Cheriton School of Computer Science, University of Waterloo
Technical Report CS-2010-13

June 12, 2010

Abstract

We present a new approach to multi-dimensional parsing using relational grammars
and fuzzy sets. A fast, incremental parsing algorithm is developed, motivated by the
two-dimensional structure of written mathematics. Our approach makes no hard deci-
sions; recognized math expressions are reported to the user in ranked order. A flexible
correction mechanism enables users to quickly choose the correct math expression in
case of recognition errors or ambiguity.

1 Introduction

It is generally acknowledged that the primary methods by which people input mathematics
on computers (e.g., BKTEX, Maple, Mathematica) are unintuitive and error-prone. A more
natural method, at least on pen-based devices, is to use handwritten input. However, au-
tomatic recognition of handwritten mathematical expressions is a hard problem: even after
forty years of research, no existing recognition system is able to accurately recognize a wide
range of mathematical notation.

There are many similarities between math notation and other natural languages [4]. In
particular, notations are not formally defined and can be ambiguous. For example, without
contextual information, it is impossible to tell whether the notation u(x + y) denotes a
function application or a multiplication operation. Such semantic ambiguities, along with the
syntactic ambiguities generally associated with handwriting recognition, make math notation
a challenging recognition domain. These difficulties are compounded by the two-dimensional
structures prevalent in handwritten math. Many well-known approaches for recognition and
domain modeling (e.g., Markov models, grammars, dictionary lookup) cannot be directly
applied to the more complicated structures found in math notation.

In this paper, we present a new formalism, called fuzzy relational context-free grammars
(fuzzy r-CFGs), for recognition problems in structured, ambiguous domains, and develop the
requisite theory (Section 2) and algorithms (Sections 3 and 4) for practical two-dimensional

parsing. The definition of a fuzzy r-CFG incorporates not only the structure of the recogni-
tion domain, but also the uncertainty inherent in recognizing that structure. The grammar
thus provides a formal model of the recognition process itself, in which the “reasonableness”
of a particular interpretation of the user’s handwriting is easily calculated. Such calculations
permit a parser to make meaningful judgements about whether one interpretation is better
than another.

Grammar-based approaches have been used to recognize mathematical notation since
Blackwell and Anderson’s original proposal [3]. They are occasionally used through hard-
coded rule-based approaches, as in AlgoSketch [13] and its relatives, which use an approach
similar to those of Zanibbi [24] and Rutherford [20]. More typically, grammars are used
either as a verification step to confirm the validity of an expression recognized by some other
means (e.g., [9, 21]), or, more interestingly in our case, as a flexible rule-based framework
guiding the recognition process. Such approaches succeed, with varying degrees of generality
and efficiency, at modeling two-dimensional syntax ([19, 2]), and may unify symbol and
structural recognition problems ([22, 1]), or handle multiple ambiguous parses ([8, 25]). Our
fuzzy r-CFG approach endeavours to provide a systematic framework for parsing ambiguous
input by simultaneously modeling input, domain syntax, and relevant recognition processes.

Microsoft’s Math Input Panel, included with its Windows 7 operating system, also pro-
vides a math recognition engine. However, the only extant publications on this recognizer
are a patent application [5] and a non-technical talk [18], in which it was mentioned that
the recognizer uses grammar-based techniques. With so few details available, it is difficult
to evaluate the merits and deficiencies of Microsoft’s recognizer in general.

In such an ambiguous domain as handwritten mathematics, it is unlikely that a recog-
nizer will always correctly recognize users’ writing. Using fuzzy r-CFGs, we propose instead
to preserve the ambiguity inherent in the user’s writing so that one may select the intended
interpretation from a number of reasonable recognition results. Of course, more reasonable
interpretations should be presented before less reasonable interpretations. We view recog-
nition for complex, ambiguous domains as a co-operative process in which the user takes
an active role to help resolve ambiguity, similarly to how one may need to restate or clarify
ideas during a discussion between people.

This co-operative recognition process requires a feedback loop between the system and
the user. If writing is recognized incorrectly, or affords more than one valid interpretation,
then the user must be able to quickly and easily select the desired result. We wish to
provide feedback to the user in real-time, and to allow corrections to be made at any time.
Consequently, our parsing algorithms must be fast, incremental (i.e., supporting the insertion
and removal of input elements as the user writes or erases), and adaptive to user feedback.
Corrections made by the user must be maintained as he or she continues to write.

It is well-known that two-dimensional parsing is intractible in general. In order to develop
efficient algorithms, we introduce two formal assumptions on the relations in our grammar.
The ordering assumption (Sec. 3) defines the structure of physical layouts considered feasible
for parsing, and the monotone assumption (Sec. 4) limits context-sensitivity so that our fuzzy
set constructions are neatly decomposable. These assumptions limit both the number and
the complexity of admissible parses so that parse results can be reported to the user in
real-time.

This fuzzy r-CFG approach to parsing handwritten mathematics was developed for the

math recognition component of MathBrush, our pen-based system for interactive mathemat-
ics [11]. The system allows users to write mathematical expressions as they would using a
pen and paper, and to edit and manipulate the expressions using computer algebra system
operations that are invoked by pen-based interaction. As it is designed for real-time interac-
tion rather than batch recognition, the MathBrush interface provides a useful platform for
evaluating the utility of our parsing framework.

2 Fuzzy relational context-free grammars

Recognition may generally be seen as a process by which an observed, ambiguous, input is
interpreted as a certain, structured expression. Fuzzy r-CFGs explicitly model this inter-
pretation process as a fuzzy relation between concrete inputs and abstract expressions. The
formalism therefore captures not only the idealized, abstract syntax of domain objects (as
with a typical context-free grammar), but also the ambiguity inherent in the recognition pro-
cess itself. In this section, we define fuzzy r-CFGs, give examples of their use, and describe
fuzzy parsing in an abstract setting.

2.1 Definition

Recall that a fuzzy set X is a pair (X,), where X is some underlying set and p : X — [0, 1]
is a function giving the membership grade in X of each element x € X. A fuzzy relation
on X is a fuzzy set (X x X,). The notions of set union, intersection, Cartesian product,
etc. can be similarly extended to fuzzy sets. For details, refer to Zadeh [23]. To denote
the grade of membership of a in a fuzzy set X, we will write X (a) rather than referring
explicitly to the name of the membership function, which is typically left unspecified. By
z € X = (X,u), we mean p(z) > 0, and by |X| we mean the number of elements having
non-zero membership grade, rather than the sum of membership grades over x € X.
Fuzzy relational context-free grammars are formally defined as follows:

Definition 1. A fuzzy relational context-free grammar G is a tuple (X, N,S,T, R, rs, P),
where:

e X is a set of terminal symbols;
o N is a set of nonterminal symbols;

e S € N is the start symbol;

T is a set of observables;

R is a set of fuzzy relations on I, where I is the set of interpretations, defined below;
e 1y is a fuzzy relation on (T,X); and

P is a set of productions, each of the form Ay = A1As--- Ay, where Ay € N,r € R,
and Aq,..., Ay € NUX.

The form of an fuzzy r-CFG is generally similar to that of a traditional context-free
grammar. We point out the differences below.

2.1.1 Observables

The set T of observables represents the set of all possible concrete inputs. Formally, 7" must
be closed under union and intersection. In practice, for online recognition problems, an
observable ¢ € T is a set of ink strokes, each tracing out a particular curve in the (x,y)
plane.

2.1.2 Set of interpretations

While typical context-free grammars deal with strings, we call the objects derivable from
fuzzy r-CFGs expressions. Any terminal symbol a € ¥ is an expression. An expression e
may also be formed by concatenating a number of expressions ey, ..., e, by a relation r € R.
Such an r-concatenation is written (ejresr - - -rey).

The representable set of G is the set E of all expressions derivable from the nonterminals
in N using productions in P. It may be constructed inductively as follows:

For each terminal a € 3,

E, ={a}.
For each production p of the form Ay = A; - -- Ay,

E,={(exr---reg) 1 e; € Eg}.

For each nonterminal A,
Es= U E,;

p€eP having LHS A

E = UEA.

AeN

and finally,

The set of interpretations, then, is I =T x E, where the observables may be interpreted
as grammar expressions by the recognition process.

2.1.3 Relations

The set R contains fuzzy relations that give structure to expressions by modeling the rela-
tionships between subexpressions. These relations act on interpretations, allowing context-
sensitive statements to be made about recognition in an otherwise context-free setting.

For example, consider Figure 1, which may be best interpreted as A? or AP depending
upon the case of the P symbol. Denote the A symbol by t; and the P symbol by 5. Let
€ R be a fuzzy relation for diagonal spatial relationships, and — be similar for horizontal
adjacency relationships. Then we expect that * ((t1, A), (t2,p)) > ((t1, A), (t2, P)) and
— ((t1, A), (t2, P)) >, ((t1,A), (t2, P)). Given explicit membership functions, we could
evaluate whether or not these expectations are met.

AP

Figure 1: An expression in which the optimal relation depends on symbol identity.

2.1.4 Terminal relation

The relation ry; models the relationship between observables and terminal symbols. In prac-
tice, it may be derived from the output of a symbol recognizer. For example, if a subset ¢’
of the input observable was recognized as the letter b with, say, 60% confidence, then one
could take s ((t',b)) = 0.6.

2.1.5 Productions

The productions in P are similar to context-free grammar productions in that the left-hand
element derives the sequence of right-hand elements. The fuzzy relation r appearing above
the = production symbol indicates a requirement that the relation r is satisfied by adjacent
elements of the RHS. Formally, given a production Ay = A;As--- Ay, if t; denotes an
observable interpretable as an expression e; derivable from A; (i.e., e; € Ey,), then for Ule t;
to be interpretable as (eyr---7eg) requires ((t;,€;), (tiv1,€i41)) €Erfori=1,... k—1.

2.2 Examples

The following examples demonstrate how fuzzy r-CFG productions may be used to model
the structure of mathematical writing. We use five binary spatial relations: 7~ |, — |\, , |
, ©® . The arrows indicate a general writing direction, while ® denotes containment (as in
notations like /x, for instance).

1. Suppose that [ADD] and [EXPR] are nonterminals and + is a terminal. Then the
production [ADD] = [EXPR] + [EXPR] models the syntax for infix addition: two ex-
pressions joined by the addition symbol, written from left to right.

2. The production [SUP] é [EXPR] [EXPR] models superscript syntax. Interpreted as
exponentiation, the first RHS token represents the base of the exponentiation, and the
second represents the exponent. The tokens are connected by the relation, reflecting
the expected spatial relationship between subexpressions.

3. The following pair of productions models the syntax of definite integration:

[ILIMITS] & [EXPR] / [EXPR]
[INTEGRAL] = [ILIMITS] [EXPR]d[VAR]

Definite integrals are drawn using two writing directions. The limits of integration
and integration sign itself are written in a vertical stack, while the integration sign,
integrand, and variable of integration are written from left to right.

2.3 Parsing with fuzzy r-CFGs

Because of ambiguity, there are usually several expressions which are reasonable interpreta-
tions of a particular input observable t € T' (e.g., AP and AP are both reasonable interpreta-
tions of Figure 1). We represent all of the interpretations of ¢ as a fuzzy set I; of expressions.
The membership function of I; gives the extent to which the structure of an expression
matches the structure of ¢, as measured by 7y, and the other grammar relations. This set can
be thought of as a “slice” of the fuzzy recognition relation discussed above. More specifically,
calling the recognition relation R, define I, = {e : (t,e) € R}, and I;(e) = R(t, e).

For cleaner notation, assume that the grammar productions are in a normal form such
that each production is either of the form Ay = «, where o € ¥ is a terminal symbol, or of
the form Ay = A; --- A, where all of the A; are nonterminals. This normal form is easily
realized by, for each a € ¥, introducing a new nonterminal X, replacing all instances of «
in existing productions by X,, and adding the production X, = «.

The set I; of interpretations of t is then constructed as follows. For every terminal
production p of the form Ay = «, define a fuzzy set I = {a}, where I} (o)) = rs ((t, «)) and
I’(B) =0 for g # a.

For every production p of the form Ay = A; --- Ay, define a fuzzy set (taking the union
over all partitions of t)

= U . (1)
tiU-Utp=t
where

e = {(elr---rek) te; € It‘?i, ((tiy€:), (tiz1,€i41)) €Emyi=1,... k— 1}. (2)

There is room for experimentation when choosing the membership function of If , .
Zhang et al [25] found that using multiplication when computing membership grades helped
to prevent ties. We might therefore compute the membership grade If, , (eir---7rex) by

(Hft?i(@i)> (ﬁr((tiaei)a(fi+17€z‘+1))> B (3)

Geometric averaging preserves the tie-breaking properties of multiplication while normal-
izing for expression size. An alternative approach is to treat expression concatenation as a
type of fuzzy Cartesian product and to put

Iflwtk(elr -+-r€R) = min (miin {I{?i(ei)} ,miin {r ((t;, e;), (tiz1, ei+1))}>) (4)

We compare the effects of each of these choices in Section 6.
Given all of the I?, the fuzzy set of interpretations for a particular non-terminal A € N

= U

p having LHS A

18

and the fuzzy set of interpretations of an observable ¢ is I; = I, where S is the start symbol.

An expression e is in [; iff ¢ is interpretable as e and e is derivable from the start symbol
S. The recognition problem is therefore equivalent to the extraction of elements of I, (¢
being the user’s input) in decreasing order of membership grade.

6

2.4 Representing I; efficiently

In Equation 2, each set I , contains O (Hl ’It‘?i) expressions. We therefore cannot hope
to explicitly construct the sets of interpretations. Instead, we use a compact graph-based
representation that completely captures the structure of the all feasible interpretations with-
out constructing them. From this structure, we construct particular interpretations and
report them to the user one at a time.

Treating N x T as a set of nodes, define B(A,t) for A € N,t € T, the set of branches at
(A, t) by

B(At) ={(p; (ts,... . tx)) : |1} 4.| > 0}.

Each set of branches B(A,t) represents I/*. Each branch (p; (t1,...,t)) € B(A,t) rep-
resents If, . If pis Ay = Aj--- Ay, then to obtain an expression (eir---rey) € I},
from the corresponding branch requires the recursive extraction of each e; from the branch
set B(A;,t;). But in terms of space requirements, B(A,t) contains at most one entry per
production and partition, thus avoiding the combinatorial explosion associated with a naive
representation of IA. All O (Hz ‘]t’? ‘) potential parses mentioned above are represented
implicitly by a single branch. Each branch stores pointers to k branch sets B(A;,t;), which
each hold implicitly-represented subexpressions.

This representation of I; motivates a two-stage parsing process. The first stage, parsing,
examines the input and uses grammar productions and relations to construct this branching
structure B. However, no parsed expressions are explicitly created. The second stage,
extraction, follows links in B to extract particular parsed expressions. The next two sections
describe these algorithms in detail. But first, we demonstrate these ideas more concretely
through an example.

2.4.1 Example

Treating the elements of B(Ag,t) as k graph edges from (Ao, t) to (A, t1),..., (Ag, tx), B
can be thought of as a graph in which all parse trees on t are overlaid on the same set of
vertices. For example, consider the expression shown in Figure 2 along with the following
toy grammar:

[EXPR] = [ADD] | [MUL] | [VAR]
[ADD] = [VAR] + [ADD] | [VAR]
[MUL] = [VAR] [MUL] | [VAR]
[VAR] = al|b]|---]|=

o+ b

Figure 2: Example handwritten expression.

Suppose that, after applying ry, and the — relation, there are only two parses of this
expression, corresponding to the derivations of a + b,

[EXPR] = [ADD] = ([VAR] — + — [ADD])
= (a— + — [VAR])
= (a— +—0b),

and of atb,

[EXPR] [MUL] = ([VAR] — [MUL])

=
= (a— ([VAR] — [MUL]))
= (a— (t — [VAR]))

= (a— (t—0)).

A graphical representation of the branching structure that represents these derivations is
shown in Figure 3. In the figure, the arrows indicate derivation. The square boxes at the top
represent parts of the observable input. The ovals represent nonterminals on a particular
subset of the input (the sets B(A,t)), and the small boxes indicate subexpressions that
must be taken together as a group. Each group must satisfy the grammar relation indicated
inside the box. A valid parse corresponds to a selection of arrows that forms a branching
path from the root to all of the leaf nodes. In this case, exactly two such branchings are
possible, corresponding to the above derivations of the expressions a 4+ b and atb.

/

Figure 3: Parse graph corresponding to the expression in Figure 2.

3 Practical algorithms for parsing fuzzy r-CFGs

We now demonstrate how to efficiently construct the graphical representation B of the
fuzzy set I; of interpretations for an input observable t. Recall from Equation 2 that I} is

8

constructed from a union taken over all partitions of ¢. It is intractible to take this union
literally, so we will first develop precise constraints on which partitions should be considered
feasible. These constraints are based on the two-dimensional structure of mathematical
notation.

3.1 The ordering assumption and rectangular sets

Informally, we consider the situation in which each grammar relation r contains relatively
few elements, so that only a small number of partitions of ¢ can pass the relation membership
tests in Equations 3 and 4, as follows.

Define two total orders on observables: <, orders observables by minimum x-coordinate
from left to right, and <, orders observables by minimum y-coordinate from top to bottom.
(We take the y axis to be oriented downward.) Associate each relation r € R with one of these
orders, denoted ordr. ordr is the dominant writing direction used for a particular relation.
For math recognition, we use ord - = ord /* = ord™, = ord® =<, and ord | =<,,.

Denote by mingt the element a € t such that a <4 b for all b € t aside from a, and define
maxyt similarly.

Assumption 1 (Ordering). Let t1,ts be observables, and let e1, ey be representable expres-
sions. We assume that r ((t1,e1), (t2,e2)) = 0 whenever maXorq, t1 > ordr Milgpd - Lo-

Roughly speaking, the ordering assumption says that, for a parse to exist on t; U ts,
the last symbol of t; must begin before the first symbol of ¢, along the dominant writing
direction of the expression being parsed. For example, in Figure 2, to parse a + b in the
obvious way requires that the a begins before the + and the + begins before the b when the
symbols are considered from left to right (i.e., ordered by <,).

Similarly, we could formulate a production for fractions as [FRAC] X [EXPR]— [EXPR].
Then to parse a fraction would require that the bottom symbol of the numerator began before
the fraction bar, and the fraction bar began before the top symbol of the denominator, when
considered from top to bottom (i.e., ordered by <,).

Liang et al [14] proposed rectangular hulls as a subset-selection constraint for two-
dimensional parsing. A very similar constraint that we call rectangular sets is implied by the
ordering assumption.

Definition 2 (Rectangular set/partition). Call a subset t' of t rectangular in t if it satisfies
' ={aet:min, t' <a<max,t'} N{aet:min,t <a<max,t'}. Call a partition t; U
-~ Uty of a rectangular set t rectangular if every t; is rectangular in t.

Proposition 1. Let t € T be an observable, and let p be a production of the form Ay =
Ay -+ A, Under the ordering assumption, if (exr---rey) € Ig,...7tw then the partition t; U
-+ Utg of t is rectangular.

Proof. Let d = ordr, and choose any t;. We must show that

t; = {a €t :mint; <, a <, maxti} N {a €t:mint; <,a <, maxti} .

It is clear that ¢; is a subset of the RHS, so suppose that there is some a’ € ¢ in the RHS put
into t; # t; by the partition of t. If j < 4, then ((¢;,¢;), (tj+1,€j51)) 5., ((tic1, €i-1), (tis€:)) €
r. By the assumption, max,t; <; mingt;y; < maxgtjp; <gq --- <q mingt;. But we know
mingt; <4 a' <4 maxgt; (since ¢’ € t;) and mingt; <4 @’ <4 maxyt; (since o’ is in the RHS),
so mingt; <4 a’ <4 max,t;, a contradiction. A similar contradiction can be obtained in the
case where j > 1. [

Rectangular sets are the natural two-dimensional generalization of consecutive charac-
ters in one-dimensional string parsing. This definition could be generalized to arbitrary
dimension, giving “hypercube sets” of input elements.

Following Liang et al, notice that any rectangular set u C ¢ can be constructed by choosing
any four input elements in ¢ and including in u all input elements in their rectangular hull.
There are therefore O (|t|*) rectangular subsets of ¢. The ordering assumption thus yields a
substantial reduction in the number of subsets that must be considered for parsing.

Unlike the formulation of rectangular hulls used by Liang et al, we do not prohibit region
bounding boxes from cutting through other symbols. This provision allows for square roots
and other containment notations, and is more accommodating of somewhat cramped or
sloppy writing in which symbol bounding boxes overlap, as in Figure 4.

e (o3

Figure 4: Expressions with overlapping symbol bounding boxes.

3.2 Parsing algorithm

Using the restriction to rectangular partitions derived above, it is straightforward to develop
a bottom-up parsing algorithm that constructs B in provably polynomial time. An example
of such an algorithm is given in Appendix A. However, that algorithm requires the explicit
enumeration of every rectangular subset of the input, so it is not suitable for incremental
recognition. Whenever the user adds or removes a stroke, many of the subsets must be
re-computed before the parse graph may be updated. This precomputation step is too
slow for the real-time reporting of parse results that is required for interactive systems
like MathBrush. To eliminate the brute-force enumeration of all rectangular subsets, we
developed a top-down parsing algorithm for fuzzy r-CFGs.

Assume now that the grammar is in the normal form described in Section 2.3. A straight-
forward recursive-descent approach to parsing a production p on an observable ¢ might work
as follows:

1. If p is a terminal production, Ay = «, then check if (t,«) € ry. If so, the parse
succeeds; otherwise it fails.

2. Otherwise, p is of the form Ay = A; - -- A;. For every rectangular partition t; U- - - Uty
of t, parse each nonterminal A; on t;. If any of the sub-parses fail, then fail on the
current partition. If parsing fails on every partition, then fail.

10

Parsing a nonterminal A amounts to parsing each production p such that A is the LHS
element of p. Note that each t; in case 2 has |t;| < |t|, guaranteeing termination.

Case 2 iterates over O ((k;:)) partitions, where n = |t|. This bound is obtained by
sorting the input by <,.q, and choosing k£ — 1 split points to induce a rectangular partition.
A tradeoff therefore exists between the number k£ of RHS elements of a grammar production
and the number of partitions that must be considered during parsing. If the grammar is
in Chomsky Normal Form (CNF), then only n — 1 partitions need to be considered. But a
production with & RHS tokens expands to k — 1 distinct productions in an equivalent CNF
grammar.

Instead of using CNF, we allow arbitrary production lengths and use the following three
optimizations to reduce the number of partitions that must be considered. Note that we no
longer require the normal form used by the recursive-descent algorithm: productions may
freely combine nonterminal and terminal symbols.

1. Spatial relation test. The grammar relations act on expressions as well as observables.
As such, they cannot be tested during parsing because expressions are not explictly
constructed. Still, we can speed up parsing by testing whether relations are satisfied
which approximate the grammar relations.

Namely, for each relation r € R, we test the relation

A(t ;) 1 if 361,62 s.t. ((t1,61)7(t27€2)) er
r(t1,t2) = .
b 0 otherwise

Many relations used in practice are somewhat independent of the expressions ey, ey, or
use information derived solely from the observables ¢, t; (e.g., bounding box measure-
ments). So, it is feasible to approximate the relations 7 quite well.

2. Terminal symbol milestones. The terminal symbol relation ry may be used to guide
partitioning. Suppose pis Ay = A; -+ A;_jaA;1 - - - Ay, where a is a terminal symbol.
Then 7y, must contain (t;,) for a parse to exist on a partition ¢;U- - -Ut,. That is, given
a partition, any subset corresponding to a terminal symbol in the grammar production
must be recognizable as that terminal symbol.

3. Minimum nonterminal length. If there are no empty productions in the grammar, then
each nonterminal always expands to at least one terminal symbol. Moreover, given a
minimum number of strokes required to recognize a particular symbol (e.g., at least
two strokes may be required to form an F'), one can compute the minimal number
of input elements required to parse any sequence of nonterminals A; --- Ay, denoted
minlen(A;y - - - Ag). This function further constrains the partitions which are feasible.

For example, consider the example expression shown in Figure 2. Suppose we are
parsing the production [ADD] = [VAR] + [ADD] and we know that the + symbol
must be drawn with exactly two strokes. Then [ADD] cannot be parsed on fewer
than 4 input strokes, and the input must be partitioned into ¢; U t5 U t3 such that
lt1] > 1, |ta] = 2, |ts] > 1. Furthermore, from the previous optimization, ¢, must be
chosen so that (t3,+) € rs. In this particular case, only one partition is feasible.

11

Parsing a production Ay = A; --- Aj, on an observable ¢ proceeds by two mutually recur-
sive procedures.

The first procedure, PARSE-NT-SEQ, parses a sequence A; --- A of nonterminals on an
observable t, as follows:

1. If £ =1, then parse the nonterminal A; on ¢. Fail if this sub-parse fails.

2. Otherwise, for every rectangular partition of ¢ into two subsets, ¢; and t5, such that
[t1] > minlen(A;) and |ta| > minlen(As--- Ay), parse A; on ¢, and recursively parse
the nonterminal sequence A, --- A, on ty. Fail if either parse fails.

The second procedure, PARSE-SEQ, parses a general sequence A; - - - Ay of nonterminals
and terminals on ¢, as follows. Let d = ord r, and let ¢ be minimal such that A; is a terminal
symbol. Then each rectangular ¢’ C ¢ such that (¢', A;) € ry induces a rectangular partition
of tinto ty,t', ty, where maxyt; <4 mingt’ and max,t’ <4 mingts. For each of these partitions
satisfying |t1| > minlen(A; --- A;_1) and |ta| > minlen(A;, - - Ag), parse Ay -+ A; 1 on 1y,
and parse A; 1 --- Ay on ty. Fail if either sub-parse fails.

So, to parse a production, we just check whether its RHS contains terminals or not, and
invoke the appropriate procedure. To clarify the outline of the algorithm, we have omitted
the relational tests described in optimization 1. These details are included in the pseudocode
of Algorithms 1 through 3.

Algorithm 1 PARSE-NT-SEQ: Top-down parser for nonterminal sequences
Require: A sequence A; - - - A, of nonterminal symbols, a set ¢ of input elements, a grammar
relation r; a leading set ¢, and a trailing set tg.
B« ¢
d <+ ordr
if £ =1 then
// Verify that ¢ fits in via 7 with the leading and trailing sets.
if ((t,t) € 7 or t;, = ¢) and ((t,tg) € 7 or tg = ¢) then
return PARSE(A,1)
for L = minlen(A;),. .., |t| — minlen(As - - A) do
Let t; C t be the first L elements of t ordered by <.
if (tp,t1) € 7 or t;, = ¢ then
By < PARSE(A4,t)
if By # ¢ then
By < PARSE-NT-SEQ(Ay - - - Ag, t \ t1,7,t1,tR)
B/%B/U{bl,bgibl GBl,...,bQ EBQ}
return B’

12

Algorithm 2 PARSE-SEQ: Top-down parser for general production sequences
Require: A sequence A; - -- A, of grammar symbols from N U Y, a set ¢ of input elements,
a grammar relation r, and a leading set .
Let ¢ be minimal such that A; is a terminal symbol
B« ¢
d <+ ordr
for every ¢’ C t such that (¢, A;) € rs do
t1 < {a€t:a<smingt'}
to < {a € t:max,t' <4 a}
if minlen(A;--- A;—1) < |t1| and minlen(Aiq - -+ Ag) < |t2| then
B + PARSE—NT—SEQ<A1 s Aifl, ti,7,t1, t,)

if at least one of A;,1,..., A is a terminal symbol then
By < PARSE-SEQ(A;y1 - A, ta, 1, t')
else

By < PARSE-NT-SEQ(Agi1 - - Ag, to, 7,1,)
B+ B'U {bl,t,,bg : b1 € Bl,bg € BQ}
return B’

Algorithm 3 PARSE: Top-down parser entry point
Require: A nonterminal Ay and a set t of input elements.
if B(Ap,t) is not marked “parsed” then
for each production p of the form Ay = A; --- A; do

if at least one of Ay,..., Ay is a terminal symbol then
B’ <+~ PARSE-SEQ(A; - -+ Ay, t, 1, 0)
else

B' < PARSE-NT-SEQ(A; - -- Ap, t,7,0,0)
Mark B(Ay,t) “parsed”
B(Ap,t) < {(p;x) : x € B'}
return B’

These functions comprise the two-dimensional parsing algorithm that we use in practice
for MathBrush. Each production Ay = A; - -- Ay, is parsed recursively by parsing As - - - Ay
for each valid subset choice for Ay, aborting a recursive branch when no valid subset choices
exist. This approach, along with the recursive-descent algorithm, may be seen as a depth-
first search of the space of valid partitions. But, the optimizations introduce constraints on
the search space, significantly speeding up the parsing process. The technique is fast enough
that recognition results may be updated and displayed in real-time as the user is writing.

3.3 Incremental parsing

The above parsing algorithms may be used incrementally without any significant changes.
Suppose that parsing is complete for some observable t = {a1, ..., a,}. We must handle two
cases: the addition of a new observable a,,; to t if the user draws a new stroke, and the
removal of an observable a; from t if the user erases a stroke.

13

In the case where a new observable a,,,1 is added, every existing entry B(A, t) of the parse
graph still remains valid. We may simply invoke the parser on the new input {as,...,a,+1}
and all existing parse results will be re-used.

In the case where an existing observable a; is removed, the situation is slightly more
complicated. Any entry B(A,t) such that ¢ includes a; becomes invalid and must be removed
from the parse graph. When the parser is invoked on {a1, ..., a;_1,a;41,...,a,}, any existing
parse results that do not include the stroke a; will be re-used.

This approach to incremental parsing works particularly well when subsets of the input
are represented by bit vectors. Each input element is represented by a bit, where the first
stroke drawn corresponds to the lowest-order bit and the most recent stroke to the highest-
order bit. If a bit is set, then the corresponding input element is included in the subset,
otherwise it is not.

Using this representation, when the first stroke is drawn, the parser might create an entry
B(A,1) in the parse graph. After a second stroke is drawn, the bit vectors representing
subsets will contain two bits. But since the low-order bit corresponds to the first stroke,
accessing B(A,01) is the same as accessing the entry B(A, 1) that was created when the
input was just one stroke.

4 Extracting interpretations

Recall that recognition in the context of fuzzy r-CFGs corresponds to extracting elements
from I;, the fuzzy set of interpretations of the user’s writing. We wish to report these in-
terpretations to the user in decreasing order of membership grade so that more reasonable
interpretations are seen before less reasonable ones. In this section, we develop a straight-
forward technique for extracting interpretations in that order.

4.1 The monotone assumption

Denote the element of a fuzzy set X with nth-highest membership grade by [n]X, so that
the highest-ranked interpretation of the user’s input is [0]/;, the second-highest is [1]/;, and
SO on.

Consider the problem of finding [0/, , the highest-ranked parse of a production p
using the partition t; U- - - Uty of t. Every expression e € [fl,...,tk is an r-concatenation of the
form (e;r - - -rey), where each e, is [m,]I; for some m,;. The grade of membership in If 4
of each such expression is a function of the subexpression membership grades I{;‘i(ei), and
the relation memberships r((;, €;), (ti11,€:+1)). Since we have no information about how
the relation’s membership function varies with the e; (hence with the m;), the only way to
determine [0]17 is to iterate over all possible m;, evaluate the relation membership functions,
combine grades into a membership grade in I} and take the highest-graded expression
overall.

This exhaustive algorithm is impractical. To develop a tractable algorithm, we introduce
the monotone assumption on the grammar relations, as follows.

,...,tk.7

Assumption 2 (Monotone). Let ty,ty be observables, e; € Iy, es € I,, and r € R. We

14

assume that, for any expressions éy,éy such that I (é1) < I, (e1) and Iy, (é2) < Ii,(es), we
have 1 ((t1, €1), (t2, €2)) < 7 ((t1, €1), (2, €2)).

Furthermore, let p be a production Ay = Ay --- Ay, and fori=1,...k, lett; € T and
e; € I, We assume that if I." (¢;) < I/ (e;) andr ((ti, &), (tiv1, €i41)) < 7 ((ti,), (tip1, €i11))
foralli, then If _, (éx7---réy) < Iy g (e1r - 1ey).

That is, we assume that the membership function of each relation r is monotonically
increasing with the membership grades of its expression arguments, and assume that the
membership function of each I}, _, is monotonically increasing with all of its constituent
parts.

k

4.2 Extracting elements of [;

Using the monotone assumption, we develop an algorithm for extracting elements of I; in
decreasing order of membership grade. The basic idea of our algorithm is to first extract the
most highly-ranked expression, [0] /;, and then to recursively maintain an expanding “fron-
tier” of potential next-best expressions, from which subsequent expressions are obtained.

First, note that [n]l; = [n]I for S the start symbol. So it suffices to consider extracting
[n]I* for a nonterminal Ag.

To do so, number the grammar productions having LHS Ay as py,...,py. It is clear
that [0]7/% = argmax;[0]I”". Now suppose we have determined [j]I/*° up to j = n, yielding
a partial set of expressions I = {[j][f“ :7=0,...,n}. Then [n+1] I is given by the
following result.

Proposition 2. Let I = |J, {[j] I}’ : 0 <j <mn;}. That is, the n; + 1 most highly-ranked
elements of each I"" have already been extracted from I*°. Then [n + 1)1 = argmax;[n; +
117

Here, the indices n; represent the expanding frontier of potential next-best expressions.
The actual next-best expression is just the best expression from the frontier. After extraction,
the frontier must be updated by incrementing the appropriate n;.

Expressions may be extracted in ranked order from a set I” for a production p just as
above, except that the production-wise sets I' replace the nonterminal-wise sets I{AO, and
are replaced by the partition-wise sets I}, _; .

However, the idea must be generalized somewhat to extract expressions from the sets
If .- In what follows, t,. .., are observables and p is a production Ay = Ay Ay, We

represent an r-concatenation ([nﬂ I [y]{:"'> by a vector (ni,...,ng) € Z~ (that is,
a vector of k non-negative integers representing subexpression ranks).
This vector representation gives a geometric interpretation of an expression. Under the

monotone assumption, expressions are ordered by component-wise comparison of their cor-
responding vectors.

Lemma 1. Let e = (ny,...,ng) and é = (Ry,...,Ng) be any expressions. If (Nq, ..., Nny)
(n1,...,nx), then Iy, (€) < If , (e), where x < y for vectors x = (w1,...,21),y

(Y1, -) if 2 <y, for all i

A

15

Proof. By definition, the membership grade in I of [n;] I/ is at least that of [A;] I/ for

i
tit1

r ((ti, [n] I{?i) : (tiﬂ, [7i41] [{4;{1)) for all 4. Hence, If, . (¢) <If . (e). O

every i. So, by the monotone assumption, we have r <(ti, [72:] It/ji) , (tiﬂ, [7i41] IAM)) <

So, the monotone assumption implies that we cannot skip expressions by jumping over
neighbouring points. The following definition makes this precise.

Definition 3. Let e = [n]I} = (my,...,my) for some indices m;. We define the successor
set of e to be
succle) = {x € Z} x> e, ||x —el; = 1}.
Thus, succ(e) contains all of the expressions obtainable from If , by incrementing

exactly one of the extraction indices m; of e = ([ml] Iy my] It’:’“) The frontier of

potential next-best expressions is given by the union of the successor sets of every expression
already extracted, denoted S below. The following result shows inductively how to extract
elements of If .

Proposition 3. The following statements hold.
1. [0 I} . ;. =eo=(0,0,...,0).

2. Suppose we have determined [j] Ifl,...,t up to j = n, yielding a partial set of expressions

I. Let S =, succ(e). Then
(a) I =U,cq{z €l x<e}, and

(b) [n+ 117 4 = ent1 = argmax e If, 4, (€).

k

Proof. 1. Suppose to the contrary that [0] 17 , =¢€ = (my,...,my) with I}, (¢/) >
If .+ (eo). This immediately contradicts Lemma 1 since (my, ..., my) > (0,...,0).
2. Both statements are true after extracting only eq = (0, ...,0). Proceeding inductively,

we first prove 2a. Let 2 < e for some e € S. By Lemma 1, we have I , (z) <
If . 4.(e). So, subject to the condition that, in case of ties, we choose the expression
whose vector is closest to the origin, x must have already been extracted and thus is

already in I.

Now we prove 2b by showing that [n + 1] I , isin S. Suppose to the contrary that
m+ 117, =€ =(my,...,my) with ¢’ ¢ S and I}, (¢/) > I}, (ens1).

Since €' € I, we have by 2a that there is some x € [with ¢ > x. But S contains all
expressions having minimal distance to I, so there must also be some y € S with ¢’ > .
Then by Lemma 1, 17, (y) > I}, 4 (¢/). So we may safely choose an expression from
Stobe [n+ 11} , , namely e, .

'7tk7

]

These results demonstrate how to extract interpretations of the user’s writing from I; by
decreasing grade of membership. Appendix B gives a detailed pseudocode implementation
using priority queues.

16

4.3 Handling user corrections

As mentioned in the introduction, we wish to provide to users a simple correction mechanism
so that they may select their desired interpretation in case of recognition errors or multiple
ambiguous interpretations. Our recognizer facilitates such corrections by allowing locks to
be set on any subset of the input.

Two types of locks are supported:

1. Expression locks, which fix the interpretation of a particular subset of the input to be
a specified expression, and

2. Semantic locks, which force interpretations of a particular subset of the input to be
derived from a specified nonterminal.

Both of these lock types are useful in different circumstances. For example, if x + a was
recognized as X + a, then an expression lock may be applied to the portion of the input
recognized as the X symbol, forcing it to be interpreted as a lower-case = instead. If x + a
was recognized as xta, then a semantic lock may be applied to the entire input, forcing
an addition expression to be derived. If recognition gave Xta, then the lock types may be
combined.

Consider extracting an expression tree from input ¢. If ¢ is locked to an expression e by
an expression lock, then we consider [; to contain only one element, e, with membership
grade 1. If ¢ is locked to a nonterminal A; by a semantic lock, then we take]tA/ to be empty
for all nonterminals A" # Ay, except those for which a derivation sequence A’ =* A exists,
in which case we take I;'' = It

MathBrush allows users to navigate ranked interpretations on any subset of their input,
as shown in Figure 5. In case recognition is not accurate, the user may select the correct
interpretation and an appropriate lock is applied to the parse graph. The corrections are
maintained in subsequent parse results as the user continues to write. In this way, correction
is simple and relatively painless — certainly easier than erasing the expression and rewriting
it from scratch.

4.4 Weakening the monotone assumption

The monotone assumption essentially prohibits context-sensitivity in the grammar relations
in the sense that any interactions between subexpressions are ignored. As such, it is similar
to assuming statistical independence of subexpressions, a common practice in stochastic
parsing. In some cases, such assumptions are invalid — consider again Figure 1, which was
interpreted best as AP or AP depending on the case of the P.

Intuitively, the identities of terminal symbols should have the largest effect on the degree
to which grammar relations apply, and we expect relation membership grades to stabilize as
expression size increases. For example, consider how terminal identity changes the mathe-
matical semantics in the Az (or A¥) subexpression of Figure 6, but, regardless or whether
the writer intended Az or A%, the subexpressions Az (say), +, and b of Figure 6 are certainly
linked by the — relation.

17

" | of

Figure 5: Interface for displaying and selecting alternative interpretations.

AX+l

Figure 6: An ambiguous mathematical expression.

In practice, terminal symbols are not subject to the monotone assumption in our parser.
Instead, we use context-sensitive relations for terminals that vary depending on expected
symbol shapes (e.g., baseline, ascender, descender, etc.), as follows. The relations are de-
scribed briefly in Section 5.

Let t1,...,t; be observables and p be a production Ay = A; --- A;. Suppose that, when
extracting [0] I}, . it happens that the subexpressions [0] It‘? " are lone terminal expressions
for each i in some index set I = {iy,...,4,}. Then, instead of using the approach indicated
by Lemma 3, we explicitly consider all possible terminal combinations by constructing the

partial set of expressions

{([ml] I [my] ItAk’“> 0<m; < Mz} :

where M; = }It‘?i for i € I, and M; = 1 otherwise. Considering all of these expressions takes
advantage of any sensitivity to symbol identities that exists in the relation membership
functions.

In such a case, it may take time up to O (H ; |[£i) to obtain the highest-ranked expression
in If ;. But the number of symbol candidates assigned a non-zero membership grade in ry,
for each subset of the input is easily capped at a small constant, and the symbols obtainable
from]t‘?i are restricted by the fact that they must be derivable from A;, so this exponential
runtime is not too significant.

18

5 Relation membership functions

Our relation membership functions are based on bounding-box geometry. Since each symbol
has a characteristic general shape with respect to a writing baseline, the relative positions of
subexpressions depends on which symbols comprise them. The membership functions take
this fact into account.

Following Rutherford [20], we assign relational classes to an expression which describe
its expected bounding-box profile relative to the baseline. We extend Rutherford’s classes
with three special classes, AGGREGATE, SYMBOL, and BOX, representing any expression, any
terminal symbol, and any multi-symbol expression, respectively. We also allow each terminal
symbol to act as its own relational class.

In order to compute the grade of membership of ((t1,€1), (t2,€2)) in a relation r, aside
from the containment relation ®, the membership function selects a particular point in the
bounding box of each ¢; as its centroid, depending on the class of e;. For example, the centroid
is chosen relatively higher on descender symbols and relatively lower on ascender symbols.
It is chosen centrally for those classes for which no detailed information is available, such
as AGGREGATE. Then, the angle and distance between centroids is measured. From these
measurements, the membership function computes two scores by measuring the deviation
of the measured values from an “ideal” measurement estimated from training data. The
membership grade is given by the product of these scores. To measure the containment
relation we compute the amount of overlap between the two bounding boxes.

For any expression, the applicable relational classes can be ordered from most- to least-
specific. For example, the terminal expression y could be considered as a “y” symbol, then as
a descender symbol, then as a generic terminal expression, then as a generic expression. The
expression 22 could be considered as a multi-symbol expression, then as a generic expression.

Because of the large number of combinations, some pairs of relational classes may not
have been trained on sufficient data to provide a reasonable degree of confidence in the
results. In such cases, the membership function automatically falls back to a less-specific
selection of classes to avoid assigning artificially low membership grades to reasonable-looking
expressions.

Some symbols may have more than one possible bounding-box profile. For example, the z
symbol may be written as a small symbol centered on the baseline, or as a descender. In such
cases, the membership function returns the maximum grade taken over all class assignments.

6 Evaluation

We evaluated the accuracy of our math recognizer experimentally using a ground-truthed
corpus of hand-drawn math expressions described in previous work [16, 15]. Of the roughly
4500 legible expressions in the corpus, many included mathematical notations not currently
supported by the grammar used by our parser for recognition (e.g., ellipses, set notation,
multi-symbol variable names). Our test set thus contained 3610 expressions from 20 writers,
of which 53 expressions were common to all writers, and the remainder were unique to each
writer.

Devising objective metrics for evaluating the real-world accuracy of a recognition system

19

is difficult. Several authors have proposed accuracy metrics which are quite specific to the
particular math recognizer being measured (e.g. [24, 7, 12, 10, 20]). Our recognizer was
developed for the MathBrush pen-based mathematics system, and is intended for real-time,
interactive use by human writers. As such, we believe that a user-oriented accuracy model
provides the best way to assess its performance.

In particular, our goal is to measure the amount of effort a user must expend to get the
system to do what they want. This is similar to Brooks’ proposal that the “ratio of function
to conceptual complexity is the ultimate test of system design” [6]. For example, suppose
a user draws Figure 6, meaning the expression A% + b, but the first result returned by the
recognizer is A”tb. In our system, the user can correct the result to an addition, A* + b, and
then correct the = to X. We can therefore count two corrections, or two “units of effort”.
An alternative measurement is to count the total number of results that the user sees while
making those corrections. So if the second candidate after x was y, and the third was X,
then that single correction would count as two units.

This scheme has the side-effect of measuring recognition accuracy. If an input is recog-
nized correctly, then it counts as zero units of effort. Similarly, if it is recognized “almost
correctly”, it counts as fewer units than if the recognition is quite poor. Furthermore, the
effort-based metric is generally applicable to any recognition system, though it clearly is
intended to be used with systems providing some correction or feedback mechanism. One
could similarly navigate the recognition alternatives provided by Microsoft’s recognizer, for
instance, count the relevant operations, and obtain comparable measurements. Our evalua-
tion scheme thus provides an abstract way to compare the performance of varied recognition
systems without direct reference to their implementation details.

To automate the evaluation process, we developed a testing program that simulates a
user interacting with the recognizer. The program passes ink representing a math expression
to the recognizer. Upon receiving the recognition results, the program compares them to the
ground-truth associated with the ink. If the highest-ranked result is not correct, then the
testing system makes corrections to the recognition results, as a user would, to obtain the
correct interpretation. That is, the system browses through lists of alternative interpretations
for subexpressions or symbols, searching for corrections matching the symbols and structures
in the ground-truth.

This approach immediately yields four possible classifications for each test input:

1. Attainable: The correct interpretation was found by the testing system.
2. Recognizable: Interpretations existed, but the correct interpretation was not found.

3. Unrecognizable: The input did not generate any interpretations (it was rejected by the
recognizer).

4. Infeasible: The symbol recognizer failed to provide the correct symbol candidates to
the parser, preventing correct recognition.

In case of attainability, the amount of effort required to attain the correct interpretation

must be measured. To do so, we recorded, for each input, the number of views and corrections
made before the correct interpretation was found. Views counted how many alternatives had

20

to be browsed through (or “viewed”) before the correct interpretation was found. Corrections
counted how many corrections had to be made. The corrections figure was further subdivided
into symbol-level corrections (e.g., replace X by z), and structural corrections (e.g., replace
A*tb by A® +b).

Our symbol recognizer uses a simple elastic matching variant [17] trained on the hand-
writing of a single writer. As such, its performance is mediocre on many of the corpus
examples, since different writers draw symbols in different ways. Many inputs were thus
classified as infeasible.

For the present work, we are primarily interested in evaluating the quality of our recog-
nizer’s structural analysis, not its symbol classification. To this end, we introduced a special
testing mode called “Perfect”, which isolates the parser from symbol recognition errors. In
this mode, the parser receives the correct identity of each symbol from a dummy symbol rec-
ognizer. There are no alternatives to choose between, and no ambiguities in stroke grouping.
The mode represents a “best possible world” for the parser and gives an upper bound on its
real-world performance.

Recognition accuracy Recognition accuracy
(global) (feasible)
M Attainable [Correct W Attainable [Correct
1 1
0.9 0.9
-~ 08 -~ 038
S 07 S 07
Q
L o6 % 0.6
= 05 c 05
c c
S 04 S o4
E 03 E 03
g 0.2 g 02
® 01 o 01
& 0.00 & 0.00
Default (min) Perfect (min) Default (min) Perfect (min)
Default (prod) Perfect (prod) Default (prod) Perfect (prod)

Figure 7: Recognition accuracy in aggregate.

Figure 7 shows two graphs of recognition accuracy aggregated over the entire expression
corpus. The graphs show two recognition rates: “Attainable” indicates the proportion of
input expressions for which the correct recognition result was obtained, while “Correct”
indicates the proportion of expressions for which the top-ranked interpretation matched the
ground-truth expression. These rates are indicated for both the product-based (Eqn. 3) and
min-based (Eqn. 4) membership functions.

The graph marked “global” considers all available input expressions. The graph marked
“feasible” considers only those expressions for which it was possible for the parser to find
the correct interpretation (i.e., those for which the correct symbol identities were available
to the parser).

The graphs shown in Figure 8 indicate the average number of corrections and views
required to obtain the desired interpretation in each of these scenarios. As the number of
corrections is irrelevant when the desired expression is unattainable, these graphs only count
corrections on attainable expressions.

From the graphs, some conclusions may be drawn:

21

Average corrections required Average views required

(attainable) (attainable)
M Structural O Terminal B Product 2 Minimum
grade grade
1.2
3
1
2.5
» 0.8
c 2
2 06 o
® z 15
c 04 s
(@] # 1
* 0.2
mEm
0 %
Default (min) Perfect (min) 0 Z%.
Default (prod) Perfect (prod) Default Perfect

Figure 8: Number of corrections required, in aggregate.

1. In the global scenario, as expected, the recognition rate for the Perfect scenario (99%)
was higher than for the Default scenario (57%).

2. When correct symbol recognition results were available, the parser was able to obtain
the desired interpretation 90% of the time in the Default scenario.

3. There is a large gap between the attainable and perfect recognition rates.

4. When the desired interpretation was attainable, but was not the first interpretation
reported, it was obtained after fewer than one correction on average, and after view-
ing only about 1.6 individual recognition results (with the product-based membership
grade). Intuitively, we may interpret this as meaning, “when the desired interpretation
was not the first interpretation reported, it was usually easy to find.”

When given only a single, correct, subdivision of the input into terminal symbols, our
parser was very accurate. In these cases, it attained the desired interpretation in over
99% of the test inputs. The desired interpretation was the first interpretation reported
for roughly 80% of the test inputs. But, when multiple grouping possibilities exist, and
symbols may take on multiple identities, as in the Default scenario, “Correct” accuracy falls
to only about 40%, even if we omit the cases where symbol recognition failed to provide
the correct candidates. However, even in these cases with both symbol- and structure-
level ambiguity, the desired interpretation was attainable over 90% of the time after only
about one correction, on average. Our experiments therefore indicate that, at least for
our recognizer, the introduction of ambiguous symbol grouping possibilities and multiple
recognition candidates is a major complicating factor in recognizing handwritten math.

The parser’s accuracy was similar between the product- and min-based membership
grades. However, somewhat more corrections were required with the min-based grade, par-
ticularly in the Default scenario. This is reasonable since several distinct parses may share
a common partition of some subset of the input that has a low membership grade in a re-
lation. All these interpretations may therefore have the same overall membership grade in
I;, so we cannot expect the desired interpretation to always be reported first. In contrast,

22

Figure 9: Ground-truth can be ambiguous or misleading.

the product-based membership grade preserves ordering across such ties, so we expect more
reasonable interpretations to be reported earlier than when using the min-based grade. We
use the product-based grade in practice.

Our corpus of hand-drawn math expressions contains some ambiguities in its ground-
truth. The ground-truth represents the expression that we asked someone to transcribe. But,
their transcription may not precisely match the expression. For example, the transcription
on the left of Figure 9 was intended to represent the expression on the right, but the structure
is not quite the same. The accuracy figures should therefore be taken as approximations.

To identify the most severe sources of errors in our parser, we analyzed the 36 unattainable
inputs from the Perfect scenario. These errors can be attributed to two main causes: violation
of the ordering assumption (14 inputs), and membership grade zero in grammar relations
(22 inputs). Figure 10 shows some example inputs in which the ordering assumption was
violated. Figure 11 shows some inputs for which relation classification failed to identify the
desired relations.

V-b-b
Ay~ Ly 2
S5\ T 7
f,hk (2) 07C

Figure 10: Expressions violating the ordering assumption.

”f—Ba{%\/‘}'\jx bgT”/O”&—f[W

Figure 11: Expressions for which relation classification failed.

It is possible for each of these errors to be caused by mistakes in transcription or by
messy writing. For example, in the left-hand expression of Figure 10, the right parenthesis
extends to the left beyond the start of the 2 symbol, violating the ordering assumption. The
left-hand expression of Figure 11 was intended to contain the subexpressions gy and jx, not
qy and jx, as the writer appears to have drawn, leading to (perhaps appropriate) failure of
the relational membership functions.

Roughly one third of the unattainable expressions were due to these types of errors or
sloppiness in transcription. However, reasonable-looking expressions also led to these errors,
as evinced by the right-hand expressions in Figures 10 and 11. In Figure 10, the C' symbol

23

begins to the right of the y symbol. This arrangement violates the ordering assumption
and thus prevents the expression from being recognized as a summation. In Figure 11, the
subexpression Y II — [Ddy was intended to be a superscript of b. Because the exponent is
so wide, relational classification failed. These examples point to deficiencies in our approach,
for which we propose some solutions in the next section.

7 Conclusions and future work

We have described the motivation, general principles, and core algorithms for our parser for
handwritten mathematics. We introduced a new fuzzy r-CFG formalism designed particu-
larly for parsing ambiguous, non-linear input. This formalism captures both the structures
and the ambiguities inherent in mathematical writing in particular, and it explicitly models
recognition processes like symbol and relation classification. We believe that this formal-
ism is applicable to any structured domain exhibiting the types of syntactic and semantic
ambiguities found in natural languages.

The formalization of the recognition domain, including its ambiguity, is an important
aspect of our work. By stating working assumptions using this formalism, we were able
not only to derive flexible and efficient algorithms, but also to precisely characterize the
circumstances in which they are correct, and how our practical algorithms deviate from the
theoretical interpretation of fuzzy parsing. We are able to distinguish between recognition
errors caused by deficiencies in our grammar model and those caused by an overly-restrictive
assumption. Indeed, the experiments in the previous section demonstrated that the fuzzy
r-CFG model is useful for handling recognition ambiguities, even though the assumptions we
made to obtain tractable algorithms were occasionally violated. An obvious goal for future
work is therefore to weaken those assumptions and so broaden the parser’s generality.

To facilitate efficient parsing, we introduced the ordering assumption and demonstrated
how it leads naturally to the rectangular hulls proposed by Liang et al. While this assumption
theoretically allows most mathematical notations to be adequately described, there are many
practical examples of mathematical writing which, while easily readable by humans, cannot
be parsed by our current algorithm because of the ordering assumption. We intend to
investigate how this assumption may be relaxed to more flexibly model expression geometry
while still affording efficient parsing algorithms.

To report parse results in ranked order of confidence, we introduced the monotone as-
sumption on the grammar relations, prohibiting context-sensitivity. Although we have ex-
tended our basic algorithm to support context sensitivity in the case of relations involving
terminal symbols, the extension is somewhat ad-hoc and uses a brute force method. It can-
not be generalized to larger subexpressions without significantly degrading the performance
of our parser. We therefore plan to investigate less strict assumptions on the behaviour of
grammar relations which will allow a greater degree of context-sensitivity without a signifi-
cant performance penalty.

The fuzzy membership grade functions defined in Section 2, while reasonable, cannot
naturally account for some types of information that might be useful during recognition.
(For example, measured subexpression co-occurence frequencies.). We plan to investigate
the application of Bayesian probability theory to the two-dimensional parsing problem. Be-

24

cause the terminal symbols are ambiguous in handwritten input, one cannot simply extend
existing stochastic CFG parsing algorithms to two dimensions. Many of the ideas under-
lying our algorithms should be similar between the fuzzy and Bayesian approaches, and a
formal probabilistic model would provide an alternative mathematical framework in which
to derive confidence scores for interpretations. More generally, we are looking into efficient
computational methods for combining variegated information (e.g., probabilistic, possibilis-
tic, rule-based, etc.) during parsing.

Finally, our algorithms must be made more scalable. While they do address the complex-
ity issues arising in our parsing scheme, they take a fairly brute-force approach within the
constraints allowed by the simplifying assumptions. As such, there is a considerable decrease
in parsing speed as the input becomes large. We plan to investigate ways in which efficiency
can be improved while keeping available all relevant recognition results.

Weakening our working assumptions is a challenging and interesting problem. The tech-
niques described in this paper have led to a useful and extensible parser for handwritten
mathematics, and the fuzzy r-CFG formalism is flexible enough that many extensions and
variants of parsing techniques may be “plugged in” to the same general architecture. We
may freely vary the algorithms for building and manipulating the parse graphs using different
working assumptions, and take the combination most suitable for the particular recognition
domain of interest.

References

[1] Ahmad-Montaser Awal, Harold Mouchere, and Christian Viard-Gaudin, Towards hand-
written mathematical expression recognition, Document Analysis and Recognition, In-
ternational Conference on (Los Alamitos, CA, USA), IEEE Computer Society, 2009,
pp- 1046-1050.

[2] Josef B. Baker, Alan P. Sexton, and Volker Sorge, Faithful mathematical formula recog-
nition from pdf documents, Proc., Ninth ITAPR Int’l. Workshop on Document Analysis
Systems, 2010, pp. 485—492.

[3] Frederick W. Blackwell and Robert H. Anderson, An on-line symbolic mathematics sys-
tem using hand-printed two-dimensional notation, Proceedings of the 1969 24th national
conference (New York, NY, USA), ACM, 1969, pp. 551-557.

[4] Dorothea Blostein, Math-literate computers, Calculemus/MKM (Jacques Carette, Lucas
Dixon, Claudio Sacerdoti Coen, and Stephen M. Watt, eds.), Lecture Notes in Computer
Science, vol. 5625, Springer, 2009, pp. 2-13.

[5] Radakovic Bogdan, Goran Predovic, and Bodin Dresevic, Geometric parsing of math-
ematical expressions, U.S. Patent Application #20080253657, Filed 2007, Microsoft
Corporation.

[6] Frederick P. Brooks, The mythical man-month, Addison-Wesley, 1975.

25

[7]

[10]

[11]

[12]

[13]

Kam-Fai Chan and Dit-Yan Yeung, Error detection, error correction and performance
evaluation in on-line mathematical expression recognition, in On-Line Mathematical
Expression Recognition, Pattern Recognition, 1999.

J.A. Fitzgerald, F. Geiselbrechtinger, and T. Kechadi, Mathpad: A fuzzy logic-based
recognition system for handwritten mathematics, Document Analysis and Recognition,
2007. ICDAR 2007. Ninth International Conference on, vol. 2, Sept. 2007, pp. 694-698.

U. Garain and B.B. Chaudhuri, Recognition of online handwritten mathematical expres-
sions, Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on 34
(2004), no. 6, 2366-2376.

Utpal Garain and B. Chaudhuri, A corpus for ocr research on mathematical expressions,
Int. J. Doc. Anal. Recognit. 7 (2005), no. 4, 241-259.

G. Labahn, E. Lank, S. MacLean, M. Marzouk, and D. Tausky, Mathbrush: A system for
doing math on pen-based devices, The Eighth IAPR Workshop on Document Analysis
Systems (DAS) (2008), 599-606.

Joseph J. Laviola, Jr., Mathematical sketching: a new approach to creating and exploring
dynamic illustrations, Ph.D. thesis, Providence, RI, USA, 2005, Adviser-Dam, Andries
Van.

Chuanjun Li, Timothy S. Miller, Robert C. Zeleznik, and Joseph J. LaViola Jr., Algos-
ketch: Algorithm sketching and interactive computation, Proc., Sketch-Based Interfaces
and Modeling, 2008.

Percy Liang, Mukund Narasimhan, Michael Shilman, and Paul Viola, Efficient geomet-
ric algorithms for parsing in two dimensions, ICDAR ’05: Proceedings of the Eighth
International Conference on Document Analysis and Recognition (Washington, DC,
USA), IEEE Computer Society, 2005, pp. 1172-1177.

S. MacLean, G. Labahn, E. Lank, M. Marzouk, and D. Tausky, Grammar-based tech-
niques for creating ground-truthed sketch corpora, Int’l. J. Document Analysis and
Recognition. (2010).

Scott MacLean, Tools for the efficient generation of hand-drawn corpora based
on context-free grammars, Third Int’l. Workshop on Pen-Based Math. Comp.,
http://www.orcca.on.ca/conferences/cicm09/workshops/PenMath / programme-
hand.html, 2009.

Scott MacLean and George Labahn, Elastic matching in linear time and constant space,
Proc., Ninth IAPR Int’l. Workshop on Document Analysis Systems, 2010, (Short paper),
pp. H51-554.

Marko Panic, Math handwriting recognition in windows 7 and its benefits, Proc., Cal-
culemus, 2009, (Invited talk), pp. 29-30.

26

[19]

[20]

[21]

[22]

A

D. Prusa and V. Hlavac, Mathematical formulae recognition using 2d grammars, Doc-
ument Analysis and Recognition, 2007. ICDAR, 2007. Ninth International Conference
on, vol. 2, Sept. 2007, pp. 849-853.

[. Rutherford, Structural analysis for pen-based math input systems, Master’s thesis,
David R. Cheriton School of Computer Science, University of Waterloo, 2005.

Seiichi Toyota, Seiichi Uchida, and Masakazu Suzuki, Structural analysis of mathe-
matical formulae with verification based on formula description grammar, Document
Analysis Systems VII, 2006, pp. 153-163.

R. Yamamoto, S. Sako, T. Nishimoto, and S. Sagayama, On-line recognition of hand-
written mathematical expression based on stroke-based stochastic context-free grammar,
The Tenth International Workshop on Frontiers in Handwriting Recognition, 2006.

L.A. Zadeh, Fuzzy sets, Information Control 8 (1965), 338-353.

R. Zanibbi, D. Blostein, and J.R. Cordy, Recognizing mathematical expressions using
tree transformation, Pattern Analysis and Machine Intelligence, IEEE Transactions on
24 (2002), no. 11, 1455-1467.

Ling Zhang, D. Blostein, and R. Zanibbi, Using fuzzy logic to analyze superscript and
subscript relations in handwritten mathematical expressions, Document Analysis and
Recognition, 2005. Proceedings. Eighth International Conference on, 2005, pp. 972-976
Vol. 2.

Bottom-up fuzzy r-CFG parsing

Using the restriction to rectangular partitions derived in Section 3, we develop a straightfor-
ward bottom-up parsing algorithm for fuzzy r-CFGs that runs in provably polynomial time.
This algorithm examines an input observable ¢ and constructs the parse graph B described
in Section 2.

ing.

Algorithm 4 generalizes to two dimensions the well-known CYK algorithm for CFG pars-
It uses dynamic programming to parse each rectangular subset of the input from smallest

to largest. As in the CYK algorithm, the grammar is assumed to be in Chomsky Normal
Form. That is, each production is either of the form Ay = « for some o € X, or of the form
Ay = A1 Ay, where r € R and B,C € N.

27

Algorithm 4 Bottom-up fuzzy r-CFG parser
Require: An input observable ¢.
for every rectangular subset ¢’ C ¢ of size [t'| = 1,2,...,|t| do
for each production p of the form A = o do
if (¢,) € ry then
B(A,t) « B(A ") U{(p; (¢'))}
for each production p of the form Ay = A; A, do
d < ordr
for x € (¢ \ {min,t'}) do
th+—{aet ra<qx}
to<—{aet :a>,4x}
if B(Al,tl) 7é Qﬁ and B(Ag,tg) 7é ¢ then
B(A,) + B(A) U{(ps (b1, 1))}

Any rectangular subset of an observable ¢ may be constructed by following Algorithm
5. We can thus pre-compute all rectangular subsets of ¢ so that they are accessible to
Algorithm 4 in constant time. This precomputation step requires O (|¢|° log |t|) operations
using standard sorting techniques. The algorithm proper requires O (| P||t|) operations per
rectangular subset, for a total runtime of O (|¢]° (| P| + log|¢])).

Algorithm 5 Rectangular subset extraction.
Let d be one of x,y and let d’ be the other.
List the elements of ¢ in increasing order under <.
Extract a contiguous subsequence. (We now have a set t' C ¢ satisfying t' =
{a €t:mingt' <4a <gmaxyt'}.)
Re-order the remaining elements into increasing order under <.
Extract a contiguous subsequence. (The subsequence elements comprise a rectangular
subset of t.)

B Interpretation extraction algorithm

Given an observable t, we wish to extract interpretations of ¢ from the parse graph B in
decreasing order of “reasonableness”. We view this problem as the explicit construction of
the fuzzy set of interpretations I;, one member at a time, from its compact, implicit repre-
sentation in B. It is sufficient to describe how to obtain the most reasonable interpretation,
0] I;, and how to obtain [n + 1] I; given [n] I;.

We divide the problem into two parts: extracting interpretations from a particular branch
(p; (t1,...,t)), and extracting interpretations from a branch set B(A,t). These two parts
are implemented as mutually-recursive procedures invoked according to the structure of the
grammar productions.

Algorithms 6 and 8 implement the first part, while Algorithms 7 and 9 implement the
second part. The algorithms essentially translate the consequences of the monotone assump-
tion of Section 4 into parse graph operations. Note that each algorithm uses data structures

28

local to the point in B from which it is extracting expressions. One can think of these
algorithms as being associated directly with each node and branch in the parse graph. The
process is initialized by calling BEST-NONTERMINAL-EXPRESSION(S,t) with S the start
symbol and t the entire input. Similarly, NEXT-NONTERMINAL-EXPRESSION(S, t) may be
called repeatedly to iterate over all parses of t.

Furthermore, two distinct modes of extraction are supported. In the EXHAUSTIVE mode,
expressions are extracted exactly as suggested by the monotone assumption. However, this
leads to an overwhelming number of expressions being available to the user. A second mode,
called SEMANTICS, is more restrictive, and is the default mode for expressions larger than a
single terminal symbol.

In SEMANTICS mode, all reported expressions must either be derived from different pro-
ductions (and thus represent different parse structures) different mathematical semantics),
or, if derived from the same production, must partition the input differently into subexpres-
sions. This restriction effectively constrains the number of alternatives available, while still
allowing all possible parse results to be obtained by examining the alternatives for different
subexpressions. It is easily implemented by extracting only one expression per branch.

Algorithm 6 BEST-LINK-EXPRESSION: Extract the most highly-ranked expression from a
branch.
Require: A branch (p; (t1,...,1x))
cache < {} // Initialize priority queue local to the branch
if p is a terminal production Ay = a then
e — o
else
(p is of the form Ay = Ay --- Ay)
fori=1,....k do
e; < BEST-NONTERMINAL- EXPRESSION(A;, ¢;)
e* < (eyr---reg)
[0] £, 0., €
return e*

29

Algorithm 7 NEXT-LINK-EXPRESSION: Extract the next most highly-ranked expression
from a branch.
Require: A branch (p; (t1,...,t))
if extraction mode is SEMANTICS then
return NONE
if p is a terminal production Ay = « then
return NONE
(p is of the form Ay = A --- Ay)
Suppose n expressions have already been extracted from this branch.
Let (e1r---rex) = [n]If ..y, be the last expression extracted here
Let m; be such that e; = [m,] It’?i fori=1,...,1
fori=1,...,k do
if m; = |I;,| then
é; < NEXT-NONTERMINAL- EXPRESSION(A;, ¢;)
else
&+ [mi + 1] 1"
Add e = (eyr---re;_1rére,qar- - -rey) to cache with priority I7(e)
if cache is empty then
return NONE
Pop e* from cache
[+ 1 IF oy, <€
return e*

Algorithm 8 BEST-NONTERMINAL-EXPRESSION: Extract the most highly-ranked expres-

sion derivable from a nonterminal.
Require: A nonterminal A and an observable t.

cache < {} // Initialize priority queue local to (A,1)
for every branch (p;z) € B(A,t) do
Add e = BEST-LINK-EXPRESSION(p;) to cache with priority IF(e)
Pop e* from cache
[0] IA « ¢*
return e*

30

Algorithm 9 NEXT-NONTERMINAL-EXPRESSION: Extract the next most highly-ranked
expression derivable from a nonterminal.
Require: A nonterminal A and an observable t.

Suppose n expressions have already been extracted from B(A,t).

Let e = [n] I* be the last expression extracted here

Let (p; (t1,...,tx)) be the branch from which e was extracted

Add é = NEXT-LINK-EXPRESSION (p; (t1, . .., tx)) to cache with priority IF(e)

if cache is empty then

return NONE

Pop e* from cache

[n+ 1] I e

return e*

It is difficult to precisely quantify the complexity of these algorithms. However, we can
characterize them in terms of the size of B. The initialization step, yielding [0]1;, follows
every possible branch in B(S,t) for S the start symbol and ¢ the entire input, visiting each
node once. Extracting [n+ 1]/; entails a visit to only one branch per nonterminal visited, but
to k nonterminals per branch (p; (t1,...,t)) visited, where k is the number of RHS tokens
in the production p. Note, though, that each such token corresponds to a subexpression in
the parse. The amount of work performed in this case is therefore directly proportional to
the number of nodes in a parse tree representing [n]l;.

In practice, we must report mathematical expressions to the user not as abstract parse
structures, but in some human-readable format. In our system, expressions take two final
forms: mathematical expression trees, and strings. To generate these human-understandable
formats, each grammar production p is associated with a tree generator and a string gen-
erator. The tree generator produces an expression tree that describes how subexpressions
are combined using mathematical operations to represent the syntax of the math expres-
sion. The string generator produces a string representation (e.g., KTEX, MathML) of the
expression tree.

For extensibility, the grammar and generators are defined in an external text file. For
example, the following defines the grammar production for addition:

ADD_OP :R: [ADD_TERM] + [REL_TERM]
{ADD(%1 ’EXPR_LHS’, %3 ’EXPR_RHS’)}
1%1 + %3{

In this example, on the first line, ADD_OP is the name of the production’s LHS nonterminal,
ADD_TERM and REL_TERM are two other nonterminals, + is the name of a terminal symbol, and
R is the textual relation code for the — relation. The second and third lines represent the tree
and string generators, respectively. The second line of the production, between the braces,
describes a tree with root label ADD that has two children. The first child is labeled EXPR_LHS
(the left hand operand of the addition operation) and is linked to the tree output by the tree
generator for ADD_TERM. The second child is labeled EXPR_RHS (the right hand operand) and
is linked to the tree output by the generator for REL_TERM. The string generator is described
on line 3, between the back ticks. As with tree generation, the %n notation indicates where

31

to insert the output of string generators associated with the left hand operand ADD_TERM and
the right hand operand REL_TERM.

Mathematical semantics are indicated by the root labels produced by tree generators.
The production above therefore has semantic type ADD. We call a nonterminal providing a
semantic type labelled. Not all productions include tree generators, however. For example,
consider the following three productions: (Pipe symbols are used on the RHS to separate
distinct productions.)

[REL_TERM] :: [ADD_OP] | [SUB_OP] | [ADD_TERM]

The nonterminal symbol REL_TERM represents a collection of expression types with the
same level of precedence — in this case, addition, subtraction, and an isolated addition term.
Each of the three nonterminals that the symbol REL_TERM can produce have distinct semantic
types. REL_TERM itself does not have a fixed semantic type. Rather, it inherits the expres-
sion tree (and hence the semantic type) given by the tree generator for the nonterminal it
produces. Unlabelled nonterminals like REL_TERM can therefore represent different semantic
types in different contexts. An unlabelled nonterminal may derive other unlabelled nonter-
minals, so the semantic types it can assume are not always immediately apparent from its
productions.

32

