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The purpose of this paper is to introduce and study the problem of automatic transformation of 
structured documents. We consider collections of documents where the instances in each collection 
share a common structure in the sense that they can all be characterized by grammar rules such as 
found in a context-free grammar (CFG) or forest-regular grammar (FRG).  We extend the notation 
to a single XML (or SGML) document with accompanying DTD (document type definition) to say 
that it is structured. As long as documents do not conform to a single universal standard, the data 
transformation between them remains a problem. Thus in the absence of a universal tag set and 
schema, structured document transformation is important for XML to serve as the data interchange 
format for the Web. Recently, W3C proposed XSLT (Extensible Stylesheet Language 
Transformations) as a transformation language for XML data. This language has considerable 
computation power. However, it requires detailed and tedious programming to accomplish complex 
structure transformations. As alternatives, SDT (Syntax Directed Translation) and its extended 
form TT (Tree Transformation) grammar are widely used to specify transformations of source code 
in various programming languages, and they have been proposed as specification languages for 
structured document transformation. These languages are descriptive but have limited expressive 
power, which makes them unable to specify complex structure transformations. In this paper, we 
propose an approach based on syntax tree templates. We show that our language is both descriptive 
and expressive. We also provide algorithms to convert our specification to XSLT for executing the 
transformation. Based on the algorithms, we present a prototype implementation. 
 
Categories and Subject Descriptors: I.7.1 [Document and Text Processing]: Document and Text Editing – 
Document management;  I.7.2 [Document and Text Processing]: Document Preparation – Markup languages; 
XML; H.2.m [Database Management]: Miscellaneous 
 
General Terms: Management, Algorithm, Experimentation 
Additional Key Words and Phrases: Tree transformation, Forest-regular (regular hedge) grammar, Structured 
document, Specification language, Syntax tree (SynTree), XML, XSLT 
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1. INTRODUCTION AND MOTIVATION  

1.1 Structured documents 

In this paper, we introduce and study the problem of automatic transformation between 
structured documents. Generally speaking, a document is structured if it explicitly or 
implicitly contains extra information about its hierarchical composition. In this sense, the 
scope of the meaning of structured documents is quite broad. It could refer to a well-
structured document conforming to a pre-defined grammar, which typically is a context-
free grammar (CFG), perhaps with further constraints. SGML (Standard Generalized 
Markup Language) or XML (Extensible Markup Language) documents conforming to 
some Document Type Definition (DTD) are such examples. It could also be viewed as a 
tree structure or even graph structure, perhaps conforming to the constraints defined in a 
form other than a grammar. Semi-structured data [MAG+97, FFK+98, BDHS96] are 
such examples.  
    In this paper, we study structured documents of a more rigid form: A document is 
considered to be structured only if it can be characterized by grammar rules such as found 
in a context-free grammar and forest-regular grammar [Mur97, Mur98, GS84]. Thus the 



structured documents discussed in this paper always have an underlying schema defined 
by grammar rules, which provide permissible tags (names for attributes and elements of 
the documents) and structures for documents. In terms of XML, we limit ourselves to  
“valid”  documents rather then merely “well-formed”  ones [BPSM00]. 
 
1.2 Transformation problem for structured documents 

In many disciplines, it is quite common that multiple standards/schema coexist with 
overlapping functionalities, but one cannot replace another since each has its own unique 
characteristics. Repeatedly we find that documents need to be converted from one form to 
another as they are exchanged among various applications. Such transformations will be 
especially important in manipulating data that is encoded in XML for widespread 
interoperability. Even within one specific schema definition language such as XML DTD 
or XML schema, communities of users have the flexibility to develop their own 
vocabulary and structure for their documents. Unfortunately the transformation between 
any two user-defined schemas is not a trivial problem. For example, in the chemical 
industry, there are currently at least two markup languages: CML (Chemical Markup 
Languageg) and CIDX (Chemical Industry Data Exchange), both of which rely on XML 
DTDs to develop their own vocabulary and structure for chemical data [CML97, CIDX]. 
Data transformation will be required if one company wants to acquire and integrate data 
in both format, or if one CML-supported company wants to incorporate data in CIDX 
format into its database. 
   This paper addresses the transformation problem between different schemas developed 
from the same schema definition language such as XML Schema or XML DTD.  
 
1.3 Transformation process 

When structural conversion is needed, the ideal transformation process includes three 
distinct phases, as discussed in [KP96] and [Mur98]:  
 
1) Determine the input and output constraints (e.g. grammars, DTDs, etc.) imposed on 
the document. 
2) Specify the transformation in terms of input/output instances (e.g. tree patterns) or 
input/output constraints (e.g. grammars, DTDs, etc.) of the document.  
3) Choose an appropriate sequence of operations to carry out the transformation 
according to the specification. Within this stage, the first step is to identify the parts to be 
transformed in the input document and the last step is to do the replacement accordingly. 
 
    In this paper, we consider several languages with transformation capabilities, served as 
powerful transformation languages, but we find none of them appropriate as a 
specification language dedicated for transformation, as explained below. On the other 
hand, SDT and its extended form TT grammar have long served as the dominant 
mechanisms to specify the translation between source codes in various programming 
languages [KPPM84]. Thus they have been proposed for structured document 
transformation as well [KP96]. They are descriptive but have limited expressive power, 
which makes them unable to specify complex structure transformations.  
    Therefore, we propose a new language: Paired SynTrees, which augments syntax tree 
templates by enriching both their syntactic and semantic rules. We show that our 
language is both descriptive and expressive as a specification language for 
transformation. We also provide algorithms to show how a specification in the SynTree 
language can be converted to XSLT for execution. Based on the algorithms, we have 
created a prototype implementation for the SynTree language, which takes the SynTree 



specification and automatically generates XSLT scripts and then executes the 
transformation by using third-party XSLT engines. 
 
2. APPROACHES TO SPECIFY THE TRANSFORMATION  

It is natural to consider specifying a transformation using W3C's XSLT [Cla99, Kay01]. 
An XSLT program (called a stylesheet) is a set of template rules, each of which has two 
parts: a pattern that is matched against nodes in a source tree and a template that can be 
instantiated to form part of a result tree. XSLT and similar transformation languages, 
such as TXL [CP90], are functional programming languages which have powerful 
computational capability. But when dealing with complex transformations, their 
programs become complicated and operational in the sense that the programs provide 
detailed plans that are necessary for carrying out the transformation but not necessary for 
specifying it. Such languages are well-designed for carrying out a transformation, but 
their operational nature makes them less desirable candidates for a specification 
language.  
    Many XML query languages, such as XQuery [BCF+01] and XML-GL [CCD+00], 
provide transformation capabilities to varying degrees. Our belief is that a query language 
will seldom be a good transformation specification language. The primary design of these 
languages is query-oriented, so they seldom support a complex structure transformation 
that is to comply to an explicitly defined output DTD. Furthermore, in a query language 
such as XQuery, a program to perform even a simple change to the structure, such as 
renaming of a single nonterminal node or moving a small set of nodes, involves 
recursively rebuilding much of the tree. As a result, such programs are neither efficient 
nor concise as a specification mechanism for structural transformations.  
    We view all of the above candidates as good target languages to which a specification 
might be finally translated in an automatic manner. We will therefore focus on more 
descriptive specification mechanisms in this chapter, and come back to these languages in 
later chapters. 
 
2.1 An example 

For the convenience of discussion, we present an extended context-free grammar that 
defines a professor list, where the professors are grouped according to departments and 
within each department professors are grouped by their ranks (full professor, associate 
professor, assistant professor, etc.).  
 
Example 2.1:  
prof_list ::= department+ 
department ::= @title   head   section+ 
head ::= official+ 
official ::= title+  rank  professor 
section ::= rank   professor+ 
professor ::= firstname   lastname   degree+   honors? 
degree ::= type   univ? 
 
    We assume that all the nonterminals above that do not appear on the left-side of any 
production will conform to a production Nt ::= string where Nt is the nonterminal and 
string produces the terminal strings. These productions are implicitly included in the set 
of grammar rules. 
 
    One possible corresponding DTD can be as follows: 
 
Example 2.2 (prof_list.dtd): 
<!DOCTYPE prof_list   [ 



<!ELEMENT    prof_list  (department+) > 
<!ELEMENT    department   (head   section+) > 
<!ATTLIST      department   title  CDATA #REQUIRED> 
<!ELEMENT    head  (official+) > 
<!ELEMENT    section  (rank   professor+) > 
<!ELEMENT    official  (title+ rank  professor) > 
<!ELEMENT    professor (firstname   lastname   degree+   honors?) > 
<!ELEMENT    degree (type  univ?) > 

]> 
 
    Similarly as in example 2.1, all the undefined element names, such as rank, will 
conform to a rule <!ELEMENT  x   #PCDATA >, where #PCDATA are terminal strings 
and x is the corresponding generic identifier.  
 
2.2 Syntax directed translation (SDT) 

Aho and Ullman use input-output paired grammars to describe a syntax-directed 
translation (SDT), which combines a syntax analysis according to a grammar and code 
generation according to a second grammar [AU72].  
    A transformation is defined by a syntax directed translation schema (SDTS), which 
consists of a finite set of nonterminals, one of which is a start symbol and all of which are 
shared by both input and output grammars; a finite set of input terminals; a finite set of 
output terminals; and a set of paired grammar rules. Each paired rule comprises one input 
grammar rule and one output grammar rule. The two rules share the same nonterminal on 
the left side of the production. The nonterminals in the output rule are a permutation of 
the nonterminals in the input rule. If the same nonterminal exists more than once, integer 
superscripts are associated with different occurrences of the same nonterminal name to 
indicate the associations between the identical symbols in two rules. 
The original definition for SDTS is too strict to specify complex structure changes in 
which we are interested; it cannot even allow renaming of the nonterminals. In order to 
make it more practical, various extensions have been made to SDTS. Some natural 
extensions include renaming of the paired associated nonterminals and adding or deleting 
some nonterminals. Kuikka and Penttonen call SDTS with these natural extensions 
ESDTS (extended SDTS) [KP96]. Furthermore, SDTS was originally designed for 
compiling a program strictly conforming to a traditional context-free grammar; one other 
extension is to let SDTS use extended CFGs in order to deal more naturally with 
document transformation. It is assumed that the form we consider in this report will 
implicitly refer to SDTS with all the above extensions. 
    Suppose we want to change the schema in example 2.1 such that within department, 
head will always appear after section, and within professor, lastname will appear before 
firstname. We can use the following paired grammar rules to specify this transformation: 
 
Example 2.3:  
department ::= @title   head   section+,        @title   section+   head 
professor ::= firstname   lastname   degree+   honors?,        lastname   firstname   degree+   honors? 
 
    Aho and Ullman defined an algorithm for automatic transformation of a parse tree via 
such an SDT schema [AU72]. The algorithm performs a depth-first tree walk from the 
root of a parse tree to the leaves. Whenever the symbol of a node matches one of the rules 
in the SDT schema, the algorithm will remove all input terminal children of a node, 
reorder associated nonterminal children, and add new output terminal children.  
 
    The simplicity and regularity makes SDTS feasible in terms of implementation, but 
these characteristics also limit its expressive power. Because the SDTS method insists 
that the input grammar and output grammar are strictly paired, an SDT schema only 



provides a “ flat”  description, and thus it is inherently difficult to describe hierarchical 
changes. For example, moving a nonterminal from one production to another production 
is disallowed by the SDTS definition. Accordingly, we hypothesize that it is not possible, 
by using this method, to move nodes up or down in the parse tree. Thus, for example, the 
following transformation is beyond SDTS’s expressive power: reorganize the professor 
list to group professors by rank and indicate the department as one of the attributes within 
the professor subtree. 
 
2.3 Tree transformation grammar (TT grammar) 

TT grammar was originally introduced as a formal description technique for describing 
transformations from one well-defined programming language to another [KPPM84].  TT 
grammars extend SDTS by allowing users to specify the associations between the 
input/output grammar rules explicitly. This implies that an input nonterminal node can be 
associated with an output nonterminal with different name and in different level, thus 
increasing the expressive capacity as a specification language.  
    A TT-grammar is a sextuple (Gi, Go, Si, So, PA, SA). Gi and Go are the input and 
output grammars, respectively. Si and So are sets of input and output subgrammars, 
serving as patterns and replacements respectively. PA is a set of production group 
associations, and SA a set of symbol associations. A production group association is a 
pair (Si, So). A symbol association is a relationship between a symbol in Si and a symbol 
in So within one production group.  
    Consider the following transformation example for our professor list, which cannot be 
specified by SDTS: Modify head so that it directly contains professor. 2) use an extra 
element name to group firstname and lastname. Let us formulate this transformation by 
using a TT grammar. 
 
Example 2.4: 
Gi      :     prof_list ::= department+ 
                department ::= @title   head   section+ 
Si[1]  :     head ::= official+ 
                official ::= title+ rank  professor 
Si[2]  :     section ::= rank   professor+ 
                professor ::= firstname   lastname   degree+   honors? 
                degree ::= type  univ? 
Go     :     prof_list ::= department+ 
                department ::= @title   head   section+ 
So[1] :     head ::= professor+ 
So[2] :    section ::= rank   professor+ 
                professor ::= name   degree+   honors? 
           name ::= firstname lastname 
                degree ::= type  univ? 
PA    :      {(Si[1],So[1]) , (Si[2],So[2]) } 
 
    SA in this example is quite straightforward, nonterminals with the same name will have 
a natural mapping relationship, the mapping for name will be implied by its children 
mappings, and those nonterminals not showing up in the output grammar such as official 
will be deleted.  
    TT grammars were originally designed to deal with transformation for programming 
languages, where transformations are usually in the fashion of expression-to-expression, 
thus quite localized. Another limitation of this approach is that it cannot specify 
contextual conditions, which are important in expressing more complex structural 
transformation as indicated by Murata [Mur96, Mur98]. Lindén applied this TT grammar 
technique to structured document transformation in his Ph.D. work [Lin97]. There is no 
indication on how to formalize the associations to express more powerful and complex 
structure changes, though it is obvious there is such potential [KPPM84]. In conclusion, 



we think TT grammar is a fairly convenient mechanism to express structure changes. But 
without formalizing the association rules and relating proper semantic actions with the 
rules, we are not clear how to express complex hierarchical changes, and even further 
from knowing if there is an efficient translation to carry out the transformation given such 
a specification. Our work is partially based on this approach with some substantial 
extensions in order to overcome its limitations. 
 
2.4 Filters 

Salminen and Tompa [ST99] introduced a pair of filters serving as the description of a 
parse tree transformation. A filter is a sequence of interconnected constraining context-
free grammars. Constraining grammars allow boolean conditions on any non-terminal 
with respect to its context, so they are able to specify more complex structure changes 
than SDTS does. The input filter is used to mark the parse tree to be transformed, and the 
output filter describes the new structure to be assembled. In the input filters, both the 
nonterminals and the constraints in the properties are all selection criteria. In the output 
filters, however, the constraints in the properties can never be selection criteria but rather 
they are assembling criteria that are to be met by the result. Associated with each 
constraining grammar is also a context. For any nonterminal appearing within a filter, the 
transformation process will first try to find it within its context in the parse tree; 
otherwise, it is assumed that it is the sibling of a nearest possible ancestor for this 
nonterminal.  
 
Example 2.5: Consider again the following transformation example: we want to 
reorganize the professor list according to rank and indicate department as one of the 
attributes within professor. This transformation is basically a partitioned by operation in 
the p-string model [GT87], but we find it quite complex to express by using filters. In 
order to be consistent with the semantics mentioned above, we have to use two pairs of 
input/output filters, i.e., two consecutive transformations, to represent it. The first input 
filter for this example happens to be empty since the whole document is selected. 
Therefore, for the sake of illustration, we add one more condition to the transformation: 
only the CS and ECE departments will be selected and transformed. The first pair of the 
filters is as follows: 
 
Input filters:  
Context: prof_list 
department ::= @title { = “CS” or  =“ECE”}   head   section+ 
professor {::it_prof} ::= firstname   lastname   degree+   honors?  
 
Output filters: 
Context: it_prof 
professor ::= rank  firstname   lastname   title*   @title   degree+   honors?  
Context: prof_list 
prof_list ::= section+ 
section ::= rankname {¬=rankname}    it_prof {rank = rankname }+ 
 
    The input filter can be used to select all the professor elements within the two matched 
department elements. Then the output filters can be used to reassemble the subtrees. The 
first output filter is within the context of it_prof. In the parse tree, we can move 
nonterminal nodes with their subtrees both upward and downward (title, @title in this 
example where title is for official and @title is an attribute for department), and attach 
them to node professor. The second filter, working within the context of prof_list, 
attaches a few empty section elements to the prof_list node, and the number of the 
section elements is decided in the next constraining production, which imposes two 
conditions: each section node has a unique rankname value and all the it_prof nodes 



whose rank value is equal to some rankname value are grouped and attached to this 
section node. Note, however, that the rank value of it_prof  must equal the rankname 
value of some section within the context of the complete prof_list. This assumes that all 
ranks appear as ranknames, but does not constrain the professors to lie within the 
matching section only. Therefore, we need to follow that conversion with one more 
selection condition to make sure that the rank value matches the rankname value within 
each section, which can be specified with an second pair of filters as follows: 
 
Input filters:  
Context: professor 
professor{::sel_prof } ::= rank{=rankname}   firstname   lastname   title*   @title   degree+   honors? 
 
Output filters: 
Context: prof_list 
section ::= rankname    sel_prof + 
prof_list ::= section+ 
professor ::= firstname   lastname   official_title*  @ dept_title   degree+   honors? 
 
    The output filter will only reassemble the “valid”  section elements based on the 
selection results from the input filter, and thus it is safe to drop the rank elements from 
the professor subtree. 
Having created such a two-step specification, we must still derive the output parse tree by 
applying the following five steps to the input parse tree: 
 
1) Within the parse tree, delete any department node and its subtree if its value is not 

“CS”  or “ECE” .  In the remaining parse tree , identify professor as it_prof.  
2) Within each department subtree, push @title down to each node identified as it_prof.  
3) Within each official subtree, push any title and rank down to professor node. 
4) Within each section subtree, push rank down to each professor node. 
5) Within prof_list, delete all the children and pull up section elements, combining 

section elements with similar rank. Alternatively, create new section nodes, one per 
rank, and partition it_prof elements into section by their rank value; then add rank to 
the section node and delete it from professor.  

 
    The mechanism of paired filters is flexible in expressing structure changes. However, 
because filters are closely bound to grammar rules and the correlation between various 
constraining productions is not obvious, they are difficult to formulate correctly and do 
not map to the target parse tree very easily. Since the filter specification is quite succinct, 
we must pay attention to the exact semantics for it. Additional information may be 
needed to interpret the boolean conditions specified in the filters correctly. The semantics 
may be suitable for this particular example but not necessarily adequate for specifying 
other transformations.  Secondly, if we consider the situation that the matching points 
may scatter anywhere in a parse tree with arbitrary levels, the task for assembling them 
may be arbitrarily complex. How to derive the proper actions to assemble the output 
parse tree  (like the five steps we listed above) according to the filters is a difficult 
problem. How to prove the validity of the transformation in general needs further study. 
    Paired filters were introduced as a promising idea for specifying transformation, but 
they still need to be formalized with exact semantics in order to become an effective 
mapping language. In the next chapter, we will propose a new language which combines 
the ideas discussed above and tries to keep a manageable balance between complexity 
and expressiveness. The resulting language is called Paired SynTrees, and we show it 
overcomes some limitations in each of the approaches.  
 
3. SYNTREE SPECIFICATION LANGUAGE 



In this chapter, we introduce Paired SynTrees, a high-level specification language which 
is both expressive and descriptive in terms of specifying transformations.  We use forest-
regular grammars as the mechanism to express the document structure [Mur96, Mur98]. 
Compared with DTDs, forest-regular grammars describe structured document schemas 
more naturally and more expressively.  
 
3.1 Grammar trees and syntax trees 

We introduce some definitions which will be frequently used during the discussion for 
the SynTree language. We assume that conventional regular expression (herein called 
string-regular expression), context-free grammar (CFG) and derivation of the CFG are 
well known concepts.  
 
    Definition 3.1.  A forest-regular grammar (FRG) is a 4-tuple <S, N, P, rf>, where S is 
a finite set of symbols; N is a finite set of non-terminals; P is a finite set of production 
rules of the form A 

�
 a < r >, where A ∈ N, a ∈ S, and r is a non-empty string-regular 

expression over N ∪ S; and rf is a string-regular expression over N. If rf is a single non-
terminal, the 4-tuple describes a tree-regular grammar (TRG) and rf is called the start 
nonterminal of the grammar. 
    Note: We require that a FRG be normalized such that each nonterminal has exactly one 
production rule associated with it. Our simplification of the definition omits the set of 
variables that Murata uses to represent the external (leaf) nodes in a forest [Mur96], 
which are not needed to support the specification of a transformation. 
    Murata showed that tree-regular grammars are a better fit than context-free grammars 
for XML data [Mur96, Mur98, MLM01]. When parse trees, instead of the normal 
derivation strings, of a context-free grammar are considered as the instances of structured 
documents, as described in the p-string model for structured documents [GT87], a tree-
regular grammar can derive those parse trees directly. It has been proven that any set of 
parse trees derived by a regular right-part grammar [Lal77] forms exactly a language 
defined by an analogous tree-regular grammar [Tha67]. The effect is similar to that 
achieved by xscheme [Beh00], but forest-regular languages have the advantage of being 
closed under set union as well as under intersection and difference. We therefore choose 
forest-regular grammars, also known as regular hedge grammars [BMW+01, Mur00], as 
the underlying schema language to develop Paired SynTrees in spite of the fact that most 
ideas we borrowed and extended were based on context-free grammars. 
 
    Definition 3.2.  A grammar tree of the TRG is defined to be a tree-like structure 
derived by using the following steps: 
1) Choose the start nonterminal of the TRG as the root. 
2) Repeatedly replace the nonterminals with the right part of the corresponding 
production rule except that: after the first application of any rule A 

�
 a<r>, other 

replacements of that same nonterminal may be bypassed. Before the replacement of any 
nonterminal, if the nonterminal is followed by a unary repetition operator ( +, *, ?), move 
that operator to precede the nonterminal. 
    Because it is straightforward to recover the original grammar up to the renaming of 
non-terminals by reversing the process, we claim that the grammar tree precisely captures 
the corresponding TRG grammar.  
 
Example 3.1: An equivalent tree-regular grammar for the DTD in example 2.2 is: G = 
<S, N, P, rf> where 
S = { proflist, department, @title, head, official, title, rank, section, professor, lastname, firstname, 

honor, degree, type, univ} 
N =  { PROFLIST, DEPARTMENT, HEAD, SECTION, OFFICIAL, PROFESSOR DEGREE } 



P = {    
PROFLIST 

�
proflist <DEPARTMENT +> 

DEPARTMENT 
�

 department <@title  HEAD  SECTION+> 
HEAD 

�
 head <OFFICIAL+> 

OFFICIAL 
�

 official <title rank  PROFESSOR> 
SECTION 

�
 section < rank PROFESSOR+> 

PROFESSOR 
�

 professor <lastname  firstname  DEGREE+ honors?> 
DEGREE 

�
 degree < type  univ? > 

       } 
rf = { PROFLIST } 
     
    Note: In the production rules, the upper-case names represent nonterminals, and lower-
case names represent terminals (symbols). In order to hide #PCDATA productions for 
elements or CDATA productions for attributes, we define those symbols with such 
productions as special terminals. In this TRG, all names with “@” are special terminals 
which hide CDATA productions; rank and title are special terminals which hide the 
#PCDATA productions.  
 
Example 3.2: The grammar tree for G in example 3.1 can be represented as follows: 
proflist<+department 
               <@title  
                  head<+official<title rank professor<lastname firstname +degree<type ?univ> ?honors>>>  
                  +section<rank +PROFESSOR> 
               > 
           > 
 
    Note: Since a nonterminal Nt may appear more than once in a derived grammar tree, 
we use Nt[i] to indicates the i-th occurrence of the nonterminal in the string representing 
the derived grammar tree. For example, PROFESSOR [1] refers to the first PROFESSOR 
in the grammar tree in example 3.2. This will become useful when we try to modify the 
content model of department by adding a new element containing professor. 
    As illustrated by the above example, we can see that a grammar tree is NOT a 
derivation tree which has a rigid tree structure, but a more general structure for the 
underlying data. It represents the complete data space, because it preserves structure 
information such as alternatives (|), optionalities (?) and multiple occurrences (* or +). 
 
    Definition 3.3.  A syntax tree (SynTree) derived from the TRG is an incomplete 
grammar tree that can be produced by using the following steps: 
1) Choose ANY nonterminal of the TRG as the root. 
2) For any nonterminal A, whose production rule is A 

�
 a<r>, it can be operated in 

either of the two ways: a) substitute it by a<…>, a<expr…>, a<… expr >, a<… expr 
…>, where expr can be the portion (a forest regular expression) under a that is 
relevant to the transformation, and will be further expanded recursively; notation … 
is used to indicate that the eluded portion remains unchanged during the 
transformation process. b) replace it with the right part of the corresponding 
production rule except that: after the first application of any rule A 

�
 a<r>, other 

replacements of that same nonterminal may be bypassed. Before the processing of 
any nonterminal, if the nonterminal is followed by a unary repetition operator ( +, *, 
?), move that operator to precede the nonterminal. 

3) Repeat step 2 until each nonterminal is processed according to step 2 precisely once. 
 
Example 3.3: Three of many possible syntax trees for G in example 3.1: 
SynTree 1: head<+official<title rank professor<lastname firstname +degree<…> ?honors>>>  
SynTree 2: department<…head<…>…> 
SynTree 3: section<rank +professor<…>> 
 



    Definition 3.4.  A SynTree rooted by symbol s is called an s-SynTree. Thus SynTree 3 
in example 3.3 is a section-SynTree. 
    Note: We can use either s<…> or S in the SynTree where S 

�
 s<r> is the production 

rule, but with different semantics. We choose S to indicate that there is going to be 
structure changes inside but as specified somewhere else (the first occurrence) in the 
SynTree. We use s<…> to represent the s-SynTree in the corresponding grammar tree, 
which impiles that there will be no structure changes inside this s-SynTree. Thus In 
SynTree 2 of example 3.3, the expression professor<…> represents the professor-
SynTree appearing in the grammar tree of example 3.2. 
 
    Definition 3.5. Each symbol or nonterminal appearing in a SynTree is called a node in 
that SynTree. A symbol node is called an atomic node because it represents a simple 
value such as a string or number. A nonterminal node is called a complex node because it 
represents a subtree structure. 
 
    Definition 3.6. The scope (for the transformation) of a SynTree node refers to the 
subtree structure associated with the node, including the node itself. For example, 
expression section<rank +professor<…>> represents the scope for the outermost node 
section.  
 
    Definition 3.7. The envelope (for the transformation) of a SynTree node refers to the 
remaining part of the SynTree when the transformation scope of that node is removed. 
Before a transformation, we make the following assumptions: 
1) A valid document conforms to a tree-regular grammar, so it is always singly-rooted. 
2) The input of the transformation can be a collection of documents that can be defined 

by a forest-regular grammar, while the output must be a single document confirming 
to a tree-regular grammar. For an XML document with corresponding DTD, it is 
straightforward to convert its DTD into a corresponding tree-regular grammar. 

3) The transformation attempts to keep the parent-child relationship among the 
translated nodes unless the specification explicitly dictates otherwise. 

 
3.2 Description of the SynTree Language 

The SynTree specification language contains four components: a pair of grammar trees, a 
pair of SynTrees, a set of boolean conditions and a set of mapping rules. In this section, 
instead of giving the formal syntax for the language, we will present a detailed 
description for each component, which will be used as the basis for developing the formal 
syntax and semantics of the SynTree language. 
 
3.2.1 Grammar trees 
The first component of the SynTree language is a pair of grammar trees, one represents 
the grammar or constraints for the input document, and the other represents the desired 
grammar or constraints for the output of the transformation.  
 
3.2.2 Paired SynTrees 
The next component of the SynTree language is a pair of SynTrees, one for the input 
documents and the other for the output. A SynTree, besides its definition, has further 
implications as follows: 
 
1) Ellipses will be extensively used to represent subtree structure or a sequence of 

subtree structure in the SynTree. Those elided subtree structures will remain 
unchanged. For example, a<…> means the substructure of node a will remains the 
same after the transformation; a<…expr…> indicates only the substructure with 



expression expr will be affected during the transformation, where expr could be a 
sequence of sub-SynTrees. 

2) The input SynTree is one SynTree optionally followed by a sequence of additional 
SynTrees. With respect to semantics, the first SynTree will serve as the base context 
for the transformation, other SynTrees will be viewed as the subtree structure outside 
the context but partially or completely needed to be incorporated into the 
transformation result. The envelope of the first input SynTree root will be deleted as 
part of the transformation.  

3) The output SynTree is precisely one SynTree which gives the context for the 
transformation result. The root of output SynTree is the same as the root of the 
output grammar tree. 

 
Example 3.4 Suppose we want to make some changes (deleting the rank attribute) within 
each head section only. With the notation introduced so far, we can have the following 
paired SynTrees as our specification: 
Input SynTree      :   prof_list<+department< … head<+official<+title rank professor<…>>> … >> 
Output SynTree   :   prof_list<+department< … head<+official<+title professor<…>>> … >> 
 
    The paired SynTrees above make it quite clear what kind of transformation we want to 
specify: Ellipses are used to avoid presenting unrelated structures which will remain the 
same during the transformation; professor <…> is used to indicate that the professor-
SynTree will remain unchanged. 
    In order to describe more complex transformations, we need to add more mechanisms 
than just a pair of SynTrees. For example, what if we want to keep only CS and ECE 
departments in the output? We achieve this kind of transformation by introducing 
boolean conditions associated with SynTree nodes. Furthermore, we need a mechanism 
to associate an input symbol with the corresponding output symbol, because in general it 
is not likely that the association will be obvious. For example, we may want to rename 
professor as prof. We therefore introduce mapping rules to fulfill such purpose. These 
two components make the SynTree language much more expressive. 
 
3.2.3 Boolean Conditions 
Boolean conditions are labelled predicate expressions for which the label is placed within 
square brackets [] attached to a node in the SynTree.  
 
1) Predicates can take only one of the following forms: 

a. Existence testing expressions for a node selected by an XPath expression 
[Cla99a, BBC+01]. For example,Cond1: ../@title. 

b. Relation testing expressions between node sets selected by an XPath expression. 
For example,  Cond2: ../i:department/i:@title=”CS”  or Cond3: ../i:rank = 
../o:rank. We use the namespace i to refer to the input grammar, i.e., the values 
before transformation, and o to refer to the output grammar, i.e., the values after 
transformation. 

c. Function constraints to be satisfied by the associated nodes. Currently these may 
be either distinct or sort.   

d. Expressions using boolean operators (not, and, or) to combine expressions of 
the above three types 

2) Xpath expressions appearing in the boolean conditon must be localized, which 
means the selected node should be within the local context of the currrent node. 
More specifically, the selected node is not allowed to be outside the subtree rooted 
by the top node in the SynTree. Furthermore, “ //”  is not allowed in the path 
expression because it has the potential to refer to a node at an arbitrary distance from 



the current node and makes the task of efficient translation to operational program 
more difficult. 

3) Boolean conditions appearing in the input SynTree will serve as selection conditions. 
In other words, if there is a boolean condition associated with a node in the input 
SynTree, the matching subtrees (in the instance) satisfying the condition will be 
selected; the corresponding subtrees not  satisfying the condition will be deleted. 

4) Boolean conditions in the output SynTree are used as the construction constraints. 
 
5) If no selection condition appears on nodes in a SynTree, the condition “TRUE”  is 

assumed. Thus for the input SynTree, all the nodes are selected by default. 
 
    An abstract syntax and a clean formal semantics of XPath expression are provided by 
Wadler [Wad00]. The syntax we choose is based on both the syntax provided by Wadler 
and the one by Olteanu et al. [OMTB02]. 
 
3.2.4 Mapping rules 

The mapping rules specify which nodes from the input are to be transformed to which 
nodes in the output. If input and output nodes have the same name and there is no explicit 
mapping rule to the output node, then there is an implicit mapping rule to copy the input 
to the corresponding output.  
 
1) Each mapping rule uses the following syntax: operator [ parameter * ] : S1

�
 S2, 

where S1 is a set of nodes from the input SynTree and S2 from the output SynTree. 
2) Both the operators and parameters are chosen from a predefined closed set, which 

currently includes: 
a. add (with parameters for passing constant values or subtrees), used to insert a 

new value as a new leaf node in the output. 
b. update (with parameters for passing constant values), used to update the value of 

an input leaf node and copy it over to an output leaf node. 
c. copy which takes no parameter and uses “union” semantics when more than one 

set of nodes are selected in the corresponding mapping rules. 
d. aggregate (with parameters to indicate aggregation functions), higher-order 

functions whose parameters themselves are functions. These parameters are 
either simple functions taking the selected nodes as input or more complex 
functions taking as input the selected structures within the subtree of the 
associated node. Each function application returns a single value.  

3) In the input SynTree, any nodes associated by a mapping rule, and passing the 
selection condition if there is any, must be placed somewhere in the output 
document. Input nodes not associated with any implicit or explicit mapping rules will 
be deleted. This implies that the transformation assumes no information loss unless 
otherwise indicated by deletion.  

4) In order to create a document that matches the output grammar, every node that must 
have at least one occurrence in the output instance must be the target of some 
mapping rule.  Furthermore, any such node must also be instantiated by the 
conversion. 

 
    So far, we have described all the components of our SynTree language along with 
some default semantics that are implicit in the specification language of transformation. 
Note that such default behavior does not apply in typical query languages, where data is 
neither retrieved nor transformed unless explicitly specified.  
    In summary, a paired SynTree specification attaches contextual conditions and 
mapping rules to syntax tree structures. We have presented a description of the SynTree 



language which gives the guideline for the formal syntax and semantics without explicitly 
separating them. The language is designed to make the set of operators compact, their 
semantics easy to follow, and common simple transformations easy to specify. Among 
the components of the SynTree language, the mapping component is the most flexible 
component. In principle, it can map an arbitrary number of input nodes to an arbitrary 
number of output nodes, and various operators associated with the mapping may add 
further computations to such mappings. This nature of the mapping rule complicates the 
task of figuring out the exact semantic meaning and doing the translation accordingly.  
Thus a reasonable approach is to restrict mapping rules to the simplest forms and to study 
the expressive power of the language and complexity involved in the translation 
algorithm.  
 
3.3 Core (SynTree) language  

In this section, we provide a formal syntax, along with a description for semantics, of the 
core SynTree language, which is a subset of the language described above with further 
restrictions on the mapping rules.  
    We use a forest-regular grammar to represent the complete syntax, which has an 
equivalent representation in BNF [Tha67]. 
 
SynTreeSpec 

�
 syntreespec<GrammarTrees, SynTrees, BooleanConditions, Mappings> 

    This rule indicates that the specification has four substructures corresponding to the 
four components of the SynTree language. 
 
GrammarTrees 

�
 grammartrees<InputGrammarTrees, OutputGrammarTree> 

InputGrammarTrees 
�

 inputgrammartrees<GrammarTree+> 
OutputGrammarTree 

�
 outputgrammartree<GrammarTree> 

    This set of rules defines the first component: grammar trees. Note the actual grammar 
tree for the input and output is not presented because they depend on the transformation 
application and are provided by the user before the transformation. 
 
SynTrees 

�
 syntrees <InputSynTrees, OutputSynTree> 

InputSynTrees
�

inputsyntrees<SynTree+> 
OutputSynTree

�
outputsyntree<SynTree> 

SynTree 
�

 syntree<@name  @id  @occurrence?  @terminaltype  @conditionid SynTree*> 
    This set of rules defines the structure of the input/output SynTree. The name attribute 
indicates the name of the symbol. The occurrence attribute is used to specify ? , * and +. 
The terminaltype attribute is used to indicate three situations: nonterminal, terminal, 
alternative. When the terminaltype equals alternative, the corresponding SynTree node is 
a “ fake” node that connect to two or more “real”  SynTree nodes among which only one 
can be chosen when deriving instances. 
 
BooleanConditions 

�
 booleanconditions<Condition+> 

Condition 
�

 condition<@id> 
    Conditions are predicates described in the previous section. 
 
MappingRules 

�
 mappingrules<Rule+> 

Rule 
�

 rule<@id @name parameter*, (SourceNode*, DestinationNode+)> 
SourceNode 

�
 sourcenode<@name @id? @appearanceOrder?> 

DestinationNode 
�

 destinationnode<@name @id? @appearanceOrder?>  
    The mapping rule is a restricted version with the following restrictions: 
1) The mapping operator must be chosen from the set : { add, update, copy, aggregate} .  
2) Operator add and update allows one-to-one mapping only. When the mapping 

operator is aggregate, only a many-to-one mapping is allowed. In addition, the 



parameters allowed for aggregate are simple functions only, chosen from the set: 
{ min, max, avg, count, sum, concat} . 

 
    With the simplified mapping rules, a formal semantics of the SynTree specification can 
be derived in three steps. We first extend a tree-transformer called k-pebble transducer to 
include data values [AMN+01, MSV00, Suc02]. We then define a collection of tree 
operations on top of the extended k-pebble transducer. Finally, we define semantic 
functions to translate the specification into a sequence of such tree operations.  
 
3.4 Specifying transformations 

We collect a set of examples of structural transformations and demonstrate how to use the 
SynTree language to specify them. We first give a classification of transformations in 
terms of structure changes, then give an example for each possible classification. Most of 
the examples are based on a university catalog conforming to the DTD defined in 
example 2.2, whose equivalent tree-regular grammar (TRG) is shown in example 3.1. 
 
3.4.1 Class One: expressible by SDT (no Boolean conditions) 
Example 3.5.1 Switching the symbol. Suppose we want to switch the order of elements 
lastname and firstname. The SynTree specification will be: 
Input SynTree    :  proflist<…professor< firstname  lastname…>…> 
Output SynTree  :  proflist<…professor< lastname  firstname … >…> 
 
Example 3.5.2 Removing an attribute. 
Input SynTree    :  proflist<…official< @position  professor<…>  rank>…> 
Output SynTree  :  proflist<…official< professor<…>  rank>…> 
 
    All the examples within this class are expressible in SDT so our specification can be 
reduced to an equivalent form of SDT specification.  
 
3.4.2 Class Two: expressible by SDT except for the boolean conditions 
With boolean conditions, we can impose contextual conditions when specifying 
transformation, which beyond the capability of SDT. 
Example 3.5.3 Extract cs professors only 
Input SynTree    : department[C1]<…>  
Output SynTree   : department<…> 
Boolean Condition  : C1:  @title=”CS” 
 
    We copy all the nodes that satisfy the selection condition.  
Example 3.5.4 Delete professors whose firstname is John.  
Input SynTree     :  proflist<…professor[C1]<…>…> 
Output SynTree   :  proflist<…professor<…>…> 
Boolean Condition   :  C1: not(@firstname=”John”) 
 
    We copy all the nodes that satisfy the complement of the deletion condition (i.e. do not 
match those to be deleted). 
 
3.4.3 Class Three: updates not expressible by SDT 
Examples in this class are a trivial because only leaf nodes will be affected. Though 
trivial, our specification language should support it so that the users can express simple 
update operations on specific elements in their structured documents. 
Example 3.5.5 Add age element to professor named John in the list.  
Input SynTree    :  proflist<…professor<…?age>…> 
Output SynTree   :  proflist<…professor<… ?age>…> 
Boolean Condition   :  C1: @firstname=”John” 



Mapping Rule    :  add(“Ph.D”): age[C1] 
 
Example 3.5.6 Updating the value of an attribute. Suppose professor John Smith is an 
official who just got promoted from vice president to president of the university. We 
assume both positions are unique in this catalog. The SynTree specification is as follows: 
Input SynTree     :  proflist<…official[C1] < title…>…> 
Output SynTree   :  proflist<…official< title  …>…> 
Boolean Condition    :  C1: @position=”vice president” 
Mapping Rule    :  update(“president”): @title

�
@title 

 
3.4.4 Class Four: non-nesting structure changes not expressible by SDT 
Example 3.5.7 Divide professors within one section into two groups, those who received 
PhD degrees from UW and those who did not.  
Input SynTree    : proflist<…section<rank  *professor<…>> …> 
Output SynTree  : proflist<…section<rank  section_uw< *professor [C1]<…>> 
                                                                         section_outside< * PROFESSOR [C2]> >…> 
Boolean Condition :  C1:  ./degree/type=”PhD” and ./degree/univ=”UW” 
                         C2:  not (./degree/type=”PhD” and ./degree/univ=”UW”) 
Mapping Rule   :  copy: professor 

�
 professor[1] , professor[2] 

 
3.4.5 Class Five: nesting structure changes and aggregations 
Example 3.5.8 Consider the transformation problem given by W3C's XML Query 
Working Group as Use Case ``PARTS'' [CFMR01]: The input is a flat list of part 
elements, each of which has values for partid and name attributes. Each part may or may 
not be a component of a larger part, indicated by the value of the partof attribute. The 
transformation is to convert the flat representation into an explicit hierarchic 
representation, based on partof attributes. 
 
Input DTD:                                         Output DTD: 
<!DOCTYPE partlist [                            <!DOCTYPE parttree [ 

<!ELEMENT  partlist   (part*)>              <!ELEMENT  parttree   (part*)> 
<!ELEMENT  part        EMPTY>           <!ELEMENT  part         (part*)> 
<!ATTLIST     part                                  <!ATTLIST     part 

partid  CDATA   #REQUIRED                   partid CDATA  #REQUIRED 
partof  CDATA   #IMPLIED                        name CDATA  #REQUIRED> ]> 
name    CDATA   #REQUIRED> ]> 

 
    The corresponding SynTree specification is as follows: 
Input SynTree    :  partlist< *part<@partid  ?@partof  @name> 
Output SynTree   :  partree< *part[C1]<@partid  @name  *Part[C2] > 
Boolean Condition  :  C1:  not(i:@partof) 
                    C2:  i:@partof =../o:@partid 
Mapping Rule    :  copy: partlist 

�
 parttree 

                                      copy: part 
�

 part  Part 
 
Example 3.5.9 Consider again the list of university professors. Assume now that a 
transformed listing is to be produced to include only members of the Departments of 
Computer Science and of Electrical and Computing Engineering, but this list is to be 
strictly partitioned by rank, with the department name appearing as an attribute for each 
high-tech professor. We also want to add one  more attribute to the newly generated 
section @num, which will store the number of professors in this section. 
    The transformation can be specified by the following paired SynTrees: 
Input SynTree   : proflist<*department[C1]<  @title 
                                                head<*official<title+ rank  professor<…> >> 
                                              *section<rank  *professor<…> >>> 
Output SynTree  : proflist<*rank_section<@rank @num[C2]  *hitech_prof[C2]<@dept_title…>>> 
Boolean Condition : C1:  i:@title=”ECE or i:@title=”CS” 
                  C2:  ../i:rank = ../o:@rank 



Mapping Rule   : copy : rank[1] rank[2] 
�

 rank[distinct()] 
        copy : @title 

�
 @dept_title 

              copy : professor[1]  professor[2] 
�

hitech_prof  
                aggregate(count) :  professor[1]  professor[2] 

�
 @num 

 
    Notice that the mapping rules, together with boolean condition C2, specify that the 
output listing is to include each rank exactly once, and that each professor is to appear 
under the correct rank name (according to the associated rank in the input document, 
whether or not that professor was an officer), and the number of professors under the 
same section is to be counted as the num attribute.  
 
4. OPERATIONAL LANGUAGES FOR TRANSFORMATION 

 For paired SynTrees to be a useful specification mechanism, we need algorithms to 
convert from the description of a specification to a sequence of operations that carry out 
the transformation on document instances. In this section, we introduce some languages 
that are suitable for expressing the operational behavior of a specified transformation. In 
the next, we provide algorithms to translate our specification to one such language, 
XSLT. 
    TXL and XSLT are functional languages combined with pattern matching rules. Both 
are Turing-complete in terms of computation power. Forest (or Hedge) automata, derived 
from forest (or hedge) grammars, are capable of describing both patterns and contextual 
conditions and thus are fairly flexible ways of describing transformations [Mur96, 
Mur98]. Although it is more powerful than finite automata, its computation power is not 
Turing-complete. In fact, it can only capture a very restricted fragment of XSLT. 
 
4.1 Forest Automata 

Murata describes transformations by using forest (sequence of parse trees) conditions. 
Forest conditions include patterns and contextual conditions, where patterns are 
conditions on immediate or descendant subordinate nodes while contextual conditions are 
conditions on non-subordinates such as immediate or ancestor superiors, siblings, and 
subordinates of siblings [Mur98].  
    Each condition in Murata’s approach can also be represented by a forest automaton, 
which can be strictly derived from the corresponding forest grammar. In this way, since a 
document and condition are both instances of forest-regular languages recognized by the 
corresponding automata, pattern matching and condition testing can be done by the 
intersection of the two corresponding automata.  

    Document transformation is defined as a composition of a marking function P
cM  and 

a linear tree homomorphism H. The function P
cM  marks a node if the subtree rooted by 

this node matches pattern P and the envelope (the rest of the tree) satisfies contextual 
condition C. The algorithm used by this marking function is basically a pattern matching 
algorithm or an algorithm for contextual condition testing. Homomorphism H is 
essentially a replacement algorithm which rewrites the tree, for example, by deleting or 
renaming marked nodes. 
    In terms of computation power, forest automata are not as expressive as Turing 
machines. An extended version of forest automata, called k-pebble transducers, are 
shown to be a rather restricted version of XSLT. In the restricted version, equality testing 
based on node values is not allowed, which limits the expressiveness [MSV00, Suc02]. 
Bex, Maneth and Neven provide a more expressive model for XSLT, which can 
completely simulate a k-pebble transducer, and the resulting language from this model is 
shown to be not Turing-complete [BMN00]. Murata develops a forest algebra based on 
this computation model and starts to develop a rule-based language called forestlog on 



top of the algebra [Mur98]. When the language is fully defined, we will have a better 
target to analyze its expressive power. The examples demonstrated by Murata are fairly 
simple transformations, such as deleting nodes or relabeling nodes. The process for 
describing the transformation are complicated and operational [Mur96, Mur98], and thus 
will not be presented in this paper.  
 
4.2 TXL and XSLT 

Both XSLT (XML eXtensible Stylesheet Languague Transformation) and TXL (Turing 
eXtensible Language) are tree-manipulation programming languages which combine 
features of functional languages with pattern-matching rules [Cla99, CP90].  
    A TXL program takes as input a parse tree according to a given input grammar, and 
transforms it into an output parse tree by applying its pattern matching rules. A basic 
pattern matching rule in TXL looks like this: 
 
rule  name 
 replace   [type] 
  pattern 

by 
 replacement 

end rule 
 
    Where name is a rule identifier, type is the nonterminal type designating the root of the 
input parse tree, pattern is a pattern which the input parse tree must match in order to be 
transformed, and replacement is the result of the corresponding transformation.  
XSLT is proposed by W3C as an XML extensible stylesheet language (XSL) for 
transformation. Its primary role is to allow users to write transformations from one XML 
document to another. Very similar to TXL, an XSLT program (called stylesheet) is also a 
set of template rules. A template rule has two parts: a pattern which is matched against 
nodes in the source tree and a template which can be instantiated to form part of the result 
tree.  
    As indicated by others [BMN00], before entering its recommendation phase in 
November 1999 [Cla99], the database community [DFF+99, ABS00] viewed XSLT as a 
weak language in terms of expressive power and only recommended it for simple 
transformations such as HTML formatting. But in the recommendation version, with 
some important added features, XSLT has become a powerful general-purpose 
transformation language. Those added features include flexible control structures, 
variable binding for node sets, parameter passing between templates and template modes 
(to mimic the states of a tree transducer). These additions make XSLT a Turing-complete 
language. In its latest version [Kay01], XSLT has added more powerful features, such as 
the operator groupby.  
    Although TXL and XSLT look similar at the syntax level, they have some fundamental 
differences. First of all, TXL takes a tree-editing approach which continuously makes 
changes to the source tree whenever matching happens; on the other hand, XSLT only 
navigates the source tree and emits output whenever matching occurs; the output will not 
affect the input tree in any way. Secondly, a pattern in TXL could be any string generated 
by a context-free grammar, and needs to be parsed into a parse tree for pattern matching; 
while XSLT forms its pattern by using XPath expressions, which are not as expressive as 
TXL’s tree patterns at a structural level but have extra equality-testing capabilities. 
Finally, TXL is mainly used as a tool for transforming between different programming 
languages or variants, so the patterns and replacement are usually expressions in various 
programming languages; XSLT, on the other hand, is dedicated for transformation of 
structured documents. These differences contribute to the fact that, for the same 
transformation task, the two programs may look different and also behavior differently. 



We view both of the languages as powerful operational languages, and thus good 
candidates to which a specification could be translated. Since XSLT is widely supported 
and has open-source implementations, we choose XSLT as our target language. In order 
to develop the translation algorithm, we need to know a little more detail about how 
XSLT works. 
 
4.3 Push and Pull technique of XSLT 

The push and pull technique related to XSLT is briefly discussed by James Clark 
[Cla99b]. Generally speaking, push means emitting outputs whenever some condition is 
satisfied during the navigation of the source tree. Such a typical push model is deployed 
by the SAX2 specification. Pull usually refers to a process that walks through an output 
template and retrieves data from various input sources whenever necessary. A typical 
example is a JSP (Java server page), which usually defines an HTML template and then 
fills in data either dynamically generated on the fly or retrieved from databases by calling 
Java beans via JDBC drivers.  
    An XSLT program typically uses XPath expressions to navigate a static source tree up 
and down without modifying it, matching the pattern described in XPath expressions. 
During the tree-walking, it can either issue new templates or construction whenever 
specified pattern matches selected nodes (push technique) or generate query result of the 
source tree within  construction elements (pull technique) To better understand these two 
techniques, we give two simple examples in XSLT. 
 
    An example of the push technique is the use of “match”  to generate the output by 
further processing all the children of the matched student nodes from the input: 
<xsl:template match=”student”> 

<xsl:apply-templates/> 
</xsl:template> 
 
    An example of the pull technique is the use of “select”  to query the source and extract 
the value of a selected source node back: 
 <newNode> 
 <xsl:value-of select=”./firstName”>   
</newNode> 
 
    Push is usually deployed in document transformation with a rule-based approach 
where the output structure is closely dependent on input structure. Pull, on the other hand, 
is widely used for data transformation, typically with a template which implies the output 
structure; therefore the output structure can be independent of the input structure.  
    With the aid of XPath expressions, XSLT allows the combination of both pushing and 
pulling in a single transformation. On one hand, XPath provides a query language to 
fulfill the task of data pulling; on the other hand, XPath expressions can serve as a pattern 
to be matched in the process of data pushing.  
 
4.4 XSLT default templates 

An XSLT template takes the following form: 
<xsl:template match = pattern  name = qname priority = number mode = qname> 

do some construction work during which possibly call/apply other templates… 
</xsl:template> 
 
    Basically we have three kinds of template: the pattern template which does not need a 
name or mode attribute, the named template which must have a name attribute but does 
not require a pattern, and the mode template which must have a mode attribute and 
requires a pattern as well. 



    These three templates are called in different ways:  
<xsl:apply-templates select = node-set-expression mode = qname> 
 provide sorting criteria or template parameters if applicable… 
</xsl:apply-templates> 
 
<xsl:call-template name = qname> 
 provide template parameters if applicable… 
</xsl:call-template> 
 
    Pattern templates can be called by an xsl:apply-template element without mode or 
name attribute. Mode templates can only be called by xsl:apply-templates element with a 
mode attribute. Thus mode can be used to enforce a particular construction phase by 
restricting processing to a set of templates that will be called during that phase [BMN00]. 
Named templates can only be called by xsl:call-template with a matched name attribute. 
Named templates give the flexibility to call a specific template whenever necessary at 
any construction phase. 
    We can use XSLT templates to mimic the following generic tree operators: 
fullTreeCopy(…),  subTreeCopy(…), subTreeDelete(…), nodeCopy(…), nodeDelete(…), 
addLeafNode(…) and updateLeafNode(…). In addition, we also introduce some common 
database operations that can be easily imitated by XSLT templates: 
aggregate(count/max/min/sum/average/concat). 
    To support the SynTree specification language, these templates can be pre-built and 
put into  an XSLT Library which will be used by the translation algorithm. For each type 
of template, we can pass parameters (denoted by …) to control the actual behavior. For 
example, we can name a template by passing the name parameter. We can also assign a 
mode to any template to mimic the state of construction. We can pass the XPath 
expression on-the-fly to form the actual pattern in the template. We can also generate 
new source locations so that within any template we can apply other templates to these 
locations. 
 
    We should keep in mind that XSLT defines some default templates: 
1) “continue-process”  rule for document root and all the elements: 

<xsl:template match = “ * | / ”> 
   <xsl:apply-templates> 
</xsl:template> 

 
2) “produce-value”  rule for text nodes and attributes: 

<xsl:template match=” text() | @* ”> 
 <xsl:value-of select = “.”/> 
</xsl:template> 

 
3) “do-nothing” rule for processing-instruction nodes and comment nodes: 

<xsl:template match=” processing-instruction() | comment() ”/> 
 
    These templates are automatically added to any generated stylesheet. Unless implicitly 
replaced by other templates, these templates will be processed whenever the matching 
happens. 
    Our algorithm takes an “ implicit-deletion” approach: for those nodes without matching 
template rules, the deletion action is implicitly implied. For this purpose, we need to 
overwrite the “produce-value”  rule so that the deleted elements will not generate 
unexpected values from their text children nodes or attribute children nodes. The 
overwritten rule is as follows: 

<xsl:template match = “ text() | @* ”/> 
    It is essentially a “do-nothing rule”  that implicitly implements subTreeDelete(…). 
Because the “produce-value”  rule also applies to mode templates, for each mode template 



whose value for mode attribute is modeName, our algorithm also needs to generate the 
following do-nothing template: 

<xsl:template match = “text() | @*” mode = “modeName”/> 
 

5. TRANSLATION ALGORITHM FOR THE CORE LANGUAGE 

On this foundation, we are ready to introduce the translation algorithm targeting XSLT. 
 
5.1 Tree model 

Conceptually, the SynTree specification can be viewed as a pair of tree-like structures 
with the following characteristics: 
1) The trees represent part of the syntactic structure of input/output documents that is 

relevant to the transformation. In addition, the full grammar trees of input/output 
documents are always available whenever necessary. 

2) Each mapping rule is attached to some input nodes and some output nodes. 
Whenever a SynTree node is visited, we assume it is trivial to find its associated 
mapping rules. 

3) Each boolean condition is attached to a SynTree node. When the SynTree node is 
visited, we assume it is also trivial to check its boolean conditions. 

 
5.2 Description of the general algorithm 

Here we present a general algorithm that conceptually describes how to translate a 
SynTree specification into XSLT templates. The detailed algorithm with its complexity 
analysis will be presented in a later section. 
Input:    iSynTree: input SynTree in the SynTree specification 
       oSynTree: output SynTree in the SynTree specification 
       Mappings: the mapping rules in the SynTree specification 
       Conditions: the boolean conditions in the SynTree specification 
       iGrammarTree: the complete grammar tree for the source doucment 
       oGrammarTree: the complete grammar tree for the destination document 
Output:XSLT stylesheet consisting of a series of template rules, implementing the 

transformation 
 
Step 1.    Verify the SynTree Specification 
1. Validate the correctness of the syntax. 
2. Validate iSynTree with respect to iGrammarTree, oSynTree with respect to 

oGrammarTree. 
3. Validate and preprocess Mappings. This makes sure that each oSynTree node must 

have at least one associated mapping rule, whereas each iSynTree node may be (but 
not necessarily) associated with one or more rules. (iSynTree nodes without 
mappings will be implicitly deleted). 

4. Validate boolean conditions conforming to XPath syntax. 
 
Step 2.   Initialization for the translation 
1. Locate the root of oSynTree: currentOutputNode 

�
 oSynTree.getRoot(); 

2. Construct a stylesheet containing only default templates initially: 
 XSLTStylesheet xsltStylesheet = new XSLTStylesheet();  
3. Initialize the nodesToProcess Queue to be empty 

 
Step 3.   Traverse the oSynTree in a top-down breadth-first manner 



1. Generate a set of current bindings from currentOutputNode, including 
currentInputNodes, currentMapping, currentConstructionCondition and 
currentSelectionCondition. 

2. Generate a construction template for current node by using currentMapping and 
currentConstructionCondition. 

3. For each child, oChild,  of the currentOutputNode, adjust the above template by 
inserting more construction or apply-template rules whenever necessary: 
a. Get bindings from oChild, including iChildren, childMapping 
b. Produce Xpath expression from currentInputNodes to iChildren 
c. If the mapping is copy, put oChild into the NodesToProcess queue and insert an 

applyTemplate rule with mode attribute into the template in order to further 
process this node. Otherwise, for the case of leaf operation (add, update) or 
aggregation (min, max,…), insert construction rule for oChild and no further 
process is needed for this node. 

4. Add adjusted template into xsltStylesheet. 
5. if NodesToProcess queue is non-empty, dequeue one node as currentOutputNode 

and loop back to step 3.1, else continue to step 4. 
          
Step 4.  Return the generated xsltSylesheet; 
     
    The detailed algorithm is in Appendix. This function implements a tree walker that 
descends from the root of the output SynTree. In a breadth-first manner, it processes each 
node in the output SynTree exactly once. 
    The heart of the algorithm is in step 3.3 where 3.3(b) is a navigation process which 
starts from the set of current input nodes defined by current mapping rule and computes 
the possible XPath expressions to the children input nodes defined by the mapping rule of 
the corresponding child output node. It is also the most complicated procedure in terms of 
computation complexity. In general, if we know the depth of each node in the SynTree, it 
takes at most twice the height of the tree to find a path between any two nodes in the tree. 
Let us look at the complexity of the whole algorithm based on the assumption that the 
size and height of the SynTrees are bounded by n and h respectively and the number of 
input nodes involved in each mapping rule is bounded by m: 
    Step 1 of the algorithm needs several tree traversals which takes O(n) time where n is 
the size of the output SynTree. Step 2 needs constant time for initialization. Step 3 needs 
one tree traversal for its main procedure, which takes O(n); sub-procedure 3(b) can take 

O( 2hm ) time in the worst case; all the rest of the sub-procedures take constant time; so 

the total cost for this step is O( 2nhm ). Step 4 requires constant time for returning the 

results. Therefore the complexity of the whole algorithm is O( 2nhm ). 

 
6. SYNTREE IMPLEMENTATION 

In this section, we give an introduction to the prototype implementation for the SynTree 
language and its translation algorithm. The entire software is written in pure Java, which 
makes the system portable to various platforms. 
 
6.1 Software components 

There are four modules in our SynTree software: 
 
1) Paired SynTree Parser converts the SynTree specification into an in-memory tree 

structure. 



2) Paired SynTree Visualizer displays the input/output SynTrees graphically. Ideally a 
user could interactively modify the SynTrees, but this feature has not been 
implemented yet. 

3) Stylesheet Generator implements the translation algorithm. 
4) SynTree Transformer reads the input document and transforms it into an output 

document by calling the XSLT engine to execute the XSLT script. 
 
    In Figure 6.1 we give a graphical presentation of our system, which indicates the 
relationship among different modules: 

SynTree
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Stylesheet
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SynTree
Transformer

SynTree
Visualizer

JDOM Tree

Source.xsl

Target.xml
Source.xml

XSLT lib

Spec.xml

Fig. 6.1 System components
 

6.2 Target languages and tools 

Many open-source implementations around XML specifications/applications have been 
developed in Java, and they are available for downloading over the internet. We designed 
an XML format to represent SynTree specifications so that we can benefit from the 
availability of XML parsers. We use the SAX-compatible XML parser Crimson (or 
Xerces) to do the syntax validation for our specification [Meg00]. Because we need an 
in-memory representation for the SynTree specification, we chose JDOM to load our 
specification into a JDOM tree [HM02, BE01]. JDOM is not compatible with W3C DOM 
specifications [ABC+98], but it is optimized for Java so that it avoids the heavy memory-
print due to DOM’s language-neutrality. 
    Our target language is XSLT. We use Xalan as our XSLT engine, but the user can 
switch to any other XSLT engine such as Saxon or XT. In our system, the XSLT engine 
will also use either Crimson or Xerces to parse input documents and then carry out the 
translation according to the stylesheet generated by the Stylesheet Generator. 
 
6.3 Applications 

In this section we use examples to show how the SynTree system works. 
 
6.3.1 Partition 
Consider again the transformation from example 3.7 that will divide professors within 
one section into two groups, those who received PhD degrees from UW and those who 
did not.   
    The preprocessor will take this specification and produce an augmented specification 
in XML format. Additional information, such as the depth of each SynTree node, the type 
of the symbol, the unique id associated with each SynTree node as well as some default 
mapping rules, will be added. It is this XML file that will be processed by the translation 



algorithm. The following is the screen shot for this transformation in the SynTree 
System: 

 
Fig. 6.2   Specifying Partition in Paired SynTrees System 

 
    The corresponding specification in XML format is as follows: 
<?xml version="1.0"?> 
<!DOCTYPE synTreeSpec SYSTEM "synTreeSpec.dtd"> 
<synTreeSpec> 
 
    <iSynTree> 
        <synTree  id="1" level="1" name="proflist"> 
            <synTree id="2" level="2" name="department" occurrence="oneOrMore"> 
                 <synTree id="3" level="3" name="@title"/> 
                 <synTree id="4" level="3" name="head"/> 
                 <synTree id="5" level="3" name="section" occurrence="oneOrMore"> 
                    <synTree id ="6" level="4" name="rank"/> 
                  <synTree id ="7" level="4" name="professor" occurrence="oneOrMore"/> 
                 </synTree> 
            </synTree> 
        </synTree> 
    </iSynTree> 
 
 
    <oSynTree> 
        <synTree  id="1001" level="1" name="proflist"> 
            <synTree id="1002" level="2" name="department" occurrence="oneOrMore"> 
                 <synTree id="1003" level="3" name="@title"/> 
                 <synTree id="1004" level="3" name="head"/> 
                 <synTree id="1005" level="3" name="section" occurrence="oneOrMore"> 
                    <synTree id ="1006" level="4" name="rank"/> 
                    <synTree id = "1008" level ="4" name="section_uw"> 
                       <synTree id ="1009" level="5" name="professor" occurrence="oneOrMore"  

condition  = "degree/univ/text()='UW'" /> 
                  </synTree> 
                  <synTree id = "1010" level ="4" name="section_outside"> 
                       <synTree id ="1011" level="5" name="professor" occurrence="oneOrMore"   

condition  = "not(degree/univ/text()='UW')" /> 
                  </synTree> 
                 </synTree> 
            </synTree> 
        </synTree> 
    </oSynTree> 
 
    <mRules> 
        <rule   id="m1" name="copy"> 



            <sourceNode  id="1" name="proflist"/> 
            <destinationNode  id="1001" name="proflist"/> 
        </rule> 
        <rule   id="m2" name="copy"> 
            <sourceNode  id="2" name="department"/> 
            <destinationNode  id="1002" name="department"/> 
        </rule> 
        <rule   id="m3" name="copy"> 
            <sourceNode  id="3" name="@title"/> 
            <destinationNode  id="1003" name="@title"/> 
        </rule> 
        <rule   id="m4" name="copy"> 
            <sourceNode  id="4" name="head"/> 
            <destinationNode  id="1004" name="head"/> 
        </rule> 
        <rule   id="m5" name="copy"> 
            <sourceNode  id="5" name="section"/> 
            <destinationNode  id="1005" name="section"/> 
        </rule> 
        <rule   id="m6" name="copy"> 
            <sourceNode  id="6" name="rank"/> 
            <destinationNode  id="1006" name="rank"/> 
        </rule> 
        <rule   id="m7" name="copy"> 
            <sourceNode  id="5" name="section"/> 
            <destinationNode  id="1008" name="section_uw"/> 
        </rule> 
        <rule   id="m8" name="copy"> 
            <sourceNode  id="5" name="section"/> 
            <destinationNode  id="1010" name="section_outside"/> 
        </rule> 
         
        <rule   id="m9" name="copy"> 
            <sourceNode  id="7" name="professor"/> 
            <destinationNode  id="1009" name="professor"/> 
        </rule> 
        <rule   id="m10" name="copy"> 
            <sourceNode  id="7" name="professor"/> 
            <destinationNode  id="1011" name="professor"/> 
        </rule> 
                 
 
    </mRules> 
 
</synTreeSpec> 
 
    We give a brief description on how the translation algorithm generates the stylesheet. 
First it  constructs a new stylesheet with some default templates: 
<?xml version="1.0" encoding="UTF-8"?> 
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"> 
  <xsl:output method="xml" indent="yes"></xsl:output> 
  <xsl:template match="text()|@*"></xsl:template> 
 … more templates need to be inserted here… 
</xsl:stylesheet> 
 
    Then it generates a set of templates for the construction of the root of the output 
SynTree. Meanwhile it also prepares for the further construction of the children nodes: 
<xsl:template match="proflist"> 
   <proflist> 
      <xsl:apply-templates select="./department" mode="mode1"></xsl:apply-templates> 
    </proflist> 
</xsl:template> 
 



    Then it continues to process the root’s child node department. In addition, it also 
produces a default mode template: 
<xsl:template match="text()|@*" mode="mode1"></xsl:template> 
<xsl:template match="department" mode="mode1"> 
    <department> 
      <xsl:apply-templates select="./@title" mode="mode2"></xsl:apply-templates> 
      <xsl:apply-templates select="./head" mode="mode3"></xsl:apply-templates> 
      <xsl:apply-templates select="./section" mode="mode4"></xsl:apply-templates> 
    </department> 
</xsl:template> 
 
    Next, for the first child node of department, it generates a template using a similar 
process.   
<xsl:template match="text()|@*" mode="mode2"></xsl:template> 
<xsl:template match="@title" mode="mode2"> 
    <xsl:attribute name="title"> 
      <xsl:value-of select="."></xsl:value-of> 
    </xsl:attribute> 
  </xsl:template> 
 
    Templates are generated in the same way for the second and third children nodes. The 
algorithm issues a subtree copy for head as indicated in our specification. 
<xsl:template match="text()|@*" mode="mode3"></xsl:template> 
<xsl:template match="text()|@*" mode="mode4"></xsl:template> 
<xsl:template match="head" mode="mode3"> 
    <head> 
      <xsl:for-each select="./@* | ./node()"> 
        <xsl:copy-of select="."></xsl:copy-of> 
      </xsl:for-each> 
    </head> 
</xsl:template> 
<xsl:template match="section" mode="mode4"> 
    <section> 
      <xsl:apply-templates select="./rank" mode="mode5"></xsl:apply-templates> 
      <xsl:apply-templates select="." mode="mode6"></xsl:apply-templates> 
      <xsl:apply-templates select="." mode="mode7"></xsl:apply-templates> 
    </section> 
</xsl:template> 
 
    The algorithm iteratively generates more templates to achieve the remaining 
constructions: 
<xsl:template match="text()|@*" mode="mode5"></xsl:template> 
<xsl:template match="text()|@*" mode="mode6"></xsl:template> 
<xsl:template match="text()|@*" mode="mode7"></xsl:template> 
<xsl:template match="rank" mode="mode5"> 
    <rank> 
      <xsl:for-each select="./@* | ./node()"> 
        <xsl:copy-of select="."></xsl:copy-of> 
      </xsl:for-each> 
    </rank> 
</xsl:template> 
<xsl:template match="section" mode="mode6"> 
    <section_uw> 
      <xsl:apply-templates select="./professor" mode="mode8"></xsl:apply-templates> 
    </section_uw> 
</xsl:template> 
<xsl:template match="section" mode="mode7"> 
    <section_outside> 
      <xsl:apply-templates select="./professor" mode="mode9"></xsl:apply-templates> 
    </section_outside> 
</xsl:template> 
 
 



<xsl:template match="text()|@*" mode="mode8"></xsl:template> 
<xsl:template match="text()|@*" mode="mode9"></xsl:template> 
<xsl:template match="professor[degree/univ/text()='UW']" mode="mode8"> 
    <professor> 
      <xsl:for-each select="./@* | ./node()"> 
        <xsl:copy-of select="."></xsl:copy-of> 
      </xsl:for-each> 
    </professor> 
</xsl:template> 
<xsl:template match="professor[not(degree/univ/text()='UW')]" mode="mode9"> 
    <professor> 
      <xsl:for-each select="./@* | ./node()"> 
        <xsl:copy-of select="."></xsl:copy-of> 
      </xsl:for-each> 
    </professor> 
</xsl:template> 
 
    The whole stylesheet mimics a depth-first tree transducer, which is equivalent to a k-
pebble transducer [MSV00] plus more powerful condition testing capabilities.  
 
6.3.2 Intersection 
In this example, we assume a simple grammar to represent a student list where students 
can show up in either a club or a CS department or both. We also assume that the id is the 
unique identification for student. We want to form a document in which there is one 
student list containing all the students who are both in the club and in the CS department. 
 
Input Grammar Tree  : univ< club< +student<@id @name> >   csdept<+STUDENT >   > 
Output Grammar Tree :  csclubmember  < +student<@id @name>  >       
 
    The rest of the SynTree specification is as follows: 
Input SynTree    : univ< club< +student<…>>  csdept<+student[C1]<…> >    > 
Output SynTree   : csclubmember<  +student<…>  >      
Boolean Condition  : C1:  ./ @ id = ../../club/student/@id 
Mapping Rule    : copy: univ 

�
 csclubmember 

                                      copy: student[2] 
�

 student 
 
    The corresponding screen shot is as follows: 

 
Fig. 6.3   Specifying intersection in Paired SynTrees System 

    The corresponding specification in XML format is as follows: 
<?xml version="1.0"?> 
<!DOCTYPE synTreeSpec SYSTEM "synTreeSpec.dtd"> 
<synTreeSpec> 
    <iSynTree> 



        <synTree  id="1" level="1" name="univ"> 
            <synTree id="2" level="2" name="club"> 
             <synTree id ="4" level="3" name="student" occurrence="oneOrMore"/> 
             </synTree> 
            <synTree id="3" level="2" name="csdept"> 
                <synTree id ="6" level="3" name="student" occurrence="oneOrMore"  

sCondition = "@id=../../club/student/@id" />  
                </synTree> 
        </synTree> 
    </iSynTree> 
 
    <oSynTree> 
        <synTree  id="1001" level="1" name="csclubmember"> 
            <synTree id ="1006" level="3" name="student" occurrence="oneOrMore" /> 
        </synTree> 
    </oSynTree> 
 
    <mRules> 
        <rule   id="m1" name="copy"> 
            <sourceNode  id="1" name="univ"/> 
            <destinationNode  id="1001" name="csclubmember"/> 
        </rule> 
        <rule   id="m2" name="copy"> 
            <sourceNode  id="6" name="student"/> 
            <destinationNode  id="1006" name="member"/> 
        </rule> 
 
    </mRules> 
 
</synTreeSpec> 
 
    The following stylesheet is generated by the translation algorithm: 
 
<?xml version="1.0" encoding="UTF-8"?> 
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"> 
  <xsl:output method="xml" indent="yes"></xsl:output> 
  <xsl:template match="text()|@*"></xsl:template> 
  <xsl:template match="text()|@*" mode="mode1"></xsl:template> 
  <xsl:template match="univ"> 
    <CsPetClubMember> 
      <xsl:apply-templates select="./csdept/student[@id=../../club/student/@id]" mode="mode1"/> 
    </CsPetClubMember> 
  </xsl:template> 
  <xsl:template match="student" mode="mode1"> 
    <student> 
      <xsl:for-each select="./@* | ./node()"> 
        <xsl:copy-of select="."></xsl:copy-of> 
      </xsl:for-each> 
    </student> 
  </xsl:template> 
</xsl:stylesheet> 
 
    In the current implementation, we also support transformations requiring the difference 
of two or more node sets, and simple aggregation functions over selected nodes.  
 
6.4 Observations – potential optimization 

In this section, we present a few experiments to indicate some potential optimizations. 
The experiments were carried out in Windows XP professional running on a 600Mhz PC 
with 448M RAM. Our SynTree software was compiled and executed under SUN 
JDK1.3.1. 
 
6.4.1 Number of template calls in XSLT stylesheet 



In the algorithm, each construction template is used to build up just one node type. If we 
can combine templates to form one template with the same construction capability, then 
we can reduce the template calls during the transformation process, and thereby reduce 
the total running time. For example, the construction for the leaf nodes of one common 
parent can be combined together and put into the common parent’s construction template, 
which results in fewer construction templates, thus reducing the template calls during the 
actual XSLT transformation process. 
    Suppose our output SynTree is a complete binary tree, which means there are as many 
leaf nodes as internal nodes. By applying the above technique, the number of templates 
generated will be reduced by half. For more general cases, if each node has more than 
one child, by applying the above technique, the number of templates generated will be 
reduced at least by half.  
    We use a trivial transformation (renaming symbols) to illustrate the performance gain: 
InputSynTree  : doc< +b1<c1 c2>  +b3<c3 c4> > 
Output SynTree : newDoc< +bb1<cc1 cc2>  +bb3<cc3 cc4> > 
Mapping rule   : copy: doc 

�
 newDoc 

                 copy:  b1  
�

 bb1 
                 copy:  b3  

�
 bb3 

                copy:  c1  
�

 cc1 
                    copy:  c2  

�
 cc2 

                 copy:  c3  
�

 cc3 
                 copy:  c4  

�
 cc4 

 
    We use one input data file of size 226KB (one doc element, one thousand b1 elements and 
ten thousand b3 elements) and test for 30 times using the Xalan XSLT engine. With the 
default approach, the algorithm generates seven templates for the corresponding seven output 
node types. The average execution time of this set of templates is roughly 1.48 seconds with 
an average deviation 0.12 seconds. With the optimized approach, the algorithm generates 3 
templates, the average execution time is reduced to roughly 1.07 seconds with an average 
deviation 0.10 seconds, a considerable performance gain. The experiment result roughly 
confirms our reasoning above (see Figure 6.4). 
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Fig. 6.4 Reduce Template Calls 

 
6.4.2 Join on common attributes 
In relational database systems, the size of the input tables affects how join operations can 
be optimized. Join operation can occur in the transformation process as well. In the core 
language, we support natural join on common attributes with exactly the same name only. 



Our extended language will allow more general join operations which will take 
parameters to indicate the attributes and conditions to be used for join operation. 
    Consider a simple transformation requiring a natural join on the student nodes and 
course nodes:  
InputSynTree     : university< *student<@studentId @studentName @courseId>   
                                                 *course<@courseId @courseName>> 
Output SynTree : univ< *courseSelection<@studentId @studentName @courseId @courseName >> 
Mapping Rule    : copy: university 

�
 univ 

                          copy: student, course 
�

 courseSelection 
     
    The straightforward translation for this specification is a nested-loop approach that 
iterates both student nodes and course nodes and constructs a new courseSelection node 
whenever the natural join condition is satisfied.  
    If the input file is large then the underlying operational language may not fetch the 
whole document into memory. In this situation, picking up the small subtree first is 
usually a good choice for performance, as proved for relational databases. We suspect 
this is true for the Xalan XSLT engine with SAX parser because, with their DTM 
(Document Table Model), it will not fetch a whole large document at once but rather only 
fetch the relevant portion whenever necessary (lazy fetching) [HM02]. To confirms this, 
we used a file of size 650KB in which there are just three course nodes and around 
thirteen thousand student nodes. We provide two specifications for the above 
transformation. One specification chooses the student nodes first whereas the other 
chooses the course nodes first. The two generated XSLT scripts are almost identical 
except for the nested loop structure, as shown in the following:  
    This one iterates course nodes first: 
<?xml version="1.0" encoding="UTF-8"?> 
<!-- this is hand maded version, not from translation algorithm --> 
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"> 
  <xsl:output method="xml" indent="yes"></xsl:output> 
  <xsl:template match="text()|@*"></xsl:template> 
  <xsl:template match="text()|@*" mode="mode1"></xsl:template> 
  <xsl:template match="university"> 
    <univ> 
          <xsl:variable name="VarS" select = "./studentEnrollment"/> 
          <xsl:variable name="VarC" select = "./course"/> 
          <xsl:for-each select = "$VarC"> 
          <xsl:variable name="VarC1" select ="." /> 
           <xsl:for-each select = "$VarS"> 
               <xsl:variable name="VarS1" select = "."/> 
            <xsl:if test="$VarS1/@cId=$VarC1/@cId"> 
             <CourseSelection> 
               <xsl:element name="sid"><xsl:value-of select="$VarS1/@sId"/></xsl:element> 
               <xsl:element name="sName"><xsl:value-of select="$VarS1/@sName"/></xsl:element> 
               <xsl:element name="cId"><xsl:value-of select="$VarS1/@cId"/></xsl:element> 
               <xsl:element name="cId"><xsl:value-of select="$VarC1/@cId"/></xsl:element> 
               <xsl:element name="cName"><xsl:value-of select="$VarC1/@cName"/></xsl:element> 
             </CourseSelection> 
            </xsl:if> 
           </xsl:for-each> 
          </xsl:for-each> 
  </univ> 
 </xsl:template> 
</xsl:stylesheet> 
 
    The second one iterates student nodes first: 
<?xml version="1.0" encoding="UTF-8"?> 
<!-- this is hand maded version, not from translation algorithm --> 
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"> 
  <xsl:output method="xml" indent="yes"></xsl:output> 
  <xsl:template match="text()|@*"></xsl:template> 



  <xsl:template match="text()|@*" mode="mode1"></xsl:template> 
  <xsl:template match="university"> 
    <univ> 
          <xsl:variable name="VarS" select = "./studentEnrollment"/> 
          <xsl:variable name="VarC" select = "./course"/> 
          <xsl:for-each select = "$VarS"> 
          <xsl:variable name="VarS1" select = "."/> 
           <xsl:for-each select = "$VarC"> 
           <xsl:variable name="VarC1" select ="." /> 
            <xsl:if test="$VarS1/@cId=$VarC1/@cId"> 
             <CourseSelection> 
               <xsl:element name="sid"><xsl:value-of select="$VarS1/@sId"/></xsl:element> 
               <xsl:element name="sName"><xsl:value-of select="$VarS1/@sName"/></xsl:element> 
               <xsl:element name="cId"><xsl:value-of select="$VarS1/@cId"/></xsl:element> 
               <xsl:element name="cId"><xsl:value-of select="$VarC1/@cId"/></xsl:element> 
               <xsl:element name="cName"><xsl:value-of select="$VarC1/@cName"/></xsl:element> 
             </CourseSelection> 
            </xsl:if> 
           </xsl:for-each> 
      </xsl:for-each> 
    </univ> 
  </xsl:template> 
</xsl:stylesheet> 
 
    The difference in running time between the above two scripts is significant. The first 
template runs for less than twenty seconds whereas the second one runs for more than 
four hundred seconds, which confirms that choosing the smaller set for the outer loop is 
important for efficient execution. 
 
6.4.3 Keys in XSLT 
Performance can be further improved by using an index if indexing is supported by the 
underlying operational language.  Current XSLT implementations seldom support an 
index so it is not a choice when XSLT is the target language for the translation algorithm. 
But XSLT provides keys for efficient fetching when there is a cross-reference in an XML 
document. For example, a user can define a key on the attribute of an element type, then 
fetch a subset of those elements later according to the predefined key. If the 
implementation of XSLT is capable of dealing with keys efficiently, defining a key 
should be a good choice to achieve better performance. 
 
6.4.4 Subtree copies 
BizTalk Mapper is a software tool that uses a similar approach to generate an XSLT 
script from a specification [Biz02]. The GUI allows users to draw links, each of which 
specifies a mapping rule corresponding to a node copy. Figure 6.5 shows a screen shot 
from BizTalk Mapper. In our language, users can specify the above transformation in 
exactly the same way as in BizTalk Mapper, but we also allow users to specify it in a 
more efficient way by using subtree copy. Figure 6.6 shows our corresponding 
specification which uses subtree copy. 



 
Fig. 6.5 Specifying Subtree Copy in BizTalk Mapper 

 

 
Fig. 6.6 Specifying Subtree Copy in Paired SynTrees System 

 
    Thus BizTalk Mapper forces users to specify all the mappings for all the descendants 
to mimic a subtree copy, which is quite inconvenient and the generated XSLT script is 
much less efficient since it explicitly copies every node. In our approach, our generated 
XSLT script uses <xsl:copy-of> to copy the whole subtree, resulting in more succinct 
specification and efficient code. We use Xalan to execute both stylesheets ten times to 
transform a source xml file of five hundred section elements and one thousand professor 
elements. The average running time for the stylesheet generated by BizTalk is 1.09 
seconds whereas the stylesheet generated with subree copies requires running time of 
only 0.67 seconds on average. 
 
7. FUTURE WORK AND CONCLUSION  

Prior to developing paired SynTrees, we examined several approaches for specifying 
transformations for structured documents. None of them seemed suitable as a high-level 
specification language: some are too operational in nature and others can describe local 



transformations only. We therefore propose a new approach, paired syntax tree templates, 
which is both descriptive and expressive. 
    Many XML query languages, such as XQuery and XML-GL, provide transformation 
capabilities to varying degrees. Similar to the XSLT solution, the XQuery solution for the 
``PARTS'' Use Case example [CFMR01] also uses a recursive function: 
 
   <parttree> 
        FOR $p IN //part[NOT @partof] 
        RETURN one_level($p) 
    </parttree> 
 
    FUNCTION one_level($p element)  RETURNS element 
    { 
      <part> 
         $p/@partid 
         $p/@name 
         FOR $s IN //part[@partof=$p/@partid] 
         RETURN one_level($s) 
      </part> 
    } 
 
    Both solutions explicitly specify in which order to carry out the transformation (via 
recursive calls), and in this sense they are clearly operational rather than descriptive. 
In XQuery, a program to perform even a simple change to the structure, such as renaming 
of a single nonterminal node or moving a small set of nodes, also involves recursively 
rebuilding much of the tree. Let us return to example 3.5.1, which specifies a simple 
transformation that only switches lastname and firstname of the element professor. The 
corresponding XQuery solution is as follows: 
 
<proflist> 
 FOR $varDept IN ./department 
 RETURN 
 <department> 
  {$varDept/@title} 
  <head> 
   FOR $varOffi IN $varDept/head/official 
   RETURN 
   <official> 
    {$varOffi/title} 
    {$varOffi/rank} 
    FOR $varProf IN $varOffi/professor 
    RETURN 
    <professor> 
     {$varProf/firstname} 
     {$varProf/lastname} 
     {$varProf/degree} 
     {$varProf/honor} 
    </professor> 
   </official> 
  </head> 
  FOR $varSect IN $varDept/section 
  RETURN 
  <section> 
   {$varSect/rank} 
   FOR $varProf1 IN $varSect/professor 
   RETURN 
   <professor> 
     {$varProf/firstname} 
     {$varProf/lastname} 
     {$varProf/degree} 
     {$varProf/honor} 



   </professor> 
  </section> 

</department> 
</proflist> 
 
    Such programs are neither efficient nor concise as a specification mechanism for 
structural transformations.  
    We believe that a separate, more dedicated transformation language can complement a 
query language and that paired SynTrees is such a language. Any operational language 
supports the following functions can be the target language: navigation and pattern 
matching, basic tree construction and duplicate elimination, sorting, and aggregation. 
    It is worthwhile to investigate how to translate Paired SynTree specifications into 
XQuery. 
    We intend to extend the core language to cover more complex transformation. One 
such extension is to define the aggregate operator as a higher-order function: 
aggregate (f1, f2(n)):  where the operator will take two parameters: f1 refers to those 
simple aggregation functions defined in its original form.  f2(n) is a user-defined function 
that returns a single value based on the input n-SynTree. In its original form, f1 is applied 
to current input nodes; in the extended form, f1 is applied to the results of the second 
function, which gives considerable expressive power. 
    For example, let us define f1 as concat(“ ,” ) which concatenates multiple strings with 
“ ,”  as the separator, and define f2(n) as extract-text-of-subtree(n) which is supported in 
operational language such as XSLT and XQuery. Now we can specify a transformation as 
follows: 
Input Grammar Tree  : department<+professor<first last> +student<first last> +program > 
Output Grammar Tree  : department<professorList studentList +program> 
 
Input SynTree  : department<+professor<first last> +student<first last>… > 
Output SynTree : department<proessorList studentList…> 
Mapping      : aggregate(concat(“,”),extract-text-of-subtree(./professor)):professor 

�
 professorList 

                          aggregate(concat(“,”), extract-text-of-subtree(./student)):student 
�

 studentList 
 
    Another extension is to introduce join operator with parameters to represent more 
general join operations. 
    Finally, our ongoing research will continue to study various optimization potentials to 
incorporate into our template generating algorithm. 
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Appendix : Top-down Translation Algorithm 
 
topDownProcess(xsltStylesheet, oSynTree.root) 
{ 
 
ContextBinding currentBindings 

�
 setCurrentBindings(oSynTree.root);   

XSLTTemplate template = generateTemplate(currentBindings); 
Queue queue = new Queue(); 
 
//Adjust template by inserting more construction or apply-template rules if necessary 
for (childNode ∈ currentOutputNode.getChildren())  
{ 
 mappingName 

�
 childNode.getMapping().getName();  //copy or aggregate with parameters 

 inputNodes[] 
�

 currentMapping.getInputNode();  //a sequence of input nodes 
 for (int i=0; i<currentInputNodes.length; i++)//one path for each inputNode 
   relativePaths[i] 

�
 calculateXPaths(currentInputNodes[i], inputNodes);  

 
switch(mappingName) 

 { 
  case copy: //leave it for next recursive call to construct 
   queue.enQueue(chileNode); 
   template.insertApplyTemplatesElement(template, relativePaths); 
   break; 
   

case add:  //add a constant value to an output leaf node 
   if ( ! childNode.hasChild() )   //childNode is a leaf node in oSynTree 
    template.insertAddConstructionElement(template, relativePaths); 
   else  //this scenario should not appear 
    report error(“no further downward processing allowed after add”); 
   break; 

 
case update:  //update a input leaf node with given value 

   if ( ! childNode.hasChild() )   //childNode is a leaf node in oSynTree 
    template.insertUpdateConstructionElement(template, relativePaths); 
   else  //this scenario should not appear 
    report error(“no further downward processing allowed after update”); 



   break; 
 
  case aggregate:  //max, min, average, sum, count… 
   if ( ! childNode.hasChild() )   //childNode is a leaf node in oSynTree 
    template.insertAggregateConstructionElement(template, relativePaths); 
   else  //this scenario should not appear 
    report error(“no further downward processing allowed after aggregation”); 
   break; 
   

default: 
   report error(“no such operation”); 
   break; 
  }//endSwitch 
 }//endFor 
 
xsltStylesheet.addTemplate(template); 
  
//notice all the input children without mapping rule will be implicitly deleted during this process 
 
//go ahead with children mappings if necessary 
while( !queue.isEmpty()) 
{ 

childNode 
�

 queue.deQueue(); 
  
//recursively buildup more templates for descendents whenever possible 
topDownProcess(xsltStylesheet, childNode); 

 
}//endWhile 
     
}//endFunction 
 
 
//Some private methods used by topDownProcess() 
 
//generate a set of bindings for a given output SynTree node 
ContextBinding setCurrentBindings(oNode) 
{ 
 ContextBinding binding= new  ContextBinding(); 

binding.mapping 
�

 oNode.getMapping(); 
binding.oNode 

�
 oNode; 

binding.iNodes[] 
�

 mapping.getInputNodes();  
binding.constructionCondition 

�
 oNode.getCondition(); 

binding.selectionCondition 
�

 iNode.getCondition(); 
return binding; 

} 
 
XSLTTemplate generateTemplate(bindings) 
{ 
 XSLTTemplate template = new XSLTTemplate(); 
 
 //use bindings to get construction condition, then construct current output 
     template.insertSelfConstructionElement(bindings); 
 
 //if leaf node represents a subtree, copy the whole subtree as well 
 if (bindings.oNode.isLeafComplexNode()) 
  template.insertSubtreeCopyElement(); 
} 
 
RelativePaths calculateXPaths(currentInputNode, inputNodes[]) 
{ 
 //for every node i in inputNodes[], calcaulate the path 
 //then union all of the valid path 
 return union calculateXPath(currentInputNode, inputNodes[i]); 
} 
  



RelativePaths calculateXPath(iRoot, iNode) 
{ 
 //anchor point is the nearest ancestor for currentInputNode and  the two node 
 Anchor anchor = null;  
  
 //searching for the anchor point in a bottom-up manner 
 while ( anchor == null) 

{ 
 //fail to find anchor, error case 
 if (iRoot.depth() == iNode.depth() ==1)  break; 
  
 //bottom-up to search for the anchor 

if (iRoot.depth() == iNode.depth()) 
 { 
  iRoot.goUpOneLevel(); //go up to its parent, record its move meanwhile 
  iNode.goUpOneLevel(); //go up to its parent 
  break; 
 } 
 else if (iRoot.depth() < iNode.depth()) 
 { 
  iNode.goUpOneLevel();  //go up to its parent 
 } 
 else if (iRoot.depth() > iNode.depth()) 
 { 
  iRoot.goUpOneLevel(); 
 } 
 
 //check if anchor is found 
 if (iRoot.equals(iNode)) 
 { 
  anchor = iRoot; 
  break; 
  } 
}//endwhile 
 
//if anchor found, generate the path going from iRoot to iNode 
if (anchor !=null) 
 return generateXpath(iRoot.getTrace(), anchor, iNode.getTrace()); 
else 

return “”; 
 

}//endfunction 
 
 


