
A high-level specification language for structured
document transformation

XUERONG TANG and FRANK TOMPA
School of Computer Science
University of Waterloo
__

The purpose of this paper is to introduce and study the problem of automatic transformation of
structured documents. We consider collections of documents where the instances in each collection
share a common structure in the sense that they can all be characterized by grammar rules such as
found in a context-free grammar (CFG) or forest-regular grammar (FRG). We extend the notation
to a single XML (or SGML) document with accompanying DTD (document type definition) to say
that it is structured. As long as documents do not conform to a single universal standard, the data
transformation between them remains a problem. Thus in the absence of a universal tag set and
schema, structured document transformation is important for XML to serve as the data interchange
format for the Web. Recently, W3C proposed XSLT (Extensible Stylesheet Language
Transformations) as a transformation language for XML data. This language has considerable
computation power. However, it requires detailed and tedious programming to accomplish complex
structure transformations. As alternatives, SDT (Syntax Directed Translation) and its extended
form TT (Tree Transformation) grammar are widely used to specify transformations of source code
in various programming languages, and they have been proposed as specification languages for
structured document transformation. These languages are descriptive but have limited expressive
power, which makes them unable to specify complex structure transformations. In this paper, we
propose an approach based on syntax tree templates. We show that our language is both descriptive
and expressive. We also provide algorithms to convert our specification to XSLT for executing the
transformation. Based on the algorithms, we present a prototype implementation.

Categories and Subject Descriptors: I.7.1 [Document and Text Processing]: Document and Text Editing –
Document management; I.7.2 [Document and Text Processing]: Document Preparation – Markup languages;
XML; H.2.m [Database Management]: Miscellaneous

General Terms: Management, Algorithm, Experimentation
Additional Key Words and Phrases: Tree transformation, Forest-regular (regular hedge) grammar, Structured
document, Specification language, Syntax tree (SynTree), XML, XSLT
__

1. INTRODUCTION AND MOTIVATION

1.1 Structured documents

In this paper, we introduce and study the problem of automatic transformation between
structured documents. Generally speaking, a document is structured if it explicitly or
implicitly contains extra information about its hierarchical composition. In this sense, the
scope of the meaning of structured documents is quite broad. It could refer to a well-
structured document conforming to a pre-defined grammar, which typically is a context-
free grammar (CFG), perhaps with further constraints. SGML (Standard Generalized
Markup Language) or XML (Extensible Markup Language) documents conforming to
some Document Type Definition (DTD) are such examples. It could also be viewed as a
tree structure or even graph structure, perhaps conforming to the constraints defined in a
form other than a grammar. Semi-structured data [MAG+97, FFK+98, BDHS96] are
such examples.
 In this paper, we study structured documents of a more rigid form: A document is
considered to be structured only if it can be characterized by grammar rules such as found
in a context-free grammar and forest-regular grammar [Mur97, Mur98, GS84]. Thus the

structured documents discussed in this paper always have an underlying schema defined
by grammar rules, which provide permissible tags (names for attributes and elements of
the documents) and structures for documents. In terms of XML, we limit ourselves to
“valid” documents rather then merely “well-formed” ones [BPSM00].

1.2 Transformation problem for structured documents

In many disciplines, it is quite common that multiple standards/schema coexist with
overlapping functionalities, but one cannot replace another since each has its own unique
characteristics. Repeatedly we find that documents need to be converted from one form to
another as they are exchanged among various applications. Such transformations will be
especially important in manipulating data that is encoded in XML for widespread
interoperability. Even within one specific schema definition language such as XML DTD
or XML schema, communities of users have the flexibility to develop their own
vocabulary and structure for their documents. Unfortunately the transformation between
any two user-defined schemas is not a trivial problem. For example, in the chemical
industry, there are currently at least two markup languages: CML (Chemical Markup
Languageg) and CIDX (Chemical Industry Data Exchange), both of which rely on XML
DTDs to develop their own vocabulary and structure for chemical data [CML97, CIDX].
Data transformation will be required if one company wants to acquire and integrate data
in both format, or if one CML-supported company wants to incorporate data in CIDX
format into its database.
 This paper addresses the transformation problem between different schemas developed
from the same schema definition language such as XML Schema or XML DTD.

1.3 Transformation process

When structural conversion is needed, the ideal transformation process includes three
distinct phases, as discussed in [KP96] and [Mur98]:

1) Determine the input and output constraints (e.g. grammars, DTDs, etc.) imposed on
the document.
2) Specify the transformation in terms of input/output instances (e.g. tree patterns) or
input/output constraints (e.g. grammars, DTDs, etc.) of the document.
3) Choose an appropriate sequence of operations to carry out the transformation
according to the specification. Within this stage, the first step is to identify the parts to be
transformed in the input document and the last step is to do the replacement accordingly.

 In this paper, we consider several languages with transformation capabilities, served as
powerful transformation languages, but we find none of them appropriate as a
specification language dedicated for transformation, as explained below. On the other
hand, SDT and its extended form TT grammar have long served as the dominant
mechanisms to specify the translation between source codes in various programming
languages [KPPM84]. Thus they have been proposed for structured document
transformation as well [KP96]. They are descriptive but have limited expressive power,
which makes them unable to specify complex structure transformations.
 Therefore, we propose a new language: Paired SynTrees, which augments syntax tree
templates by enriching both their syntactic and semantic rules. We show that our
language is both descriptive and expressive as a specification language for
transformation. We also provide algorithms to show how a specification in the SynTree
language can be converted to XSLT for execution. Based on the algorithms, we have
created a prototype implementation for the SynTree language, which takes the SynTree

specification and automatically generates XSLT scripts and then executes the
transformation by using third-party XSLT engines.

2. APPROACHES TO SPECIFY THE TRANSFORMATION

It is natural to consider specifying a transformation using W3C's XSLT [Cla99, Kay01].
An XSLT program (called a stylesheet) is a set of template rules, each of which has two
parts: a pattern that is matched against nodes in a source tree and a template that can be
instantiated to form part of a result tree. XSLT and similar transformation languages,
such as TXL [CP90], are functional programming languages which have powerful
computational capability. But when dealing with complex transformations, their
programs become complicated and operational in the sense that the programs provide
detailed plans that are necessary for carrying out the transformation but not necessary for
specifying it. Such languages are well-designed for carrying out a transformation, but
their operational nature makes them less desirable candidates for a specification
language.
 Many XML query languages, such as XQuery [BCF+01] and XML-GL [CCD+00],
provide transformation capabilities to varying degrees. Our belief is that a query language
will seldom be a good transformation specification language. The primary design of these
languages is query-oriented, so they seldom support a complex structure transformation
that is to comply to an explicitly defined output DTD. Furthermore, in a query language
such as XQuery, a program to perform even a simple change to the structure, such as
renaming of a single nonterminal node or moving a small set of nodes, involves
recursively rebuilding much of the tree. As a result, such programs are neither efficient
nor concise as a specification mechanism for structural transformations.
 We view all of the above candidates as good target languages to which a specification
might be finally translated in an automatic manner. We will therefore focus on more
descriptive specification mechanisms in this chapter, and come back to these languages in
later chapters.

2.1 An example

For the convenience of discussion, we present an extended context-free grammar that
defines a professor list, where the professors are grouped according to departments and
within each department professors are grouped by their ranks (full professor, associate
professor, assistant professor, etc.).

Example 2.1:
prof_list ::= department+
department ::= @title head section+
head ::= official+
official ::= title+ rank professor
section ::= rank professor+
professor ::= firstname lastname degree+ honors?
degree ::= type univ?

 We assume that all the nonterminals above that do not appear on the left-side of any
production will conform to a production Nt ::= string where Nt is the nonterminal and
string produces the terminal strings. These productions are implicitly included in the set
of grammar rules.

 One possible corresponding DTD can be as follows:

Example 2.2 (prof_list.dtd):
<!DOCTYPE prof_list [

<!ELEMENT prof_list (department+) >
<!ELEMENT department (head section+) >
<!ATTLIST department title CDATA #REQUIRED>
<!ELEMENT head (official+) >
<!ELEMENT section (rank professor+) >
<!ELEMENT official (title+ rank professor) >
<!ELEMENT professor (firstname lastname degree+ honors?) >
<!ELEMENT degree (type univ?) >

]>

 Similarly as in example 2.1, all the undefined element names, such as rank, will
conform to a rule <!ELEMENT x #PCDATA >, where #PCDATA are terminal strings
and x is the corresponding generic identifier.

2.2 Syntax directed translation (SDT)

Aho and Ullman use input-output paired grammars to describe a syntax-directed
translation (SDT), which combines a syntax analysis according to a grammar and code
generation according to a second grammar [AU72].
 A transformation is defined by a syntax directed translation schema (SDTS), which
consists of a finite set of nonterminals, one of which is a start symbol and all of which are
shared by both input and output grammars; a finite set of input terminals; a finite set of
output terminals; and a set of paired grammar rules. Each paired rule comprises one input
grammar rule and one output grammar rule. The two rules share the same nonterminal on
the left side of the production. The nonterminals in the output rule are a permutation of
the nonterminals in the input rule. If the same nonterminal exists more than once, integer
superscripts are associated with different occurrences of the same nonterminal name to
indicate the associations between the identical symbols in two rules.
The original definition for SDTS is too strict to specify complex structure changes in
which we are interested; it cannot even allow renaming of the nonterminals. In order to
make it more practical, various extensions have been made to SDTS. Some natural
extensions include renaming of the paired associated nonterminals and adding or deleting
some nonterminals. Kuikka and Penttonen call SDTS with these natural extensions
ESDTS (extended SDTS) [KP96]. Furthermore, SDTS was originally designed for
compiling a program strictly conforming to a traditional context-free grammar; one other
extension is to let SDTS use extended CFGs in order to deal more naturally with
document transformation. It is assumed that the form we consider in this report will
implicitly refer to SDTS with all the above extensions.
 Suppose we want to change the schema in example 2.1 such that within department,
head will always appear after section, and within professor, lastname will appear before
firstname. We can use the following paired grammar rules to specify this transformation:

Example 2.3:
department ::= @title head section+, @title section+ head
professor ::= firstname lastname degree+ honors?, lastname firstname degree+ honors?

 Aho and Ullman defined an algorithm for automatic transformation of a parse tree via
such an SDT schema [AU72]. The algorithm performs a depth-first tree walk from the
root of a parse tree to the leaves. Whenever the symbol of a node matches one of the rules
in the SDT schema, the algorithm will remove all input terminal children of a node,
reorder associated nonterminal children, and add new output terminal children.

 The simplicity and regularity makes SDTS feasible in terms of implementation, but
these characteristics also limit its expressive power. Because the SDTS method insists
that the input grammar and output grammar are strictly paired, an SDT schema only

provides a “ flat” description, and thus it is inherently difficult to describe hierarchical
changes. For example, moving a nonterminal from one production to another production
is disallowed by the SDTS definition. Accordingly, we hypothesize that it is not possible,
by using this method, to move nodes up or down in the parse tree. Thus, for example, the
following transformation is beyond SDTS’s expressive power: reorganize the professor
list to group professors by rank and indicate the department as one of the attributes within
the professor subtree.

2.3 Tree transformation grammar (TT grammar)

TT grammar was originally introduced as a formal description technique for describing
transformations from one well-defined programming language to another [KPPM84]. TT
grammars extend SDTS by allowing users to specify the associations between the
input/output grammar rules explicitly. This implies that an input nonterminal node can be
associated with an output nonterminal with different name and in different level, thus
increasing the expressive capacity as a specification language.
 A TT-grammar is a sextuple (Gi, Go, Si, So, PA, SA). Gi and Go are the input and
output grammars, respectively. Si and So are sets of input and output subgrammars,
serving as patterns and replacements respectively. PA is a set of production group
associations, and SA a set of symbol associations. A production group association is a
pair (Si, So). A symbol association is a relationship between a symbol in Si and a symbol
in So within one production group.
 Consider the following transformation example for our professor list, which cannot be
specified by SDTS: Modify head so that it directly contains professor. 2) use an extra
element name to group firstname and lastname. Let us formulate this transformation by
using a TT grammar.

Example 2.4:
Gi : prof_list ::= department+
 department ::= @title head section+
Si[1] : head ::= official+
 official ::= title+ rank professor
Si[2] : section ::= rank professor+
 professor ::= firstname lastname degree+ honors?
 degree ::= type univ?
Go : prof_list ::= department+
 department ::= @title head section+
So[1] : head ::= professor+
So[2] : section ::= rank professor+
 professor ::= name degree+ honors?
 name ::= firstname lastname
 degree ::= type univ?
PA : {(Si[1],So[1]) , (Si[2],So[2]) }

 SA in this example is quite straightforward, nonterminals with the same name will have
a natural mapping relationship, the mapping for name will be implied by its children
mappings, and those nonterminals not showing up in the output grammar such as official
will be deleted.
 TT grammars were originally designed to deal with transformation for programming
languages, where transformations are usually in the fashion of expression-to-expression,
thus quite localized. Another limitation of this approach is that it cannot specify
contextual conditions, which are important in expressing more complex structural
transformation as indicated by Murata [Mur96, Mur98]. Lindén applied this TT grammar
technique to structured document transformation in his Ph.D. work [Lin97]. There is no
indication on how to formalize the associations to express more powerful and complex
structure changes, though it is obvious there is such potential [KPPM84]. In conclusion,

we think TT grammar is a fairly convenient mechanism to express structure changes. But
without formalizing the association rules and relating proper semantic actions with the
rules, we are not clear how to express complex hierarchical changes, and even further
from knowing if there is an efficient translation to carry out the transformation given such
a specification. Our work is partially based on this approach with some substantial
extensions in order to overcome its limitations.

2.4 Filters

Salminen and Tompa [ST99] introduced a pair of filters serving as the description of a
parse tree transformation. A filter is a sequence of interconnected constraining context-
free grammars. Constraining grammars allow boolean conditions on any non-terminal
with respect to its context, so they are able to specify more complex structure changes
than SDTS does. The input filter is used to mark the parse tree to be transformed, and the
output filter describes the new structure to be assembled. In the input filters, both the
nonterminals and the constraints in the properties are all selection criteria. In the output
filters, however, the constraints in the properties can never be selection criteria but rather
they are assembling criteria that are to be met by the result. Associated with each
constraining grammar is also a context. For any nonterminal appearing within a filter, the
transformation process will first try to find it within its context in the parse tree;
otherwise, it is assumed that it is the sibling of a nearest possible ancestor for this
nonterminal.

Example 2.5: Consider again the following transformation example: we want to
reorganize the professor list according to rank and indicate department as one of the
attributes within professor. This transformation is basically a partitioned by operation in
the p-string model [GT87], but we find it quite complex to express by using filters. In
order to be consistent with the semantics mentioned above, we have to use two pairs of
input/output filters, i.e., two consecutive transformations, to represent it. The first input
filter for this example happens to be empty since the whole document is selected.
Therefore, for the sake of illustration, we add one more condition to the transformation:
only the CS and ECE departments will be selected and transformed. The first pair of the
filters is as follows:

Input filters:
Context: prof_list
department ::= @title { = “CS” or =“ECE”} head section+
professor {::it_prof} ::= firstname lastname degree+ honors?

Output filters:
Context: it_prof
professor ::= rank firstname lastname title* @title degree+ honors?
Context: prof_list
prof_list ::= section+
section ::= rankname {¬=rankname} it_prof {rank = rankname }+

 The input filter can be used to select all the professor elements within the two matched
department elements. Then the output filters can be used to reassemble the subtrees. The
first output filter is within the context of it_prof. In the parse tree, we can move
nonterminal nodes with their subtrees both upward and downward (title, @title in this
example where title is for official and @title is an attribute for department), and attach
them to node professor. The second filter, working within the context of prof_list,
attaches a few empty section elements to the prof_list node, and the number of the
section elements is decided in the next constraining production, which imposes two
conditions: each section node has a unique rankname value and all the it_prof nodes

whose rank value is equal to some rankname value are grouped and attached to this
section node. Note, however, that the rank value of it_prof must equal the rankname
value of some section within the context of the complete prof_list. This assumes that all
ranks appear as ranknames, but does not constrain the professors to lie within the
matching section only. Therefore, we need to follow that conversion with one more
selection condition to make sure that the rank value matches the rankname value within
each section, which can be specified with an second pair of filters as follows:

Input filters:
Context: professor
professor{::sel_prof } ::= rank{=rankname} firstname lastname title* @title degree+ honors?

Output filters:
Context: prof_list
section ::= rankname sel_prof +
prof_list ::= section+
professor ::= firstname lastname official_title* @ dept_title degree+ honors?

 The output filter will only reassemble the “valid” section elements based on the
selection results from the input filter, and thus it is safe to drop the rank elements from
the professor subtree.
Having created such a two-step specification, we must still derive the output parse tree by
applying the following five steps to the input parse tree:

1) Within the parse tree, delete any department node and its subtree if its value is not

“CS” or “ECE” . In the remaining parse tree , identify professor as it_prof.
2) Within each department subtree, push @title down to each node identified as it_prof.
3) Within each official subtree, push any title and rank down to professor node.
4) Within each section subtree, push rank down to each professor node.
5) Within prof_list, delete all the children and pull up section elements, combining

section elements with similar rank. Alternatively, create new section nodes, one per
rank, and partition it_prof elements into section by their rank value; then add rank to
the section node and delete it from professor.

 The mechanism of paired filters is flexible in expressing structure changes. However,
because filters are closely bound to grammar rules and the correlation between various
constraining productions is not obvious, they are difficult to formulate correctly and do
not map to the target parse tree very easily. Since the filter specification is quite succinct,
we must pay attention to the exact semantics for it. Additional information may be
needed to interpret the boolean conditions specified in the filters correctly. The semantics
may be suitable for this particular example but not necessarily adequate for specifying
other transformations. Secondly, if we consider the situation that the matching points
may scatter anywhere in a parse tree with arbitrary levels, the task for assembling them
may be arbitrarily complex. How to derive the proper actions to assemble the output
parse tree (like the five steps we listed above) according to the filters is a difficult
problem. How to prove the validity of the transformation in general needs further study.
 Paired filters were introduced as a promising idea for specifying transformation, but
they still need to be formalized with exact semantics in order to become an effective
mapping language. In the next chapter, we will propose a new language which combines
the ideas discussed above and tries to keep a manageable balance between complexity
and expressiveness. The resulting language is called Paired SynTrees, and we show it
overcomes some limitations in each of the approaches.

3. SYNTREE SPECIFICATION LANGUAGE

In this chapter, we introduce Paired SynTrees, a high-level specification language which
is both expressive and descriptive in terms of specifying transformations. We use forest-
regular grammars as the mechanism to express the document structure [Mur96, Mur98].
Compared with DTDs, forest-regular grammars describe structured document schemas
more naturally and more expressively.

3.1 Grammar trees and syntax trees

We introduce some definitions which will be frequently used during the discussion for
the SynTree language. We assume that conventional regular expression (herein called
string-regular expression), context-free grammar (CFG) and derivation of the CFG are
well known concepts.

 Definition 3.1. A forest-regular grammar (FRG) is a 4-tuple <S, N, P, rf>, where S is
a finite set of symbols; N is a finite set of non-terminals; P is a finite set of production
rules of the form A

�
 a < r >, where A ∈ N, a ∈ S, and r is a non-empty string-regular

expression over N ∪ S; and rf is a string-regular expression over N. If rf is a single non-
terminal, the 4-tuple describes a tree-regular grammar (TRG) and rf is called the start
nonterminal of the grammar.
 Note: We require that a FRG be normalized such that each nonterminal has exactly one
production rule associated with it. Our simplification of the definition omits the set of
variables that Murata uses to represent the external (leaf) nodes in a forest [Mur96],
which are not needed to support the specification of a transformation.
 Murata showed that tree-regular grammars are a better fit than context-free grammars
for XML data [Mur96, Mur98, MLM01]. When parse trees, instead of the normal
derivation strings, of a context-free grammar are considered as the instances of structured
documents, as described in the p-string model for structured documents [GT87], a tree-
regular grammar can derive those parse trees directly. It has been proven that any set of
parse trees derived by a regular right-part grammar [Lal77] forms exactly a language
defined by an analogous tree-regular grammar [Tha67]. The effect is similar to that
achieved by xscheme [Beh00], but forest-regular languages have the advantage of being
closed under set union as well as under intersection and difference. We therefore choose
forest-regular grammars, also known as regular hedge grammars [BMW+01, Mur00], as
the underlying schema language to develop Paired SynTrees in spite of the fact that most
ideas we borrowed and extended were based on context-free grammars.

 Definition 3.2. A grammar tree of the TRG is defined to be a tree-like structure
derived by using the following steps:
1) Choose the start nonterminal of the TRG as the root.
2) Repeatedly replace the nonterminals with the right part of the corresponding
production rule except that: after the first application of any rule A

�
 a<r>, other

replacements of that same nonterminal may be bypassed. Before the replacement of any
nonterminal, if the nonterminal is followed by a unary repetition operator (+, *, ?), move
that operator to precede the nonterminal.
 Because it is straightforward to recover the original grammar up to the renaming of
non-terminals by reversing the process, we claim that the grammar tree precisely captures
the corresponding TRG grammar.

Example 3.1: An equivalent tree-regular grammar for the DTD in example 2.2 is: G =
<S, N, P, rf> where
S = { proflist, department, @title, head, official, title, rank, section, professor, lastname, firstname,

honor, degree, type, univ}
N = { PROFLIST, DEPARTMENT, HEAD, SECTION, OFFICIAL, PROFESSOR DEGREE }

P = {
PROFLIST

�
proflist <DEPARTMENT +>

DEPARTMENT
�

 department <@title HEAD SECTION+>
HEAD

�
 head <OFFICIAL+>

OFFICIAL
�

 official <title rank PROFESSOR>
SECTION

�
 section < rank PROFESSOR+>

PROFESSOR
�

 professor <lastname firstname DEGREE+ honors?>
DEGREE

�
 degree < type univ? >

 }
rf = { PROFLIST }

 Note: In the production rules, the upper-case names represent nonterminals, and lower-
case names represent terminals (symbols). In order to hide #PCDATA productions for
elements or CDATA productions for attributes, we define those symbols with such
productions as special terminals. In this TRG, all names with “@” are special terminals
which hide CDATA productions; rank and title are special terminals which hide the
#PCDATA productions.

Example 3.2: The grammar tree for G in example 3.1 can be represented as follows:
proflist<+department
 <@title
 head<+official<title rank professor<lastname firstname +degree<type ?univ> ?honors>>>
 +section<rank +PROFESSOR>
 >
 >

 Note: Since a nonterminal Nt may appear more than once in a derived grammar tree,
we use Nt[i] to indicates the i-th occurrence of the nonterminal in the string representing
the derived grammar tree. For example, PROFESSOR [1] refers to the first PROFESSOR
in the grammar tree in example 3.2. This will become useful when we try to modify the
content model of department by adding a new element containing professor.
 As illustrated by the above example, we can see that a grammar tree is NOT a
derivation tree which has a rigid tree structure, but a more general structure for the
underlying data. It represents the complete data space, because it preserves structure
information such as alternatives (|), optionalities (?) and multiple occurrences (* or +).

 Definition 3.3. A syntax tree (SynTree) derived from the TRG is an incomplete
grammar tree that can be produced by using the following steps:
1) Choose ANY nonterminal of the TRG as the root.
2) For any nonterminal A, whose production rule is A

�
 a<r>, it can be operated in

either of the two ways: a) substitute it by a<…>, a<expr…>, a<… expr >, a<… expr
…>, where expr can be the portion (a forest regular expression) under a that is
relevant to the transformation, and will be further expanded recursively; notation …
is used to indicate that the eluded portion remains unchanged during the
transformation process. b) replace it with the right part of the corresponding
production rule except that: after the first application of any rule A

�
 a<r>, other

replacements of that same nonterminal may be bypassed. Before the processing of
any nonterminal, if the nonterminal is followed by a unary repetition operator (+, *,
?), move that operator to precede the nonterminal.

3) Repeat step 2 until each nonterminal is processed according to step 2 precisely once.

Example 3.3: Three of many possible syntax trees for G in example 3.1:
SynTree 1: head<+official<title rank professor<lastname firstname +degree<…> ?honors>>>
SynTree 2: department<…head<…>…>
SynTree 3: section<rank +professor<…>>

 Definition 3.4. A SynTree rooted by symbol s is called an s-SynTree. Thus SynTree 3
in example 3.3 is a section-SynTree.
 Note: We can use either s<…> or S in the SynTree where S

�
 s<r> is the production

rule, but with different semantics. We choose S to indicate that there is going to be
structure changes inside but as specified somewhere else (the first occurrence) in the
SynTree. We use s<…> to represent the s-SynTree in the corresponding grammar tree,
which impiles that there will be no structure changes inside this s-SynTree. Thus In
SynTree 2 of example 3.3, the expression professor<…> represents the professor-
SynTree appearing in the grammar tree of example 3.2.

 Definition 3.5. Each symbol or nonterminal appearing in a SynTree is called a node in
that SynTree. A symbol node is called an atomic node because it represents a simple
value such as a string or number. A nonterminal node is called a complex node because it
represents a subtree structure.

 Definition 3.6. The scope (for the transformation) of a SynTree node refers to the
subtree structure associated with the node, including the node itself. For example,
expression section<rank +professor<…>> represents the scope for the outermost node
section.

 Definition 3.7. The envelope (for the transformation) of a SynTree node refers to the
remaining part of the SynTree when the transformation scope of that node is removed.
Before a transformation, we make the following assumptions:
1) A valid document conforms to a tree-regular grammar, so it is always singly-rooted.
2) The input of the transformation can be a collection of documents that can be defined

by a forest-regular grammar, while the output must be a single document confirming
to a tree-regular grammar. For an XML document with corresponding DTD, it is
straightforward to convert its DTD into a corresponding tree-regular grammar.

3) The transformation attempts to keep the parent-child relationship among the
translated nodes unless the specification explicitly dictates otherwise.

3.2 Description of the SynTree Language

The SynTree specification language contains four components: a pair of grammar trees, a
pair of SynTrees, a set of boolean conditions and a set of mapping rules. In this section,
instead of giving the formal syntax for the language, we will present a detailed
description for each component, which will be used as the basis for developing the formal
syntax and semantics of the SynTree language.

3.2.1 Grammar trees
The first component of the SynTree language is a pair of grammar trees, one represents
the grammar or constraints for the input document, and the other represents the desired
grammar or constraints for the output of the transformation.

3.2.2 Paired SynTrees
The next component of the SynTree language is a pair of SynTrees, one for the input
documents and the other for the output. A SynTree, besides its definition, has further
implications as follows:

1) Ellipses will be extensively used to represent subtree structure or a sequence of

subtree structure in the SynTree. Those elided subtree structures will remain
unchanged. For example, a<…> means the substructure of node a will remains the
same after the transformation; a<…expr…> indicates only the substructure with

expression expr will be affected during the transformation, where expr could be a
sequence of sub-SynTrees.

2) The input SynTree is one SynTree optionally followed by a sequence of additional
SynTrees. With respect to semantics, the first SynTree will serve as the base context
for the transformation, other SynTrees will be viewed as the subtree structure outside
the context but partially or completely needed to be incorporated into the
transformation result. The envelope of the first input SynTree root will be deleted as
part of the transformation.

3) The output SynTree is precisely one SynTree which gives the context for the
transformation result. The root of output SynTree is the same as the root of the
output grammar tree.

Example 3.4 Suppose we want to make some changes (deleting the rank attribute) within
each head section only. With the notation introduced so far, we can have the following
paired SynTrees as our specification:
Input SynTree : prof_list<+department< … head<+official<+title rank professor<…>>> … >>
Output SynTree : prof_list<+department< … head<+official<+title professor<…>>> … >>

 The paired SynTrees above make it quite clear what kind of transformation we want to
specify: Ellipses are used to avoid presenting unrelated structures which will remain the
same during the transformation; professor <…> is used to indicate that the professor-
SynTree will remain unchanged.
 In order to describe more complex transformations, we need to add more mechanisms
than just a pair of SynTrees. For example, what if we want to keep only CS and ECE
departments in the output? We achieve this kind of transformation by introducing
boolean conditions associated with SynTree nodes. Furthermore, we need a mechanism
to associate an input symbol with the corresponding output symbol, because in general it
is not likely that the association will be obvious. For example, we may want to rename
professor as prof. We therefore introduce mapping rules to fulfill such purpose. These
two components make the SynTree language much more expressive.

3.2.3 Boolean Conditions
Boolean conditions are labelled predicate expressions for which the label is placed within
square brackets [] attached to a node in the SynTree.

1) Predicates can take only one of the following forms:

a. Existence testing expressions for a node selected by an XPath expression
[Cla99a, BBC+01]. For example,Cond1: ../@title.

b. Relation testing expressions between node sets selected by an XPath expression.
For example, Cond2: ../i:department/i:@title=”CS” or Cond3: ../i:rank =
../o:rank. We use the namespace i to refer to the input grammar, i.e., the values
before transformation, and o to refer to the output grammar, i.e., the values after
transformation.

c. Function constraints to be satisfied by the associated nodes. Currently these may
be either distinct or sort.

d. Expressions using boolean operators (not, and, or) to combine expressions of
the above three types

2) Xpath expressions appearing in the boolean conditon must be localized, which
means the selected node should be within the local context of the currrent node.
More specifically, the selected node is not allowed to be outside the subtree rooted
by the top node in the SynTree. Furthermore, “ //” is not allowed in the path
expression because it has the potential to refer to a node at an arbitrary distance from

the current node and makes the task of efficient translation to operational program
more difficult.

3) Boolean conditions appearing in the input SynTree will serve as selection conditions.
In other words, if there is a boolean condition associated with a node in the input
SynTree, the matching subtrees (in the instance) satisfying the condition will be
selected; the corresponding subtrees not satisfying the condition will be deleted.

4) Boolean conditions in the output SynTree are used as the construction constraints.

5) If no selection condition appears on nodes in a SynTree, the condition “TRUE” is

assumed. Thus for the input SynTree, all the nodes are selected by default.

 An abstract syntax and a clean formal semantics of XPath expression are provided by
Wadler [Wad00]. The syntax we choose is based on both the syntax provided by Wadler
and the one by Olteanu et al. [OMTB02].

3.2.4 Mapping rules

The mapping rules specify which nodes from the input are to be transformed to which
nodes in the output. If input and output nodes have the same name and there is no explicit
mapping rule to the output node, then there is an implicit mapping rule to copy the input
to the corresponding output.

1) Each mapping rule uses the following syntax: operator [parameter *] : S1

�
 S2,

where S1 is a set of nodes from the input SynTree and S2 from the output SynTree.
2) Both the operators and parameters are chosen from a predefined closed set, which

currently includes:
a. add (with parameters for passing constant values or subtrees), used to insert a

new value as a new leaf node in the output.
b. update (with parameters for passing constant values), used to update the value of

an input leaf node and copy it over to an output leaf node.
c. copy which takes no parameter and uses “union” semantics when more than one

set of nodes are selected in the corresponding mapping rules.
d. aggregate (with parameters to indicate aggregation functions), higher-order

functions whose parameters themselves are functions. These parameters are
either simple functions taking the selected nodes as input or more complex
functions taking as input the selected structures within the subtree of the
associated node. Each function application returns a single value.

3) In the input SynTree, any nodes associated by a mapping rule, and passing the
selection condition if there is any, must be placed somewhere in the output
document. Input nodes not associated with any implicit or explicit mapping rules will
be deleted. This implies that the transformation assumes no information loss unless
otherwise indicated by deletion.

4) In order to create a document that matches the output grammar, every node that must
have at least one occurrence in the output instance must be the target of some
mapping rule. Furthermore, any such node must also be instantiated by the
conversion.

 So far, we have described all the components of our SynTree language along with
some default semantics that are implicit in the specification language of transformation.
Note that such default behavior does not apply in typical query languages, where data is
neither retrieved nor transformed unless explicitly specified.
 In summary, a paired SynTree specification attaches contextual conditions and
mapping rules to syntax tree structures. We have presented a description of the SynTree

language which gives the guideline for the formal syntax and semantics without explicitly
separating them. The language is designed to make the set of operators compact, their
semantics easy to follow, and common simple transformations easy to specify. Among
the components of the SynTree language, the mapping component is the most flexible
component. In principle, it can map an arbitrary number of input nodes to an arbitrary
number of output nodes, and various operators associated with the mapping may add
further computations to such mappings. This nature of the mapping rule complicates the
task of figuring out the exact semantic meaning and doing the translation accordingly.
Thus a reasonable approach is to restrict mapping rules to the simplest forms and to study
the expressive power of the language and complexity involved in the translation
algorithm.

3.3 Core (SynTree) language

In this section, we provide a formal syntax, along with a description for semantics, of the
core SynTree language, which is a subset of the language described above with further
restrictions on the mapping rules.
 We use a forest-regular grammar to represent the complete syntax, which has an
equivalent representation in BNF [Tha67].

SynTreeSpec

�
 syntreespec<GrammarTrees, SynTrees, BooleanConditions, Mappings>

 This rule indicates that the specification has four substructures corresponding to the
four components of the SynTree language.

GrammarTrees

�
 grammartrees<InputGrammarTrees, OutputGrammarTree>

InputGrammarTrees
�

 inputgrammartrees<GrammarTree+>
OutputGrammarTree

�
 outputgrammartree<GrammarTree>

 This set of rules defines the first component: grammar trees. Note the actual grammar
tree for the input and output is not presented because they depend on the transformation
application and are provided by the user before the transformation.

SynTrees

�
 syntrees <InputSynTrees, OutputSynTree>

InputSynTrees
�

inputsyntrees<SynTree+>
OutputSynTree

�
outputsyntree<SynTree>

SynTree
�

 syntree<@name @id @occurrence? @terminaltype @conditionid SynTree*>
 This set of rules defines the structure of the input/output SynTree. The name attribute
indicates the name of the symbol. The occurrence attribute is used to specify ? , * and +.
The terminaltype attribute is used to indicate three situations: nonterminal, terminal,
alternative. When the terminaltype equals alternative, the corresponding SynTree node is
a “ fake” node that connect to two or more “real” SynTree nodes among which only one
can be chosen when deriving instances.

BooleanConditions

�
 booleanconditions<Condition+>

Condition
�

 condition<@id>
 Conditions are predicates described in the previous section.

MappingRules

�
 mappingrules<Rule+>

Rule
�

 rule<@id @name parameter*, (SourceNode*, DestinationNode+)>
SourceNode

�
 sourcenode<@name @id? @appearanceOrder?>

DestinationNode
�

 destinationnode<@name @id? @appearanceOrder?>
 The mapping rule is a restricted version with the following restrictions:
1) The mapping operator must be chosen from the set : { add, update, copy, aggregate} .
2) Operator add and update allows one-to-one mapping only. When the mapping

operator is aggregate, only a many-to-one mapping is allowed. In addition, the

parameters allowed for aggregate are simple functions only, chosen from the set:
{ min, max, avg, count, sum, concat} .

 With the simplified mapping rules, a formal semantics of the SynTree specification can
be derived in three steps. We first extend a tree-transformer called k-pebble transducer to
include data values [AMN+01, MSV00, Suc02]. We then define a collection of tree
operations on top of the extended k-pebble transducer. Finally, we define semantic
functions to translate the specification into a sequence of such tree operations.

3.4 Specifying transformations

We collect a set of examples of structural transformations and demonstrate how to use the
SynTree language to specify them. We first give a classification of transformations in
terms of structure changes, then give an example for each possible classification. Most of
the examples are based on a university catalog conforming to the DTD defined in
example 2.2, whose equivalent tree-regular grammar (TRG) is shown in example 3.1.

3.4.1 Class One: expressible by SDT (no Boolean conditions)
Example 3.5.1 Switching the symbol. Suppose we want to switch the order of elements
lastname and firstname. The SynTree specification will be:
Input SynTree : proflist<…professor< firstname lastname…>…>
Output SynTree : proflist<…professor< lastname firstname … >…>

Example 3.5.2 Removing an attribute.
Input SynTree : proflist<…official< @position professor<…> rank>…>
Output SynTree : proflist<…official< professor<…> rank>…>

 All the examples within this class are expressible in SDT so our specification can be
reduced to an equivalent form of SDT specification.

3.4.2 Class Two: expressible by SDT except for the boolean conditions
With boolean conditions, we can impose contextual conditions when specifying
transformation, which beyond the capability of SDT.
Example 3.5.3 Extract cs professors only
Input SynTree : department[C1]<…>
Output SynTree : department<…>
Boolean Condition : C1: @title=”CS”

 We copy all the nodes that satisfy the selection condition.
Example 3.5.4 Delete professors whose firstname is John.
Input SynTree : proflist<…professor[C1]<…>…>
Output SynTree : proflist<…professor<…>…>
Boolean Condition : C1: not(@firstname=”John”)

 We copy all the nodes that satisfy the complement of the deletion condition (i.e. do not
match those to be deleted).

3.4.3 Class Three: updates not expressible by SDT
Examples in this class are a trivial because only leaf nodes will be affected. Though
trivial, our specification language should support it so that the users can express simple
update operations on specific elements in their structured documents.
Example 3.5.5 Add age element to professor named John in the list.
Input SynTree : proflist<…professor<…?age>…>
Output SynTree : proflist<…professor<… ?age>…>
Boolean Condition : C1: @firstname=”John”

Mapping Rule : add(“Ph.D”): age[C1]

Example 3.5.6 Updating the value of an attribute. Suppose professor John Smith is an
official who just got promoted from vice president to president of the university. We
assume both positions are unique in this catalog. The SynTree specification is as follows:
Input SynTree : proflist<…official[C1] < title…>…>
Output SynTree : proflist<…official< title …>…>
Boolean Condition : C1: @position=”vice president”
Mapping Rule : update(“president”): @title

�
@title

3.4.4 Class Four: non-nesting structure changes not expressible by SDT
Example 3.5.7 Divide professors within one section into two groups, those who received
PhD degrees from UW and those who did not.
Input SynTree : proflist<…section<rank *professor<…>> …>
Output SynTree : proflist<…section<rank section_uw< *professor [C1]<…>>
 section_outside< * PROFESSOR [C2]> >…>
Boolean Condition : C1: ./degree/type=”PhD” and ./degree/univ=”UW”
 C2: not (./degree/type=”PhD” and ./degree/univ=”UW”)
Mapping Rule : copy: professor

�
 professor[1] , professor[2]

3.4.5 Class Five: nesting structure changes and aggregations
Example 3.5.8 Consider the transformation problem given by W3C's XML Query
Working Group as Use Case ``PARTS'' [CFMR01]: The input is a flat list of part
elements, each of which has values for partid and name attributes. Each part may or may
not be a component of a larger part, indicated by the value of the partof attribute. The
transformation is to convert the flat representation into an explicit hierarchic
representation, based on partof attributes.

Input DTD: Output DTD:
<!DOCTYPE partlist [<!DOCTYPE parttree [

<!ELEMENT partlist (part*)> <!ELEMENT parttree (part*)>
<!ELEMENT part EMPTY> <!ELEMENT part (part*)>
<!ATTLIST part <!ATTLIST part

partid CDATA #REQUIRED partid CDATA #REQUIRED
partof CDATA #IMPLIED name CDATA #REQUIRED>]>
name CDATA #REQUIRED>]>

 The corresponding SynTree specification is as follows:
Input SynTree : partlist< *part<@partid ?@partof @name>
Output SynTree : partree< *part[C1]<@partid @name *Part[C2] >
Boolean Condition : C1: not(i:@partof)
 C2: i:@partof =../o:@partid
Mapping Rule : copy: partlist

�
 parttree

 copy: part
�

 part Part

Example 3.5.9 Consider again the list of university professors. Assume now that a
transformed listing is to be produced to include only members of the Departments of
Computer Science and of Electrical and Computing Engineering, but this list is to be
strictly partitioned by rank, with the department name appearing as an attribute for each
high-tech professor. We also want to add one more attribute to the newly generated
section @num, which will store the number of professors in this section.
 The transformation can be specified by the following paired SynTrees:
Input SynTree : proflist<*department[C1]< @title
 head<*official<title+ rank professor<…> >>
 *section<rank *professor<…> >>>
Output SynTree : proflist<*rank_section<@rank @num[C2] *hitech_prof[C2]<@dept_title…>>>
Boolean Condition : C1: i:@title=”ECE or i:@title=”CS”
 C2: ../i:rank = ../o:@rank

Mapping Rule : copy : rank[1] rank[2]
�

 rank[distinct()]
 copy : @title

�
 @dept_title

 copy : professor[1] professor[2]
�

hitech_prof
 aggregate(count) : professor[1] professor[2]

�
 @num

 Notice that the mapping rules, together with boolean condition C2, specify that the
output listing is to include each rank exactly once, and that each professor is to appear
under the correct rank name (according to the associated rank in the input document,
whether or not that professor was an officer), and the number of professors under the
same section is to be counted as the num attribute.

4. OPERATIONAL LANGUAGES FOR TRANSFORMATION

 For paired SynTrees to be a useful specification mechanism, we need algorithms to
convert from the description of a specification to a sequence of operations that carry out
the transformation on document instances. In this section, we introduce some languages
that are suitable for expressing the operational behavior of a specified transformation. In
the next, we provide algorithms to translate our specification to one such language,
XSLT.
 TXL and XSLT are functional languages combined with pattern matching rules. Both
are Turing-complete in terms of computation power. Forest (or Hedge) automata, derived
from forest (or hedge) grammars, are capable of describing both patterns and contextual
conditions and thus are fairly flexible ways of describing transformations [Mur96,
Mur98]. Although it is more powerful than finite automata, its computation power is not
Turing-complete. In fact, it can only capture a very restricted fragment of XSLT.

4.1 Forest Automata

Murata describes transformations by using forest (sequence of parse trees) conditions.
Forest conditions include patterns and contextual conditions, where patterns are
conditions on immediate or descendant subordinate nodes while contextual conditions are
conditions on non-subordinates such as immediate or ancestor superiors, siblings, and
subordinates of siblings [Mur98].
 Each condition in Murata’s approach can also be represented by a forest automaton,
which can be strictly derived from the corresponding forest grammar. In this way, since a
document and condition are both instances of forest-regular languages recognized by the
corresponding automata, pattern matching and condition testing can be done by the
intersection of the two corresponding automata.

 Document transformation is defined as a composition of a marking function P
cM and

a linear tree homomorphism H. The function P
cM marks a node if the subtree rooted by

this node matches pattern P and the envelope (the rest of the tree) satisfies contextual
condition C. The algorithm used by this marking function is basically a pattern matching
algorithm or an algorithm for contextual condition testing. Homomorphism H is
essentially a replacement algorithm which rewrites the tree, for example, by deleting or
renaming marked nodes.
 In terms of computation power, forest automata are not as expressive as Turing
machines. An extended version of forest automata, called k-pebble transducers, are
shown to be a rather restricted version of XSLT. In the restricted version, equality testing
based on node values is not allowed, which limits the expressiveness [MSV00, Suc02].
Bex, Maneth and Neven provide a more expressive model for XSLT, which can
completely simulate a k-pebble transducer, and the resulting language from this model is
shown to be not Turing-complete [BMN00]. Murata develops a forest algebra based on
this computation model and starts to develop a rule-based language called forestlog on

top of the algebra [Mur98]. When the language is fully defined, we will have a better
target to analyze its expressive power. The examples demonstrated by Murata are fairly
simple transformations, such as deleting nodes or relabeling nodes. The process for
describing the transformation are complicated and operational [Mur96, Mur98], and thus
will not be presented in this paper.

4.2 TXL and XSLT

Both XSLT (XML eXtensible Stylesheet Languague Transformation) and TXL (Turing
eXtensible Language) are tree-manipulation programming languages which combine
features of functional languages with pattern-matching rules [Cla99, CP90].
 A TXL program takes as input a parse tree according to a given input grammar, and
transforms it into an output parse tree by applying its pattern matching rules. A basic
pattern matching rule in TXL looks like this:

rule name
 replace [type]
 pattern

by
 replacement

end rule

 Where name is a rule identifier, type is the nonterminal type designating the root of the
input parse tree, pattern is a pattern which the input parse tree must match in order to be
transformed, and replacement is the result of the corresponding transformation.
XSLT is proposed by W3C as an XML extensible stylesheet language (XSL) for
transformation. Its primary role is to allow users to write transformations from one XML
document to another. Very similar to TXL, an XSLT program (called stylesheet) is also a
set of template rules. A template rule has two parts: a pattern which is matched against
nodes in the source tree and a template which can be instantiated to form part of the result
tree.
 As indicated by others [BMN00], before entering its recommendation phase in
November 1999 [Cla99], the database community [DFF+99, ABS00] viewed XSLT as a
weak language in terms of expressive power and only recommended it for simple
transformations such as HTML formatting. But in the recommendation version, with
some important added features, XSLT has become a powerful general-purpose
transformation language. Those added features include flexible control structures,
variable binding for node sets, parameter passing between templates and template modes
(to mimic the states of a tree transducer). These additions make XSLT a Turing-complete
language. In its latest version [Kay01], XSLT has added more powerful features, such as
the operator groupby.
 Although TXL and XSLT look similar at the syntax level, they have some fundamental
differences. First of all, TXL takes a tree-editing approach which continuously makes
changes to the source tree whenever matching happens; on the other hand, XSLT only
navigates the source tree and emits output whenever matching occurs; the output will not
affect the input tree in any way. Secondly, a pattern in TXL could be any string generated
by a context-free grammar, and needs to be parsed into a parse tree for pattern matching;
while XSLT forms its pattern by using XPath expressions, which are not as expressive as
TXL’s tree patterns at a structural level but have extra equality-testing capabilities.
Finally, TXL is mainly used as a tool for transforming between different programming
languages or variants, so the patterns and replacement are usually expressions in various
programming languages; XSLT, on the other hand, is dedicated for transformation of
structured documents. These differences contribute to the fact that, for the same
transformation task, the two programs may look different and also behavior differently.

We view both of the languages as powerful operational languages, and thus good
candidates to which a specification could be translated. Since XSLT is widely supported
and has open-source implementations, we choose XSLT as our target language. In order
to develop the translation algorithm, we need to know a little more detail about how
XSLT works.

4.3 Push and Pull technique of XSLT

The push and pull technique related to XSLT is briefly discussed by James Clark
[Cla99b]. Generally speaking, push means emitting outputs whenever some condition is
satisfied during the navigation of the source tree. Such a typical push model is deployed
by the SAX2 specification. Pull usually refers to a process that walks through an output
template and retrieves data from various input sources whenever necessary. A typical
example is a JSP (Java server page), which usually defines an HTML template and then
fills in data either dynamically generated on the fly or retrieved from databases by calling
Java beans via JDBC drivers.
 An XSLT program typically uses XPath expressions to navigate a static source tree up
and down without modifying it, matching the pattern described in XPath expressions.
During the tree-walking, it can either issue new templates or construction whenever
specified pattern matches selected nodes (push technique) or generate query result of the
source tree within construction elements (pull technique) To better understand these two
techniques, we give two simple examples in XSLT.

 An example of the push technique is the use of “match” to generate the output by
further processing all the children of the matched student nodes from the input:
<xsl:template match=”student”>

<xsl:apply-templates/>
</xsl:template>

 An example of the pull technique is the use of “select” to query the source and extract
the value of a selected source node back:
 <newNode>
 <xsl:value-of select=”./firstName”>
</newNode>

 Push is usually deployed in document transformation with a rule-based approach
where the output structure is closely dependent on input structure. Pull, on the other hand,
is widely used for data transformation, typically with a template which implies the output
structure; therefore the output structure can be independent of the input structure.
 With the aid of XPath expressions, XSLT allows the combination of both pushing and
pulling in a single transformation. On one hand, XPath provides a query language to
fulfill the task of data pulling; on the other hand, XPath expressions can serve as a pattern
to be matched in the process of data pushing.

4.4 XSLT default templates

An XSLT template takes the following form:
<xsl:template match = pattern name = qname priority = number mode = qname>

do some construction work during which possibly call/apply other templates…
</xsl:template>

 Basically we have three kinds of template: the pattern template which does not need a
name or mode attribute, the named template which must have a name attribute but does
not require a pattern, and the mode template which must have a mode attribute and
requires a pattern as well.

 These three templates are called in different ways:
<xsl:apply-templates select = node-set-expression mode = qname>
 provide sorting criteria or template parameters if applicable…
</xsl:apply-templates>

<xsl:call-template name = qname>
 provide template parameters if applicable…
</xsl:call-template>

 Pattern templates can be called by an xsl:apply-template element without mode or
name attribute. Mode templates can only be called by xsl:apply-templates element with a
mode attribute. Thus mode can be used to enforce a particular construction phase by
restricting processing to a set of templates that will be called during that phase [BMN00].
Named templates can only be called by xsl:call-template with a matched name attribute.
Named templates give the flexibility to call a specific template whenever necessary at
any construction phase.
 We can use XSLT templates to mimic the following generic tree operators:
fullTreeCopy(…), subTreeCopy(…), subTreeDelete(…), nodeCopy(…), nodeDelete(…),
addLeafNode(…) and updateLeafNode(…). In addition, we also introduce some common
database operations that can be easily imitated by XSLT templates:
aggregate(count/max/min/sum/average/concat).
 To support the SynTree specification language, these templates can be pre-built and
put into an XSLT Library which will be used by the translation algorithm. For each type
of template, we can pass parameters (denoted by …) to control the actual behavior. For
example, we can name a template by passing the name parameter. We can also assign a
mode to any template to mimic the state of construction. We can pass the XPath
expression on-the-fly to form the actual pattern in the template. We can also generate
new source locations so that within any template we can apply other templates to these
locations.

 We should keep in mind that XSLT defines some default templates:
1) “continue-process” rule for document root and all the elements:

<xsl:template match = “ * | / ”>
 <xsl:apply-templates>
</xsl:template>

2) “produce-value” rule for text nodes and attributes:

<xsl:template match=” text() | @* ”>
 <xsl:value-of select = “.”/>
</xsl:template>

3) “do-nothing” rule for processing-instruction nodes and comment nodes:

<xsl:template match=” processing-instruction() | comment() ”/>

 These templates are automatically added to any generated stylesheet. Unless implicitly
replaced by other templates, these templates will be processed whenever the matching
happens.
 Our algorithm takes an “ implicit-deletion” approach: for those nodes without matching
template rules, the deletion action is implicitly implied. For this purpose, we need to
overwrite the “produce-value” rule so that the deleted elements will not generate
unexpected values from their text children nodes or attribute children nodes. The
overwritten rule is as follows:

<xsl:template match = “ text() | @* ”/>
 It is essentially a “do-nothing rule” that implicitly implements subTreeDelete(…).
Because the “produce-value” rule also applies to mode templates, for each mode template

whose value for mode attribute is modeName, our algorithm also needs to generate the
following do-nothing template:

<xsl:template match = “text() | @*” mode = “modeName”/>

5. TRANSLATION ALGORITHM FOR THE CORE LANGUAGE

On this foundation, we are ready to introduce the translation algorithm targeting XSLT.

5.1 Tree model

Conceptually, the SynTree specification can be viewed as a pair of tree-like structures
with the following characteristics:
1) The trees represent part of the syntactic structure of input/output documents that is

relevant to the transformation. In addition, the full grammar trees of input/output
documents are always available whenever necessary.

2) Each mapping rule is attached to some input nodes and some output nodes.
Whenever a SynTree node is visited, we assume it is trivial to find its associated
mapping rules.

3) Each boolean condition is attached to a SynTree node. When the SynTree node is
visited, we assume it is also trivial to check its boolean conditions.

5.2 Description of the general algorithm

Here we present a general algorithm that conceptually describes how to translate a
SynTree specification into XSLT templates. The detailed algorithm with its complexity
analysis will be presented in a later section.
Input: iSynTree: input SynTree in the SynTree specification
 oSynTree: output SynTree in the SynTree specification
 Mappings: the mapping rules in the SynTree specification
 Conditions: the boolean conditions in the SynTree specification
 iGrammarTree: the complete grammar tree for the source doucment
 oGrammarTree: the complete grammar tree for the destination document
Output:XSLT stylesheet consisting of a series of template rules, implementing the

transformation

Step 1. Verify the SynTree Specification
1. Validate the correctness of the syntax.
2. Validate iSynTree with respect to iGrammarTree, oSynTree with respect to

oGrammarTree.
3. Validate and preprocess Mappings. This makes sure that each oSynTree node must

have at least one associated mapping rule, whereas each iSynTree node may be (but
not necessarily) associated with one or more rules. (iSynTree nodes without
mappings will be implicitly deleted).

4. Validate boolean conditions conforming to XPath syntax.

Step 2. Initialization for the translation
1. Locate the root of oSynTree: currentOutputNode

�
 oSynTree.getRoot();

2. Construct a stylesheet containing only default templates initially:
 XSLTStylesheet xsltStylesheet = new XSLTStylesheet();
3. Initialize the nodesToProcess Queue to be empty

Step 3. Traverse the oSynTree in a top-down breadth-first manner

1. Generate a set of current bindings from currentOutputNode, including
currentInputNodes, currentMapping, currentConstructionCondition and
currentSelectionCondition.

2. Generate a construction template for current node by using currentMapping and
currentConstructionCondition.

3. For each child, oChild, of the currentOutputNode, adjust the above template by
inserting more construction or apply-template rules whenever necessary:
a. Get bindings from oChild, including iChildren, childMapping
b. Produce Xpath expression from currentInputNodes to iChildren
c. If the mapping is copy, put oChild into the NodesToProcess queue and insert an

applyTemplate rule with mode attribute into the template in order to further
process this node. Otherwise, for the case of leaf operation (add, update) or
aggregation (min, max,…), insert construction rule for oChild and no further
process is needed for this node.

4. Add adjusted template into xsltStylesheet.
5. if NodesToProcess queue is non-empty, dequeue one node as currentOutputNode

and loop back to step 3.1, else continue to step 4.

Step 4. Return the generated xsltSylesheet;

 The detailed algorithm is in Appendix. This function implements a tree walker that
descends from the root of the output SynTree. In a breadth-first manner, it processes each
node in the output SynTree exactly once.
 The heart of the algorithm is in step 3.3 where 3.3(b) is a navigation process which
starts from the set of current input nodes defined by current mapping rule and computes
the possible XPath expressions to the children input nodes defined by the mapping rule of
the corresponding child output node. It is also the most complicated procedure in terms of
computation complexity. In general, if we know the depth of each node in the SynTree, it
takes at most twice the height of the tree to find a path between any two nodes in the tree.
Let us look at the complexity of the whole algorithm based on the assumption that the
size and height of the SynTrees are bounded by n and h respectively and the number of
input nodes involved in each mapping rule is bounded by m:
 Step 1 of the algorithm needs several tree traversals which takes O(n) time where n is
the size of the output SynTree. Step 2 needs constant time for initialization. Step 3 needs
one tree traversal for its main procedure, which takes O(n); sub-procedure 3(b) can take

O(2hm) time in the worst case; all the rest of the sub-procedures take constant time; so

the total cost for this step is O(2nhm). Step 4 requires constant time for returning the

results. Therefore the complexity of the whole algorithm is O(2nhm).

6. SYNTREE IMPLEMENTATION

In this section, we give an introduction to the prototype implementation for the SynTree
language and its translation algorithm. The entire software is written in pure Java, which
makes the system portable to various platforms.

6.1 Software components

There are four modules in our SynTree software:

1) Paired SynTree Parser converts the SynTree specification into an in-memory tree

structure.

2) Paired SynTree Visualizer displays the input/output SynTrees graphically. Ideally a
user could interactively modify the SynTrees, but this feature has not been
implemented yet.

3) Stylesheet Generator implements the translation algorithm.
4) SynTree Transformer reads the input document and transforms it into an output

document by calling the XSLT engine to execute the XSLT script.

 In Figure 6.1 we give a graphical presentation of our system, which indicates the
relationship among different modules:

SynTree
Parser

Stylesheet
Generator

SynTree
Transformer

SynTree
Visualizer

JDOM Tree

Source.xsl

Target.xml
Source.xml

XSLT lib

Spec.xml

Fig. 6.1 System components

6.2 Target languages and tools

Many open-source implementations around XML specifications/applications have been
developed in Java, and they are available for downloading over the internet. We designed
an XML format to represent SynTree specifications so that we can benefit from the
availability of XML parsers. We use the SAX-compatible XML parser Crimson (or
Xerces) to do the syntax validation for our specification [Meg00]. Because we need an
in-memory representation for the SynTree specification, we chose JDOM to load our
specification into a JDOM tree [HM02, BE01]. JDOM is not compatible with W3C DOM
specifications [ABC+98], but it is optimized for Java so that it avoids the heavy memory-
print due to DOM’s language-neutrality.
 Our target language is XSLT. We use Xalan as our XSLT engine, but the user can
switch to any other XSLT engine such as Saxon or XT. In our system, the XSLT engine
will also use either Crimson or Xerces to parse input documents and then carry out the
translation according to the stylesheet generated by the Stylesheet Generator.

6.3 Applications

In this section we use examples to show how the SynTree system works.

6.3.1 Partition
Consider again the transformation from example 3.7 that will divide professors within
one section into two groups, those who received PhD degrees from UW and those who
did not.
 The preprocessor will take this specification and produce an augmented specification
in XML format. Additional information, such as the depth of each SynTree node, the type
of the symbol, the unique id associated with each SynTree node as well as some default
mapping rules, will be added. It is this XML file that will be processed by the translation

algorithm. The following is the screen shot for this transformation in the SynTree
System:

Fig. 6.2 Specifying Partition in Paired SynTrees System

 The corresponding specification in XML format is as follows:
<?xml version="1.0"?>
<!DOCTYPE synTreeSpec SYSTEM "synTreeSpec.dtd">
<synTreeSpec>

 <iSynTree>
 <synTree id="1" level="1" name="proflist">
 <synTree id="2" level="2" name="department" occurrence="oneOrMore">
 <synTree id="3" level="3" name="@title"/>
 <synTree id="4" level="3" name="head"/>
 <synTree id="5" level="3" name="section" occurrence="oneOrMore">
 <synTree id ="6" level="4" name="rank"/>
 <synTree id ="7" level="4" name="professor" occurrence="oneOrMore"/>
 </synTree>
 </synTree>
 </synTree>
 </iSynTree>

 <oSynTree>
 <synTree id="1001" level="1" name="proflist">
 <synTree id="1002" level="2" name="department" occurrence="oneOrMore">
 <synTree id="1003" level="3" name="@title"/>
 <synTree id="1004" level="3" name="head"/>
 <synTree id="1005" level="3" name="section" occurrence="oneOrMore">
 <synTree id ="1006" level="4" name="rank"/>
 <synTree id = "1008" level ="4" name="section_uw">
 <synTree id ="1009" level="5" name="professor" occurrence="oneOrMore"

condition = "degree/univ/text()='UW'" />
 </synTree>
 <synTree id = "1010" level ="4" name="section_outside">
 <synTree id ="1011" level="5" name="professor" occurrence="oneOrMore"

condition = "not(degree/univ/text()='UW')" />
 </synTree>
 </synTree>
 </synTree>
 </synTree>
 </oSynTree>

 <mRules>
 <rule id="m1" name="copy">

 <sourceNode id="1" name="proflist"/>
 <destinationNode id="1001" name="proflist"/>
 </rule>
 <rule id="m2" name="copy">
 <sourceNode id="2" name="department"/>
 <destinationNode id="1002" name="department"/>
 </rule>
 <rule id="m3" name="copy">
 <sourceNode id="3" name="@title"/>
 <destinationNode id="1003" name="@title"/>
 </rule>
 <rule id="m4" name="copy">
 <sourceNode id="4" name="head"/>
 <destinationNode id="1004" name="head"/>
 </rule>
 <rule id="m5" name="copy">
 <sourceNode id="5" name="section"/>
 <destinationNode id="1005" name="section"/>
 </rule>
 <rule id="m6" name="copy">
 <sourceNode id="6" name="rank"/>
 <destinationNode id="1006" name="rank"/>
 </rule>
 <rule id="m7" name="copy">
 <sourceNode id="5" name="section"/>
 <destinationNode id="1008" name="section_uw"/>
 </rule>
 <rule id="m8" name="copy">
 <sourceNode id="5" name="section"/>
 <destinationNode id="1010" name="section_outside"/>
 </rule>

 <rule id="m9" name="copy">
 <sourceNode id="7" name="professor"/>
 <destinationNode id="1009" name="professor"/>
 </rule>
 <rule id="m10" name="copy">
 <sourceNode id="7" name="professor"/>
 <destinationNode id="1011" name="professor"/>
 </rule>

 </mRules>

</synTreeSpec>

 We give a brief description on how the translation algorithm generates the stylesheet.
First it constructs a new stylesheet with some default templates:
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
 <xsl:output method="xml" indent="yes"></xsl:output>
 <xsl:template match="text()|@*"></xsl:template>
 … more templates need to be inserted here…
</xsl:stylesheet>

 Then it generates a set of templates for the construction of the root of the output
SynTree. Meanwhile it also prepares for the further construction of the children nodes:
<xsl:template match="proflist">
 <proflist>
 <xsl:apply-templates select="./department" mode="mode1"></xsl:apply-templates>
 </proflist>
</xsl:template>

 Then it continues to process the root’s child node department. In addition, it also
produces a default mode template:
<xsl:template match="text()|@*" mode="mode1"></xsl:template>
<xsl:template match="department" mode="mode1">
 <department>
 <xsl:apply-templates select="./@title" mode="mode2"></xsl:apply-templates>
 <xsl:apply-templates select="./head" mode="mode3"></xsl:apply-templates>
 <xsl:apply-templates select="./section" mode="mode4"></xsl:apply-templates>
 </department>
</xsl:template>

 Next, for the first child node of department, it generates a template using a similar
process.
<xsl:template match="text()|@*" mode="mode2"></xsl:template>
<xsl:template match="@title" mode="mode2">
 <xsl:attribute name="title">
 <xsl:value-of select="."></xsl:value-of>
 </xsl:attribute>
 </xsl:template>

 Templates are generated in the same way for the second and third children nodes. The
algorithm issues a subtree copy for head as indicated in our specification.
<xsl:template match="text()|@*" mode="mode3"></xsl:template>
<xsl:template match="text()|@*" mode="mode4"></xsl:template>
<xsl:template match="head" mode="mode3">
 <head>
 <xsl:for-each select="./@* | ./node()">
 <xsl:copy-of select="."></xsl:copy-of>
 </xsl:for-each>
 </head>
</xsl:template>
<xsl:template match="section" mode="mode4">
 <section>
 <xsl:apply-templates select="./rank" mode="mode5"></xsl:apply-templates>
 <xsl:apply-templates select="." mode="mode6"></xsl:apply-templates>
 <xsl:apply-templates select="." mode="mode7"></xsl:apply-templates>
 </section>
</xsl:template>

 The algorithm iteratively generates more templates to achieve the remaining
constructions:
<xsl:template match="text()|@*" mode="mode5"></xsl:template>
<xsl:template match="text()|@*" mode="mode6"></xsl:template>
<xsl:template match="text()|@*" mode="mode7"></xsl:template>
<xsl:template match="rank" mode="mode5">
 <rank>
 <xsl:for-each select="./@* | ./node()">
 <xsl:copy-of select="."></xsl:copy-of>
 </xsl:for-each>
 </rank>
</xsl:template>
<xsl:template match="section" mode="mode6">
 <section_uw>
 <xsl:apply-templates select="./professor" mode="mode8"></xsl:apply-templates>
 </section_uw>
</xsl:template>
<xsl:template match="section" mode="mode7">
 <section_outside>
 <xsl:apply-templates select="./professor" mode="mode9"></xsl:apply-templates>
 </section_outside>
</xsl:template>

<xsl:template match="text()|@*" mode="mode8"></xsl:template>
<xsl:template match="text()|@*" mode="mode9"></xsl:template>
<xsl:template match="professor[degree/univ/text()='UW']" mode="mode8">
 <professor>
 <xsl:for-each select="./@* | ./node()">
 <xsl:copy-of select="."></xsl:copy-of>
 </xsl:for-each>
 </professor>
</xsl:template>
<xsl:template match="professor[not(degree/univ/text()='UW')]" mode="mode9">
 <professor>
 <xsl:for-each select="./@* | ./node()">
 <xsl:copy-of select="."></xsl:copy-of>
 </xsl:for-each>
 </professor>
</xsl:template>

 The whole stylesheet mimics a depth-first tree transducer, which is equivalent to a k-
pebble transducer [MSV00] plus more powerful condition testing capabilities.

6.3.2 Intersection
In this example, we assume a simple grammar to represent a student list where students
can show up in either a club or a CS department or both. We also assume that the id is the
unique identification for student. We want to form a document in which there is one
student list containing all the students who are both in the club and in the CS department.

Input Grammar Tree : univ< club< +student<@id @name> > csdept<+STUDENT > >
Output Grammar Tree : csclubmember < +student<@id @name> >

 The rest of the SynTree specification is as follows:
Input SynTree : univ< club< +student<…>> csdept<+student[C1]<…> > >
Output SynTree : csclubmember< +student<…> >
Boolean Condition : C1: ./ @ id = ../../club/student/@id
Mapping Rule : copy: univ

�
 csclubmember

 copy: student[2]
�

 student

 The corresponding screen shot is as follows:

Fig. 6.3 Specifying intersection in Paired SynTrees System

 The corresponding specification in XML format is as follows:
<?xml version="1.0"?>
<!DOCTYPE synTreeSpec SYSTEM "synTreeSpec.dtd">
<synTreeSpec>
 <iSynTree>

 <synTree id="1" level="1" name="univ">
 <synTree id="2" level="2" name="club">
 <synTree id ="4" level="3" name="student" occurrence="oneOrMore"/>
 </synTree>
 <synTree id="3" level="2" name="csdept">
 <synTree id ="6" level="3" name="student" occurrence="oneOrMore"

sCondition = "@id=../../club/student/@id" />
 </synTree>
 </synTree>
 </iSynTree>

 <oSynTree>
 <synTree id="1001" level="1" name="csclubmember">
 <synTree id ="1006" level="3" name="student" occurrence="oneOrMore" />
 </synTree>
 </oSynTree>

 <mRules>
 <rule id="m1" name="copy">
 <sourceNode id="1" name="univ"/>
 <destinationNode id="1001" name="csclubmember"/>
 </rule>
 <rule id="m2" name="copy">
 <sourceNode id="6" name="student"/>
 <destinationNode id="1006" name="member"/>
 </rule>

 </mRules>

</synTreeSpec>

 The following stylesheet is generated by the translation algorithm:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
 <xsl:output method="xml" indent="yes"></xsl:output>
 <xsl:template match="text()|@*"></xsl:template>
 <xsl:template match="text()|@*" mode="mode1"></xsl:template>
 <xsl:template match="univ">
 <CsPetClubMember>
 <xsl:apply-templates select="./csdept/student[@id=../../club/student/@id]" mode="mode1"/>
 </CsPetClubMember>
 </xsl:template>
 <xsl:template match="student" mode="mode1">
 <student>
 <xsl:for-each select="./@* | ./node()">
 <xsl:copy-of select="."></xsl:copy-of>
 </xsl:for-each>
 </student>
 </xsl:template>
</xsl:stylesheet>

 In the current implementation, we also support transformations requiring the difference
of two or more node sets, and simple aggregation functions over selected nodes.

6.4 Observations – potential optimization

In this section, we present a few experiments to indicate some potential optimizations.
The experiments were carried out in Windows XP professional running on a 600Mhz PC
with 448M RAM. Our SynTree software was compiled and executed under SUN
JDK1.3.1.

6.4.1 Number of template calls in XSLT stylesheet

In the algorithm, each construction template is used to build up just one node type. If we
can combine templates to form one template with the same construction capability, then
we can reduce the template calls during the transformation process, and thereby reduce
the total running time. For example, the construction for the leaf nodes of one common
parent can be combined together and put into the common parent’s construction template,
which results in fewer construction templates, thus reducing the template calls during the
actual XSLT transformation process.
 Suppose our output SynTree is a complete binary tree, which means there are as many
leaf nodes as internal nodes. By applying the above technique, the number of templates
generated will be reduced by half. For more general cases, if each node has more than
one child, by applying the above technique, the number of templates generated will be
reduced at least by half.
 We use a trivial transformation (renaming symbols) to illustrate the performance gain:
InputSynTree : doc< +b1<c1 c2> +b3<c3 c4> >
Output SynTree : newDoc< +bb1<cc1 cc2> +bb3<cc3 cc4> >
Mapping rule : copy: doc

�
 newDoc

 copy: b1
�

 bb1
 copy: b3

�
 bb3

 copy: c1
�

 cc1
 copy: c2

�
 cc2

 copy: c3
�

 cc3
 copy: c4

�
 cc4

 We use one input data file of size 226KB (one doc element, one thousand b1 elements and
ten thousand b3 elements) and test for 30 times using the Xalan XSLT engine. With the
default approach, the algorithm generates seven templates for the corresponding seven output
node types. The average execution time of this set of templates is roughly 1.48 seconds with
an average deviation 0.12 seconds. With the optimized approach, the algorithm generates 3
templates, the average execution time is reduced to roughly 1.07 seconds with an average
deviation 0.10 seconds, a considerable performance gain. The experiment result roughly
confirms our reasoning above (see Figure 6.4).

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

experiment repetition

m
s

3 templates 7 templates

Fig. 6.4 Reduce Template Calls

6.4.2 Join on common attributes
In relational database systems, the size of the input tables affects how join operations can
be optimized. Join operation can occur in the transformation process as well. In the core
language, we support natural join on common attributes with exactly the same name only.

Our extended language will allow more general join operations which will take
parameters to indicate the attributes and conditions to be used for join operation.
 Consider a simple transformation requiring a natural join on the student nodes and
course nodes:
InputSynTree : university< *student<@studentId @studentName @courseId>
 *course<@courseId @courseName>>
Output SynTree : univ< *courseSelection<@studentId @studentName @courseId @courseName >>
Mapping Rule : copy: university

�
 univ

 copy: student, course
�

 courseSelection

 The straightforward translation for this specification is a nested-loop approach that
iterates both student nodes and course nodes and constructs a new courseSelection node
whenever the natural join condition is satisfied.
 If the input file is large then the underlying operational language may not fetch the
whole document into memory. In this situation, picking up the small subtree first is
usually a good choice for performance, as proved for relational databases. We suspect
this is true for the Xalan XSLT engine with SAX parser because, with their DTM
(Document Table Model), it will not fetch a whole large document at once but rather only
fetch the relevant portion whenever necessary (lazy fetching) [HM02]. To confirms this,
we used a file of size 650KB in which there are just three course nodes and around
thirteen thousand student nodes. We provide two specifications for the above
transformation. One specification chooses the student nodes first whereas the other
chooses the course nodes first. The two generated XSLT scripts are almost identical
except for the nested loop structure, as shown in the following:
 This one iterates course nodes first:
<?xml version="1.0" encoding="UTF-8"?>
<!-- this is hand maded version, not from translation algorithm -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
 <xsl:output method="xml" indent="yes"></xsl:output>
 <xsl:template match="text()|@*"></xsl:template>
 <xsl:template match="text()|@*" mode="mode1"></xsl:template>
 <xsl:template match="university">
 <univ>
 <xsl:variable name="VarS" select = "./studentEnrollment"/>
 <xsl:variable name="VarC" select = "./course"/>
 <xsl:for-each select = "$VarC">
 <xsl:variable name="VarC1" select ="." />
 <xsl:for-each select = "$VarS">
 <xsl:variable name="VarS1" select = "."/>
 <xsl:if test="$VarS1/@cId=$VarC1/@cId">
 <CourseSelection>
 <xsl:element name="sid"><xsl:value-of select="$VarS1/@sId"/></xsl:element>
 <xsl:element name="sName"><xsl:value-of select="$VarS1/@sName"/></xsl:element>
 <xsl:element name="cId"><xsl:value-of select="$VarS1/@cId"/></xsl:element>
 <xsl:element name="cId"><xsl:value-of select="$VarC1/@cId"/></xsl:element>
 <xsl:element name="cName"><xsl:value-of select="$VarC1/@cName"/></xsl:element>
 </CourseSelection>
 </xsl:if>
 </xsl:for-each>
 </xsl:for-each>
 </univ>
 </xsl:template>
</xsl:stylesheet>

 The second one iterates student nodes first:
<?xml version="1.0" encoding="UTF-8"?>
<!-- this is hand maded version, not from translation algorithm -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
 <xsl:output method="xml" indent="yes"></xsl:output>
 <xsl:template match="text()|@*"></xsl:template>

 <xsl:template match="text()|@*" mode="mode1"></xsl:template>
 <xsl:template match="university">
 <univ>
 <xsl:variable name="VarS" select = "./studentEnrollment"/>
 <xsl:variable name="VarC" select = "./course"/>
 <xsl:for-each select = "$VarS">
 <xsl:variable name="VarS1" select = "."/>
 <xsl:for-each select = "$VarC">
 <xsl:variable name="VarC1" select ="." />
 <xsl:if test="$VarS1/@cId=$VarC1/@cId">
 <CourseSelection>
 <xsl:element name="sid"><xsl:value-of select="$VarS1/@sId"/></xsl:element>
 <xsl:element name="sName"><xsl:value-of select="$VarS1/@sName"/></xsl:element>
 <xsl:element name="cId"><xsl:value-of select="$VarS1/@cId"/></xsl:element>
 <xsl:element name="cId"><xsl:value-of select="$VarC1/@cId"/></xsl:element>
 <xsl:element name="cName"><xsl:value-of select="$VarC1/@cName"/></xsl:element>
 </CourseSelection>
 </xsl:if>
 </xsl:for-each>
 </xsl:for-each>
 </univ>
 </xsl:template>
</xsl:stylesheet>

 The difference in running time between the above two scripts is significant. The first
template runs for less than twenty seconds whereas the second one runs for more than
four hundred seconds, which confirms that choosing the smaller set for the outer loop is
important for efficient execution.

6.4.3 Keys in XSLT
Performance can be further improved by using an index if indexing is supported by the
underlying operational language. Current XSLT implementations seldom support an
index so it is not a choice when XSLT is the target language for the translation algorithm.
But XSLT provides keys for efficient fetching when there is a cross-reference in an XML
document. For example, a user can define a key on the attribute of an element type, then
fetch a subset of those elements later according to the predefined key. If the
implementation of XSLT is capable of dealing with keys efficiently, defining a key
should be a good choice to achieve better performance.

6.4.4 Subtree copies
BizTalk Mapper is a software tool that uses a similar approach to generate an XSLT
script from a specification [Biz02]. The GUI allows users to draw links, each of which
specifies a mapping rule corresponding to a node copy. Figure 6.5 shows a screen shot
from BizTalk Mapper. In our language, users can specify the above transformation in
exactly the same way as in BizTalk Mapper, but we also allow users to specify it in a
more efficient way by using subtree copy. Figure 6.6 shows our corresponding
specification which uses subtree copy.

Fig. 6.5 Specifying Subtree Copy in BizTalk Mapper

Fig. 6.6 Specifying Subtree Copy in Paired SynTrees System

 Thus BizTalk Mapper forces users to specify all the mappings for all the descendants
to mimic a subtree copy, which is quite inconvenient and the generated XSLT script is
much less efficient since it explicitly copies every node. In our approach, our generated
XSLT script uses <xsl:copy-of> to copy the whole subtree, resulting in more succinct
specification and efficient code. We use Xalan to execute both stylesheets ten times to
transform a source xml file of five hundred section elements and one thousand professor
elements. The average running time for the stylesheet generated by BizTalk is 1.09
seconds whereas the stylesheet generated with subree copies requires running time of
only 0.67 seconds on average.

7. FUTURE WORK AND CONCLUSION

Prior to developing paired SynTrees, we examined several approaches for specifying
transformations for structured documents. None of them seemed suitable as a high-level
specification language: some are too operational in nature and others can describe local

transformations only. We therefore propose a new approach, paired syntax tree templates,
which is both descriptive and expressive.
 Many XML query languages, such as XQuery and XML-GL, provide transformation
capabilities to varying degrees. Similar to the XSLT solution, the XQuery solution for the
``PARTS'' Use Case example [CFMR01] also uses a recursive function:

 <parttree>
 FOR $p IN //part[NOT @partof]
 RETURN one_level($p)
 </parttree>

 FUNCTION one_level($p element) RETURNS element
 {
 <part>
 $p/@partid
 $p/@name
 FOR $s IN //part[@partof=$p/@partid]
 RETURN one_level($s)
 </part>
 }

 Both solutions explicitly specify in which order to carry out the transformation (via
recursive calls), and in this sense they are clearly operational rather than descriptive.
In XQuery, a program to perform even a simple change to the structure, such as renaming
of a single nonterminal node or moving a small set of nodes, also involves recursively
rebuilding much of the tree. Let us return to example 3.5.1, which specifies a simple
transformation that only switches lastname and firstname of the element professor. The
corresponding XQuery solution is as follows:

<proflist>
 FOR $varDept IN ./department
 RETURN
 <department>
 {$varDept/@title}
 <head>
 FOR $varOffi IN $varDept/head/official
 RETURN
 <official>
 {$varOffi/title}
 {$varOffi/rank}
 FOR $varProf IN $varOffi/professor
 RETURN
 <professor>
 {$varProf/firstname}
 {$varProf/lastname}
 {$varProf/degree}
 {$varProf/honor}
 </professor>
 </official>
 </head>
 FOR $varSect IN $varDept/section
 RETURN
 <section>
 {$varSect/rank}
 FOR $varProf1 IN $varSect/professor
 RETURN
 <professor>
 {$varProf/firstname}
 {$varProf/lastname}
 {$varProf/degree}
 {$varProf/honor}

 </professor>
 </section>

</department>
</proflist>

 Such programs are neither efficient nor concise as a specification mechanism for
structural transformations.
 We believe that a separate, more dedicated transformation language can complement a
query language and that paired SynTrees is such a language. Any operational language
supports the following functions can be the target language: navigation and pattern
matching, basic tree construction and duplicate elimination, sorting, and aggregation.
 It is worthwhile to investigate how to translate Paired SynTree specifications into
XQuery.
 We intend to extend the core language to cover more complex transformation. One
such extension is to define the aggregate operator as a higher-order function:
aggregate (f1, f2(n)): where the operator will take two parameters: f1 refers to those
simple aggregation functions defined in its original form. f2(n) is a user-defined function
that returns a single value based on the input n-SynTree. In its original form, f1 is applied
to current input nodes; in the extended form, f1 is applied to the results of the second
function, which gives considerable expressive power.
 For example, let us define f1 as concat(“ ,”) which concatenates multiple strings with
“ ,” as the separator, and define f2(n) as extract-text-of-subtree(n) which is supported in
operational language such as XSLT and XQuery. Now we can specify a transformation as
follows:
Input Grammar Tree : department<+professor<first last> +student<first last> +program >
Output Grammar Tree : department<professorList studentList +program>

Input SynTree : department<+professor<first last> +student<first last>… >
Output SynTree : department<proessorList studentList…>
Mapping : aggregate(concat(“,”),extract-text-of-subtree(./professor)):professor

�
 professorList

 aggregate(concat(“,”), extract-text-of-subtree(./student)):student
�

 studentList

 Another extension is to introduce join operator with parameters to represent more
general join operations.
 Finally, our ongoing research will continue to study various optimization potentials to
incorporate into our template generating algorithm.

Reference:
[ABC+98] Vidur Apparao, Steve Byrne, Mike Champion, Scott Isaacs, Ian Jacobs, Arnaud Le

Hors, Gavin Nicol, Jonathan Robie, Robert Sutor, Chris Wilson, Lauren Wood. Document
Object Model (DOM) Level 1 specification. Version 1.0. W3C Recommendation, October 1998.
http://www.w3.org/TR/REC-DOM-Level-1

[ABS00] S.Abiteboul, P.Buneman, and D.Suciu. Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann, 2000.

[AMN+01] Noga Alon, Tova Milo, Frank Neven, Dan Suciu, and Victor Vianu. XML with data
values: typechecking revisited. In Symposium on Principles of Database Systems, 2001.

[AU72] A.V. Aho and J.D. Ullman. The theory of Parsing, Translation, and Compiling, Vol 1:
Parsing. Prentice-Hall (1972).

[BBC+01] Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernandez, Michael Kay,
Jonathan Robie, Jérôme Siméon. XML Path language (XPath) 2.0. W3C Working Draft 2.0
December 2001. http://www.w3.org/TR/xpath20.

[BCF+01] Scott Boag, Don Chamberlin, Mary F. Fernandez, Daniela Florescu, Jonathan Robie,
Jérôme Siméon, Mugur Stefanescu. XQuery 1.0: an XML query language. W3C Working Draft
2.0 December 2001. http://www.w3.org/TR/xquery.

[BDHS96] Peter Buneman, Susan Davidson, Gerd Hillebrand, Dan Suciu. A query language and
optimization techniques for unstructured data. Proceedings of ACM-SIGMOD International
Conference on Management of Data, 1996.

[BE01] Wes Biggs, Harry Evans. Simplify XML programming with JDOM. May, 2001.
http://www-106.ibm.com/developerworks/java/library/j-jdom/

[BMD01] Anne Brüggemann-Klein, Makoto Murata, and Derick Wood. Regular tree and regular
hedge languages over unranked alphabets: Version 1. HKUST Theoretical Computer Science
Center Research Report: HKUST-TCSC-2001-05, 2001.

[BMN00] Geert Jan Bex, Sebastian Maneth, Frank Neven. A formal model for an expressive
fragment of XSLT. Information Systems, 27(1): 21-39 (2002)

[BPSM00] Tim Bray, Jean Paoli, C.M. Sperberg-McQueen, Eve Maler. Extensible markup
language (XML) 1.0 (second edition). W3C Recommendation 6 October 2000.
http://www.w3.org/TR/1999/REC-xml.

[Beh00] Ralf Behrens. A grammar based model for XML schema integration. Brithish National
Conf. On Databases, pp. 172-190, 2000.

[CCD+00] Stefano Ceri, Sara Comai, Ernesto Damiani , Piero Fraternali, Stefano Paraboschi,
Letizia Tanca. XML-GL: a graphical language for querying and restructuring XML documents.
Proc. of WWW8, Toronto, Canada (1999). http://www8.org/w8-papers/1c-xml/xml-gl/xml-
gl.html

[CFMR01] Don Chamberlin, Peter Fankhauser, Massimo Marchiori, Jonathan Robie. XML query
use cases. W3C Working Draft 20 December 2001. http://www.w3.org/TR/xmlquery-use-cases.

[CP90] James R. Cordy, Eric Promislow. Specification and qutomatic prototype implementation of
polymorphic objects in TURING using the dialect processor. Proc. IEEE International
Conference on Computer Languages, New Orleans (1990).

[CIDX] The chemical industry data eXchange. http://www.cidx.org, as at April 2002.
[CML97] P. Murray-Rust. Chemical markup language. World Wide Web Journal, 135-147 (1997).

http://www.xml-cml.org.
[Cla99] James Clark. XSL transformations (XSLT) version 1.0. W3C Recommendation 16

November 1999. http://www.w3.org/TR/1999/REC-xslt-19991116.
[Cla99a] James Clark. XML path language (XPath) Version 1.0. W3C Recommendation 16

November 1999. http://www.w3.org/TR/1999/REC-xpath-19991116.
[Cla99b] James Clark. XSLT in perspective. Slides of a talk on XSLT, July 1999.

http://www.jclark.com/xml/xslt-talk.htm.
[DFF+99] A.Deutsch, M.Fernandez, D.Florescu, A.Levy, D.Maier, and D.Suciu. Querying XML

data. Data Engineering Bulletin, 22(3):10-18, 1999.
[FFK+98] M. Fernandez, D. Florescu, J. Kang, A. Levy, and Dan Suciu. Catching the boat with

strudel: experience with a web-site management system. Proceedings of ACM-SIGMOD
International Conference on Management of Data, pp.414-425 (1998).

[GS84] Ferenc Gécseg, Magnus Steinby. Tree automata. Akadémiai Kiadó, Budapest (1984).
[GT87] G. Gonnet and F. Tompa. Mind your grammar: a new approach to modelling text.

International Conference on Very Large Data Bases (VLDB'87), pp. 339-346, Brighton,
England, 1987.

[HM02] Jason Hunter, Brett McLaughlin. JDOM API Javadoc materials, 2002.
http://www.jdom.org/docs/apidocs

[KP96] E.Kuikka, M.Penttonen. Transformation of structured documents. Processing of Structured
Documents Using a Syntax-directed Approach. Ph.D. thesis, Computer Science and Applied
Mathematics, University of Kuopio (1996).

[KPPM84] S.E.Keller, J.A.Perkins, T.F.Payton, S.P.Mardinly. Tree transformation techniques and
experiences. Proceedings of the ACM SIGPLAN ’84 Symposium on Compiler Construction.
SIGPLAN Notices 19(6), (1984).

[Kay01] Michael Kay. XSL Transformations (XSLT) Version 2.0. W3C Working Draft 20
December 2001. http://www.w3.org/TR/xslt20.

[Lal77] W.R. Lalonde. Regular right part grammars and their parsers. Communications of the ACM,
20(10):731-741 (1977).

[Lin97] Greger Lindén. Structured document transformations. Report A-1997-2. CS Department of
University of Helsinki, Finland. (1997)

[MAG+97] J.McHugh, S. Abiteboul, R. Goldman, D.Quass, and J.Widom. Lore: a database
management system for semistructured data, SIGMOD Record 26(3):54-66 (1997).

[MLM01] Makoto Murata, Dongwon Lee and Murali Mani. Taxonomy of XML schema languages
using formal language theory. Extreme Markup Languages, Montreal, Canada, August 2001.

[MSV00] Tova Milo, Dan Suciu, Victor Vianu. Typechecking for XML transformers. In
Proceedings of the ACM Symposium on Principles of Database Systems (PODS), pp11-22
(2000).

[Meg00] D. Megginson. SAX 2.0: The simple API for XML, May 2000.
http://www.megginson.com/SAX/index.html and http://www.saxproject.org (latest)

[Mur96] Makoto Murata. Transformation of documents and schemas by patterns and contextual
conditions. Lecture Notes in Computer Science, 1293:153-169(1997). Also appears in
PODP(1996).

[Mur98] Makoto Murata. Data model for document transformation and assembly (extended
abstract). Principle on Digital Document Processing (1998).

[Mur00] Makoto Murata. Hedge automata: a formal model for XML schemata. Web pages, 2000.
http://www.horobi.com/Projects/RELAX/Archive/hedge_nice.html.

[OMTB02] Dan Olteanu, Holger Meuss, Tim Furche, and Francois Bry. XPath: looking forward. In
Workshop on XML-Based Data Management (XMLDM), 2002.

[ST99] Airi Salminen, Frank W. Tompa. Grammars++ for modelling information in text.
Information Systems, 24(1):1-24 (1999).

[Suc02] Dan Suciu. The XML typechecking problem. SIGMOD Record 31(1):89-96 (2002).
[Tha67] J.W. Thatcher. Characterizing derivation trees of context-free grammars through a

generalization of finite automata theory. Journal of Computer and System Sciences, 1:317-322,
1967.

[Wad00] Philip Wadler. A formal semantics of patterns in XSLT and XPath. Markup Languages:
Theory and Practice, 2(2):183-202, 2000.

Appendix : Top-down Translation Algorithm

topDownProcess(xsltStylesheet, oSynTree.root)
{

ContextBinding currentBindings

�
 setCurrentBindings(oSynTree.root);

XSLTTemplate template = generateTemplate(currentBindings);
Queue queue = new Queue();

//Adjust template by inserting more construction or apply-template rules if necessary
for (childNode ∈ currentOutputNode.getChildren())
{
 mappingName

�
 childNode.getMapping().getName(); //copy or aggregate with parameters

 inputNodes[]
�

 currentMapping.getInputNode(); //a sequence of input nodes
 for (int i=0; i<currentInputNodes.length; i++)//one path for each inputNode
 relativePaths[i]

�
 calculateXPaths(currentInputNodes[i], inputNodes);

switch(mappingName)

 {
 case copy: //leave it for next recursive call to construct
 queue.enQueue(chileNode);
 template.insertApplyTemplatesElement(template, relativePaths);
 break;

case add: //add a constant value to an output leaf node
 if (! childNode.hasChild()) //childNode is a leaf node in oSynTree
 template.insertAddConstructionElement(template, relativePaths);
 else //this scenario should not appear
 report error(“no further downward processing allowed after add”);
 break;

case update: //update a input leaf node with given value

 if (! childNode.hasChild()) //childNode is a leaf node in oSynTree
 template.insertUpdateConstructionElement(template, relativePaths);
 else //this scenario should not appear
 report error(“no further downward processing allowed after update”);

 break;

 case aggregate: //max, min, average, sum, count…
 if (! childNode.hasChild()) //childNode is a leaf node in oSynTree
 template.insertAggregateConstructionElement(template, relativePaths);
 else //this scenario should not appear
 report error(“no further downward processing allowed after aggregation”);
 break;

default:
 report error(“no such operation”);
 break;
 }//endSwitch
 }//endFor

xsltStylesheet.addTemplate(template);

//notice all the input children without mapping rule will be implicitly deleted during this process

//go ahead with children mappings if necessary
while(!queue.isEmpty())
{

childNode
�

 queue.deQueue();

//recursively buildup more templates for descendents whenever possible
topDownProcess(xsltStylesheet, childNode);

}//endWhile

}//endFunction

//Some private methods used by topDownProcess()

//generate a set of bindings for a given output SynTree node
ContextBinding setCurrentBindings(oNode)
{
 ContextBinding binding= new ContextBinding();

binding.mapping
�

 oNode.getMapping();
binding.oNode

�
 oNode;

binding.iNodes[]
�

 mapping.getInputNodes();
binding.constructionCondition

�
 oNode.getCondition();

binding.selectionCondition
�

 iNode.getCondition();
return binding;

}

XSLTTemplate generateTemplate(bindings)
{
 XSLTTemplate template = new XSLTTemplate();

 //use bindings to get construction condition, then construct current output
 template.insertSelfConstructionElement(bindings);

 //if leaf node represents a subtree, copy the whole subtree as well
 if (bindings.oNode.isLeafComplexNode())
 template.insertSubtreeCopyElement();
}

RelativePaths calculateXPaths(currentInputNode, inputNodes[])
{
 //for every node i in inputNodes[], calcaulate the path
 //then union all of the valid path
 return union calculateXPath(currentInputNode, inputNodes[i]);
}

RelativePaths calculateXPath(iRoot, iNode)
{
 //anchor point is the nearest ancestor for currentInputNode and the two node
 Anchor anchor = null;

 //searching for the anchor point in a bottom-up manner
 while (anchor == null)

{
 //fail to find anchor, error case
 if (iRoot.depth() == iNode.depth() ==1) break;

 //bottom-up to search for the anchor

if (iRoot.depth() == iNode.depth())
 {
 iRoot.goUpOneLevel(); //go up to its parent, record its move meanwhile
 iNode.goUpOneLevel(); //go up to its parent
 break;
 }
 else if (iRoot.depth() < iNode.depth())
 {
 iNode.goUpOneLevel(); //go up to its parent
 }
 else if (iRoot.depth() > iNode.depth())
 {
 iRoot.goUpOneLevel();
 }

 //check if anchor is found
 if (iRoot.equals(iNode))
 {
 anchor = iRoot;
 break;
 }
}//endwhile

//if anchor found, generate the path going from iRoot to iNode
if (anchor !=null)
 return generateXpath(iRoot.getTrace(), anchor, iNode.getTrace());
else

return “”;

}//endfunction

