A Structured Text ADT for Object-Relational Databases
L.J. Brown, M.P. Consens, 1.J. Davis, C.R. Palmer, and F.W. Tompa

Centrefor the New OED and Text Research,
Department of Computer Science,
University of Waterloo,

Waterloo, Ontario,

Canada N2L 3G1

July, 1997

ABSTRACT

There is a growing need, both for use within corporate intranets and within the
rapidly evolving World Wide Web, to develop tools that are able to retrieve
relevant textual information rapidly, to present textual information in a meaningful
way, and to integrate textual information with related data retrieved from other
sources.

This paper introduces a modd for structured text and presents a small set of
operations that may be applied against this moded. Using these operations
structured text may be sdected, marked, fragmented, and transformed into
relations for use in relational and object oriented database systems.

The extended functionality has been accepted for inclusion within the SQL/MM
standard, and a prototype database engine that supports SQL with extensions to
incorporate the proposed text operations has been implemented. This prototype
serves as a proof of concept intended to address industrial concerns, and it
demonstrates the power of the proposed abstract data type for structured text.

1. Introduction

The application of database technology is essential to the operation of conventional business
enterprise, and it is becoming increasingly important in the development of distributed information
systems. However, most database technology, and in particular rdational database technology,
provides few facilities for effectively managing the vast body of eectronic information embedded
within text.

Recognizing that the potential exists for text retrieval to become of much greater relevance within
information systems, Fulcrum Technologies Inc., Grafnetix Systems Inc., InContext Corporation,
Megalith Technologies Inc., Open Text Corporation, Public Sector Systems, and SoftQuad Inc.,
and the University of Waterloo formed the Canadian Strategic Software Consortium (CSSC) in
1993, in order to pursue pre-competitive research rating to the integration of relational databases
and text-intensive databases [CSSC94]. Working with other members of CSSC, the University of
Waterloo decided to explore how reational database systems could be extended, so that they might
most effectively provide access to structured text in a manner compatible with SQL [Bla94,
Blag5]. Past experience suggested that large texts need to be capable of being searched both
vertically with respect to ther internal structure and horizontally with respect to their textual

content [Wei85]. They need to be capable of being fragmented at appropriate structural
boundaries, so that the appropriate context surroundng the sdlected text can be recovered, and
sdlected text needs to be marked in some manner, so that it can subsequently be located easily
within a potentially much larger context [ATA91].

Early versions of our SQL2 extensions have been presented with examples [Bla94, Bla95]. The
semantics of these extensions have since been refined and formally defined [Dav96], and the
extensions have subsequently been adopted for inclusion within the SQL/MM standard [ISO96s].

We were at the time also actively researching haw federated database systems might be constructed
ontop of existing database and text searching systems, such as Oracle, IMS, DB2/600Q and PAT
[Cob92, Zhu92. We therefore dected to build a prototype hybrid query processor capable of
integrating relational data (managed by relational database systems) and text (managed by text
engines) [Bri97].

In this paper we describe the final text mood that we developed to mee the varied uses of
structured text in a database environment. Section 2 highlights the diverse nature of text. The
structured text abstract data type is presented in Section 3. Section 4 describes a set of related
applications that ill ustrate the utility of such structured text objects, and conclusions follow in
Section 5.

2. Thechallenge

A structured text is by definition any text that has an identifiable internal structure. This dructure
may be eplicitly established by the inclusion d appropriate dectronic markup [Coo87, Tom89],
possbly complemented by an external document type definition (DTD), or it may beimplied by the
language contained within this text. HTML is an example of a text that contains explicit structural
markup wsed in asociation with a DTD [Rag97], while Java source code is an example of text
whaose structure is determined by appropriately parsing the language contained within the text
[Fla96].

In general, structures within a text may be arbitrarily complex. Regions of structured text (i.e.,
instances of subtext spanning a wel-defined textual region) may overlap, and referential
relationships between text may form complex interwoven networks both within texts and across
texts [SpeQ4]. These networks may themselves not be particularly wel defined, since in some
cases a reference will be translated into a request to include subtext (cf. macro expansions), while
in others it will establish a cross-reference to a separate sutftefur(ction invocations).

Structured subtexts may contain o reference heterogeneous objects such as image, sound, video,
gpatial and dher data types frequently found within existing multi-media documents, and these
objects may themselves contain o reference further instances of structured text. Structured texts
may also exist as temporal objects, having dffering manifestations at different times, all of which
must be accessible by specifying the appropriate temporal context.

The ordering d text may be only partially defined, both within specific regions of structured text
(eg., SGML attribute values are unordered) and within the networks that arise when subtexts
reference other subtexts. Certain text may be considered to be logically present while being
physically absent (e.g., SGML attributes values and C++ function parameters may be assgned
default values when absent), whil e other text may be physically present but considered within some

2 Structured Text ADT

contexts to be logically absent (e.g., color, white space, punctuation, descriptive markup,
versioning).

Text extracted from its original context poses even more problems. It is difficult to asociate an
appropriate grammatical structure with instances of extracted subtext when the cortext from which
these text has been extracted is lost. For example, if threeparagraphs are ectracted from a chapter
that forbids the inclusion d foatnates, do the extracted paragraphs cortinue to exclude footnates?
Having been extracted, what textual (or other) structure now contains the three etracted
paragraphs? Does this containing structure allow other than threeparagraphs within it, and das it
asciate any ardering with the paragraphs it contains? If a page break occurs between two o
these three paragraphs in the original source, is this page break also present within the resulting
structure associated with the three extracted paragraphs?

Developing a text modd capable of representing a vast variety of properties that any possble
application could demand d structured text would probably na be particularly constructive, even
if it were posshle. What is initially required is a simple text modd that encapsulates most of the
significant properties of structured text, coupled with well-defined gperations on this modd that
facilitate effective query, retrieval and update of selected fragments of structured text [Ray96a].

3. Structured text objects

In this sction, we describe a treemodd for structured text, and we describe operations on that
modd that provide the functionality needed to select and extract subtexts in a relational database
environment. The text operations have been implemented using retive language constructs
supported by Open Text's PAT 5.0 text engine [OTC95] and the University of Waterloo's
MultiText text engne [Cla94]. Using ODBC [Mic92], output from these operations were
integrated with texts dored in a Fulcrum database [Ful94] and with relational data stored in Oracle
and DB2 databases. Similar implementations could be written to interact appropriately with doject-
oriented database systems and with ather structured text search engines, using alternative native
search languages.

3.1 A treemode for structured text

A structured text subsumes a region d text which may itsdf contain well-formed subordinate
structured texts, such as a chapter containing paragraphs, foatnates, figures, and subchapters. It is
asumed that a structured text is finite and that an arbitrary ordering d text may be associated with
unordered fragments of text. For example, SGML attributes are considered to be logcally
unordered, and subtexts drawn from a collection d works contained within a single text may have
no logcal ordering, nevertheless the text is arbitrarily ordered in its presentation. Using these
asumptions a structured text can be conceptually represented as an ardered tree having noas that
correspondto the various gructures in the text [Mac92, Sal96]. Each nock in this treeis labelled
with a string that identifies the function d the structure that the node conceptually represents, and
each node contains as a second attribute the subtext subsumed by this structure.

No asuumptions are made in the mode about what constitutes gructural information within an
arbitrary text; this must be decided by the processthat parses a character string to interpret it as a
structured text. Similarly, no assumptions are made about how the physical structure within the
text is encoded within the modd, since such assumptions would limit the usefulness of the modd
[Mac9z].

Structured Text ADT 3

This framework allows the full generality of the structured text modd to be eploited by diverse
applications. Application cesigners determine the structures that are to be identified in the mode
and hav type information is to be encoded within noce labels. Data providers chocse the
mechanisms for encoding structured text as character strings and ensure the eistence of parsers
that can be used to interpret strings' values as dructured text, and thus populate the modd.
Through the use of standards such as SGML [ISO86] and DSSS. [I SO96d], applications and chta
providers can ensure that the data stored within the modd exhibits the appropriate conceptual
structures within a text. Thus the data provider assumes responsibility for the management of
physical texts, the modd provides a mechanism for describing hav these physical texts may be
acces=d, and the data consumer remains responsible for deciding hav a text is to be interpreted
and manipulated.

As an example, consider the fragment of the University of Waterloo calendar [UW96] shown in
Figure 1. This fragment could be encoded as tagged text as in Figure 2(a) and interpreted by a
parser as the labdled treeshown in Figure 2(b),where the texts subsumed by each node within the
tree are not shown.

CS 370 F,W 3C 0.5

Numerical Computation

Principles and practices of basic numerical computation as a key aspect of scientific computation.
Visualization of results. Approximation by splines, fast Fourier transforms, solution of linear and nonlinear
equations, differential equations, floating point number systems, error, stability. Presented in the context of
specific applications to image processing, analysis of data, scientific modeling.

Prereq: MATH 235, 237 and one of CS 230, 246

Antireq: CS 337

Figure 1. Part of Chapter 16 of the University of Waterloo calendar

In this smple encodng d the modd, labds in the tree are “typed” as being SGML generic
identifiers by the convention d using enclosing ange brackets, whereas attribute names are
preceded by a colon. Note that in this example some SGML markup has been ignaed by the
moddler, as has the actual case of generic identifiers and attribute names. Other SGML types
(such as entity references) can be similarly encoded, preferably preserving the convention that noce
types can be deduced by merely examining the first character of the associated nock label. Nodes
representing generic identifiers subsume the subtext within the correspondng tags, and noas
representing attribute names subsume the attribute’ s value. Note that nat all text need be subsumed
by leaf nodes: in the example, the text “and ore of” is subsumed by <cour se> and <cpr er eq>, but
not by any<cxr ef > (nor any other leaf).

Cortinuing with the above example, the four <cxref > course cross references that are cited as
prerequisites for course CS370, may be considered to form ether alist or a set. Applications that
wish to treat such cross references as an unordered collection will avoid attaching unwarranted
significance to the ordering d these subtexts within the above encoding. Furthermore, applications
must be careful to preserve the intended semantics of the text. When considering results derived
from the above encoding, for example, even though CS370 lists four prerequisites, the text states
that students need not satisfy all four prerequisites prior to enrolling in CS370.

4 Structured Text ADT

<COURSE NAME="CS370"><CNO>CS 370</CNO><CTERM>F,W</CTERM><CTYPE>3C</CTYPE>
<CWT>0.5</CWT>
<CTITLE>Numerical Computation</CTITLE>
<CDESC>Principles and practiceg of
basic numerical computation as a key aspect of scientific computation. Visualization of results. Approximatipn by
splines, fast Fourier transforms, solution of linear and nonlinear equations, differential equations, floating ppint
number systems, error, stability. Presented in the context of specific applications to image processing, analysis of
data, scientific modeling. </CDESC>
<CPREREQ CID=478><cxref xref="MATH235">MATH 235</cxrefp,
<cxref xref="MATH237">237 <¢xref> and one of exrefxref="CS230">CS 230</cxref> cxref
xref="CS246">246</cxref></CPREREQ>
<CANTIREQ CID=47%xref xref="CS337">CS
337</cxref></CANTIREQ>
</COURSE><p>

(a) Tagged encoding as a character string

<C(1ll‘$@

TN

<cne> <cdem> <dype> <om> <ditle> <cdesc> <qpraep <cantirep

i

<c:xre‘> <c:xre‘> :ad <c:xre‘>

:xrec :xrec :xrec

(b) Schematic representation in the model

Figure 2. An encoding for a fragment of the calendar

The ordered hierarchical modd for structured text seems an intuitive one, but may be unauly
restrictive. In practice many loosdly structured texts (and particularly thase on the Web) violate the
asumption that the markup within them is correctly nested. For example, font changes may occur
at arbitrary points within a text, rather than within well-defined structural boundaries. The modd
allows multiple hierarchical structures to be encoded as independent substructures, but does nat
allow rdationships between dstinct structural hierarchies to be modelled drectly. For example,
physical page boundaries impose a secondary structure on many dacuments, but these physical
boundaries canna readily be rdlated to the logical document structure within aur proposed modd.
If the ordered herarchical modd is considered too limited, it might be posdgble to generalize the
concept of containment and adering used within the modd, so that these concepts can be applied
to overlapping regions of text (see, for example, [ISO89, Ray96b]).

3.2. Associating a schema with text
The encoding shown in Figure 2 provides a conceptual mode of the structure of the text shown in

Figure 1, but fails to provide key information reeded by a naive user who wishes to access this
text. Such a user may have no a priori knowledge about the nocke labels present in the encoding,

Structured Text ADT 5

their interpretation, and the valid relationships between the various noce labds within the text
encodng. It is na possble to deduce from Figure 2 that university courses may also have
corequisites associated with them, and ndhing indicates if course crossreferences occur esewhere
within the calendar, or potentialy within the course descriptions subsumed by nodes labdled
<cdesc>. Thus, when a parser converts a string into a text tree it associates with this text the
grammar that it used when parsing it.

The schema shown in Figure 3 describes the actual information content present within Chapter 16
of the University of Waterloo calendar, and constitutes part of the schema for the calendar.
Chapter 16 is partitioned into source files, each describing ore or more departments. Departments
have a name and asociated courses. Course listings may include many deails, such as
descriptions, ancillary information, prerequisites, antirequisites and corequisites. Repesting
elements within this schema have been marked with a ‘+' to improve comprehension.

<chapter16>
<file>"
/ l +
source <cdept>

SN

<cdname> <course> \\\"
A/// <cantireq> <ccoreg> <cprereg>

‘name / \

<cno> + N N
<cgho> rcid - <cxref> cid <cxref> :cid <cxref>

<Cchono> l l

<cterm> :xref :xref :xref

<cwt>
<ctitle>
<cdesc>
<cinfo>

Figure 3. A schema for Chapter 16

The functions shown in Figure 4 provide rudimentary accessto the schema associated with a text
and enable recovery of the schematic information presented above.

Grammar The internal grammar associated with a given text
Varchar The name of the root element in the grammar
Relation Grammar element names and informal descriptions
Relation Grammar element child/descendant relationships
Text Extended textual description of external grammar

Figure 4. Functions on the schema of a text

Structured Text ADT

The function text_to_grammar returns the grammar associated with a given text. (Note that
although all examples here use SGML, this is not a requirement imposed by the mode.) The
function grammar_root, when applied to such a grammar, returns the labd of the root of the
schema for this grammar. The function grammar_elements, when applied to a grammar, returns
a two column rdation describing each distinct node label in the schema associated with this
grammar. For example, this function returns a table such as that shown in Figure 5 when applied
to the calendar schema; the descriptive information forms part of the information to be provided
with the parser.

Element name Description

<chapter16> Chapter 16

‘name Course name abbreviation
<cdept> Department course listings
<course> A course description

Figure 5. Part of the relation returned by grammar_elements

The function grammar_hierarchy when applied to a grammar returns a relation describing the
transitive closure of all ancestor/descendant relationships within the grammar schema.. This
function returns the table shown in Figure 6 when applied to the calendar schema.

Ancestor Descendant Relationship
<chapter16> <file> Child
<chapter16> ‘name Descendant
<chapter16> <cdept> Descendant
<cdept> <cdname> Child

Figure 6. Part of the relation returned by grammar_hierarchy

Additional functions can be implemented to provide further information about the schema
associated by the parser to a given text. For example, none of the above functions provide
information about the order of nodes within the text schema, none indicate whether
ancestor/descendant relationships are optional or mandatory, and none indicate whether there is a
one-to-one or one-to-many relationship.

The grammar_to_text function is not the inverse of the text_to_grammar function, but instead
produces a structured text (i.e., a value of type text that can itsef be operated on as a text tree).
This text further describes the internal grammar associated with the text. 1f no such text exists the
function returns null. For example, the text of the grammar associated with an SGML document
might include a modd of the actual document type definition (DTD) used when parsing and
validating this SGML document. Although the method used to encode a DTD might be very
different from the method used to encode the original SGML text, providing a textual
representation of the grammar allows the full power of the proposed text extensions to be employed
not only against an arbitrary structured text, but against an arbitrary textual description of the
grammar associated with a text.

Structured Text ADT 7

It should be stressd that the above approach asociates a grammeatical schema with every instance
of text rather than merely with a collection d texts residing in a singe reational column o
beongng to a particular set of textual objects. Based onindustrial practice, it is unredlistic to
demand that only texts having exactly the same grammeatical schema can be grouped into
collections. However, because it is difficult to perform set-at-a-time operations against coll ections
of text that share little in common, applications may choose to impose constraints on text
collections to ensure that the grammars of all contained texts share certain features.

3.3. Marking structured text

Previous proposals [ATA91] have recogrized the importance of allowing fragments of subtext to
be marked so that, for instance, these fragments may be highlighted when viewed. In environments
that support update and storage of marked subtexts, such marks may also be used to store the state
necessary to support interactive hierarchical text navigation and browsing, through a stateless SQL
interface.

To allow fragments of structured text to be marked, the structured text modd described above is
extended so that any noce within this modd may be ether marked o unmarked. Thus, in the moded
an instance of structured text

1. spans a given region of text,

2. has an identifiable grammar associated with it, and

3. includes a set of zero a more marks that identify specific structured

subtexts within this text.

Two texts that span exactly the same region d text and share the same grammar, but may have
different marks, are said to share the spnogenance.

All of the functions $hown in Figure 7 take one or more input texts that share the same provenance
and return a new text that also shares this same provenance. These functions allow marks within a
structured text to be manipulated.

Text Mark subtexts in texts using a hierarchical pattern
Text Union marks in two instances of the same text

Text Intersect marks in two instances of same text

Text Compute the set difference between two sets of marks
Text Keeps pre-ordered marks in a given range within a text
Text Union marks in grouping of the same instance of text

Figure 7. Functions that manipulate marks in a text

The function mark_subtexts takes as input an instance of text and a string containing instructions
about how the resulting text is to be marked (cf. [Kil93]). The structured text pattern matching
language used to encode these instructions within the string is presented using the BNF for
<pattern> in Figure 8. Figure 9 ill ustrates how text nodes are matched against a structured text
pattern, asauming the schema from Figure 3. (Note that ‘%’ matches zero o more consecutive

8 Structured Text ADT

characters within atext labd.) An alternative syntax using more descriptive function remes rather
than the compact notation presented here has also been defined.

<pattern> = <node_rul e> [<descendants>] | <node_rul e>
<descendant s> = <set> | <list>

<set > = <pattern> <anpersand> <set> | <pattern>
<list> = <pattern> <conmma> <list> | <pattern>

<node_rul e>

<root ed_rul e>
<mar ked_r ul e>
<mar ki ng_r ul e>
<node_pattern>

<root ed_rul e>

<root ed> <marked_rul e> | <marked_rul e>

<mar ked> <marki ng_rul e> | <marki ng_rul e>
<node_pattern> <flagged> | <node_pattern>

<node_| abel > { <text_expression> } | <node_l abel >

<char act er s>

<char act er s>

<characters> <character> | <character>
I'l Any appropriately escaped character !

<node_|I abel >
<t ext _expr essi on>
<charact er s>
<charact er>

<anper sand> =&
<come> =,

<r oot ed> = A
<mar ked> =@
<fl agged> = #

Figure 8. The structured text pattern matching language

Pattern Marks

%8 Every node in the text

nos The root of the text

o4 " %] Every child under the root of the text

@cour se>#[<cprer eq>] Every marked course having prerequisites

<cour se>#[<cprereq>[: xref {CS370}]] Courses that list CS370 as a prerequisite

<chapter %#[<file>&<file>] Chapters containing more than one file

<cour se>#[<cwt >, <ct er np] Courses whose weight appears before term

<cour se>[: nanme{ CS370} &<cwt >#] The course weight of CS370

@4 "<cxr ef >#] Everycxref that is a child of a marked node

% : source#, <ctitle>#, <cdesc>#] Every in arder occurrence of source, ctitle and
cdesc

Figure 9. Examples of how structured text patterns match a text

The <pattern> and <descendants> productions in Figure 8, alow a simple one- dimensional
representation d a partially ordered pattern treeto be expressed. Within this expresson, each
<pattern> within a <list> (eg., B, C, and D in the pattern ‘A[B,C,D]’) constitutes an ardered
descendant of the <node rule> immediately preceding this <list> within the pattern, and each
<pattern> within a <set> constitutes an unordered descendant of the immediately preceding
<noderule>.

The structured text pattern matches a subset of the nodes in an instance of structured text when
(a) every<noderule> is associated with exactly one distinct node in the structured text,

Structured Text ADT 9

(b) every ancestor/descendant relationship between <node rule>s in the structured text pattern
holds between the corresponding matched nodes within the text,

(c) ordered lists of nodes within the pattern appear in the same order as the nodes that they match
within the text,

(d) any <node rule> containing the <rooted> symbol matches a noce within the text whose
parent node (if any) is also simultaneously matched by a correspanubidgrule>,

(e) each<noderule> containing thecmarked> symbol matches a marked node within the text,

(f) the<node label> agrees with the corresponding node label within the text, and

(g) the text subsumed by a matched node satisfiesttixe expression> (if present).

The rules governing hav nock labels and subsumed text are matched against strings within the
pattern treedepends on the environment within which the structured text abstract type is supported.
Within SQL it is proposed that a <node label> use the symbols ‘%’ and‘_’ as wildcards, that this
<node label> be compared with structured text labels using the SQL ‘like’ predicate [| SO92], and
that this comparison be case insensitive. It is proposed that the <text expression> be a valid
SQL/MM ‘contains' clause [ISO96s|; when applied against the subsumed text, it identifies
structured text nodes matching this expresgon. As a posdble extension, it might be better to allow
<text expression> to be an arbitrary SQL predicate (potentially containing more than just a Full
Text search specification); this would increase the power of the pattern matching language
considerably, andit might simplify detecting cases where certain complex text operations could be
optimized.

Because chain patterns are commonly used in text searching, the pattern matching language is
extended with two syntactic shorthands: A.B represents an ancestor-descendant relationship
(equivalent tA[B]), andA.B represents a parent-child relationship (equivaleAj®]).

The function mar k_subtexts identifies each possble matching (if any) between nodss in the input
text and the structured text pattern, and marks any node within the matched text that corresponds
to a<node rule> containing theflagged> symbol.

The functions union_marks, intersect_marks and except_marks take as input two instances of
text with the same provenance and return a new text of that same provenance having marks that are
respectively the union/intersection/set difference of the marks in the input texts. For example:

intersect_marks(
mark_subtexts(calendar, '<course>#[< cprereg>[: xref{CS370}]]),
mark_subtexts(calendar, '<course>#[< cwt>,< cterm>])

marks courses in the calendar that have CS370 as a prerequisite and list the course weight before
the term in which the course is offered.

The function keep_marks takes as input a text and an integer range (expressed as a start position
and a length). Marks in the input text are assgned ardinals (the first such being ore) consistent
with the order that they would be visited in by a pre-order traversal of the text treg and those
marks within the input text (if any) having adinals lying in the specified range are the only marks
preserved in the resulting text. The function aggregate_marks takes as input a collection d texts
having the same provenance, and returns a new instance of text having this provenance and
containing the union d all marks in the collection d input texts. The functions union_marks,

10 Structured Text ADT

intersect_marks, except_marks, and aggregate_marks raise an appropriate exception when their
input texts do not share the same provenance.

Marking qotional subtexts proved challenging and inefficient. Optional subtexts canna be marked
concurrently with mandatory subtexts, since the tree pattern matching language is based on
performing an exact match against all described subtexts. Optional subtexts are therefore marked
(and extracted, as described below) in a second phase after mandatory subtexts had been identified.
This is elaborated at the end of the next section.

In the current SQL/MM standard [I SO96s], there is no ability to use structured text concepts or
marking within a Full Text search specification. At present the Full Text specification uses the
concepts of character, word, sentence and paragraph within its own search language, without
defining a explaining haw such concepts relate to the actual material contained within an arbitrary
instance of Full Text. This problem could be resolved by viewing these concepts as ecific
instances of well-defined structure associated with the text being searched and augmenting the
SQL/MM Full Text specification so that it alows marking d identified substrings matching Full
Text patterns and searching that incorporates gructured text concepts. Idedlly, full interplay
should be allowed between “harizontal” and “hierarchical” text searching and marking, thus
making the resulting language much more epresdve. This would also allow the concept of
proximity, which is well defined within the Full Text proposal, to be equally effective within aur
structured text proposals.

3.4. Extracting structured subtext

Each d the functions hown in Figure 10 extracts from an input text a collection d subtexts,
returning a relation that contains the extracted subtexts.

Relation Extracts all marked subtexts within a text
Relation Extracts the subtexts that match the specified pattern

Figure 10. Functions that extract subtexts from a text

Thefunctionisolate subtexts takes an instance of text as input and, for each mark within this text,
produces an autput row within the resulting relation. The first attribute within this output row
contains an instance of text having the same provenance as the input text, but having orly the
solitary mark within this text that caused the row to be generated. The second attribute in the row
contains, as a new instance of text, the subtext roated at this mark. The mark on the roat is
removed from the resulting subtext, but all other marks within the resulting subtext are preserved.

The function extract_subtexts takes as input an instance of text and a structured text pattern as
described for mark_subtexts above, and it produces a relation with ore row for every possble
complete match, as described below. The number of columns in the resulting relation degpends on
the text pattern. In environments where this value must be known at compile time, a third
parameter indcating the expected number of columns in the resulting relation must be included. In
environments guch as SQL 2, for example, this third argument must be an integer constant, and the
function extract_subtexts will raise an appropriate exception if the resulting relation daes not
contain exactly the number of columns indicated.

Structured Text ADT 11

Let the number of flagged <node rule>s in the pattern be n. For every distinct method d matching
the n flagged <node rule>s within the structured text pattern against nodes in the structured text,
while concurrently matching in at least one way the entire structured text pattern against the text,
an autput row is produced with n+1 columns. The first column contains a new text with the same
provenance as the input text, while the remaining n columns contain the subtexts that matched the
flagged <node rule>s, in the left to right order (pre-order) that they occurred within the structured
text pattern. Each subtext remains marked in the innermost extracted ancestor within this tuple.
No other marks are present in the texts contained with the dufbet

For example, if the operation:

extract_subtexts(calendar, 3, '<course>[: name#, < cxref>..: xref#]')

is applied to the subtext shown in Figure 2 the relational rows sown in Figure 11 are returned in
no specific order. Within this figure marked subtexts within a text are shown in bold.

<course nane="CS370"... name="CS370" xref="MATH235"
.. < cxref xref="MATH235" >MAT ... <p>

<course nane="CS370"... name="CS370" xref="MATH237"
.. < cxref xref="NMATH237" >237< ... <p>

<course nane="CS370"... name="CS370" xref="CS230"
...< cxref xref="CS230">CS 230< ... <p>

<course nane="CS370"... name="CS370" xref="CS246"

... < cxref xref="CS246" >246<... <p>

Figure 11. Result returned kxtract_subtexts

This is a very different result from that shown in Figure 12 returned by:

isolate_subtexts(
mark_subtexts(calendar,'<COURSE>[:NAME#, <CXREF>...XREF#]')
)

<course

nanme="CS370" ... xref="MATH235">MAT ... <p>

name="CS370"

<course name="CS370" ...

xr ef =" MATH235" >MAT ... <p>

xref="MATH235"

<course name="CS370" ...

xr ef =" MATH237" >237< ... <p>

xref="MATH237"

<course nhame="CS370" ...

xr ef =" CS230" >CS 230< ... <p>

xref="CS230"

<course nhame="CS370" ...

xr ef =" CS246" >246< ... <p>

xref="CS246"

Figure 12. Result returned i3olate_subtexts

The ability to extract a subtext while preserving the context within which it was extracted is
significant. This avoids information loss and allows aggregation d subtexts back into the text
from which they were exlier extracted. Unfortunately, since the context is preserved in the
containing text (by marking those subtexts extracted from this text), it becomes difficult to
preserve context when multiple concurrent extractions are performed against a singe instance of
text. Thisisbecauseit is difficult to determine which mark within the cortaining text corresponds
to which instance of extracted subtext. For example, in the first column of thefirst tuplein Figure
11, two subtexts are marked; which mark belongs to the text in the second column and which to the
text in the third? In this case, the correspondence is easy to determine, but if the pattern used ‘&’
in place of “,” the matches could ocaur in ether order in the text instance and the extracted texts
may na be so simpleto distinguish from each aher. To addressthis problem it is proposed that the

12 Structured Text ADT

<flagged> production shown in Figure 8 be augmented so that a second ‘# be allowed to
immediately follow the first. Subtexts extracted as a result of a ‘## operator would be
immediately preceded (within the output relation) by a column containing the original text in which
only this subtext was marked.

As mentioned at the end d the previous sction, extracting qotional subtexts proved challengng
and inefficient. Optional subtexts must be etracted in a second phase after mandatory subtexts
had been identified. The mandatory and qotional subtexts are subsequently related through the use
of an appropriately constructed auter join, and absent subtexts are represented within such an
extraction process by null. This second extraction phase is very inefficient since it is applied
separately to each grouping d mandatory subtexts within a singe tuple, rather than being applied
during the construction d these distinct tuples. In addtion, the division d subtext extraction into
multiple independent phases makes it difficult to enforce contextual relationships between
mandatory and qotional subtexts that otherwise would have been readily expressble within the
structured text pattern matching language. Extensions to the proposed pattern matching language
that would provide support for optional matching d text are being considered (cf. optional
matching in the context of specific semi-structured data in OEM-QL [Pap95]).

More generally, one often wants to recover structured text that approximates, but does nat exactly
match, the search specification provided. Thereis a neal to be able to compute how well i nstances
of subtext match a given search specification as a ranking, and to recover from such matchings (in
a suitable order) those subtexts that exceed some specified ranking threshdd. Such a facility
would readily allow support for optional subtext matching, since such gotional matchings could be
assigned a small (possibly zero) weight within the overall ranking scheme.

3.5. Other text operations

The functions shown in Figure 13 parform a variety of operations that complete the description d
the structured text abstract data type.

Text Parses the input string using a specified method
String Converts text to a string using a specified method
Boolean Matches text against a hierarchical tree pattern
Integer Counts the number of marks in a text

? Directly casts a text to an integer/double/date etc.

Figure 13. Other functions associated with structured text

The function string_to_text takes as input two strings. The first string contains the text to be
parsed and the second contains a keyword identifying haw this text is to be parsed (i.e., which
parser and which grammer to apply). If theinput stringis succesdully parsed, the function returns
the correspondng instance of structured text, corforming to the modd used by the parser.
Complementing this, the function text_to_string produces a string from a text. A chaoice of
conversion methods is provided, since text can be linearized and presented in many ways. For
example, one converter may produce a tagged string, a second might omit all tags, and a third
might suppress particular subtexts.

Structured Text ADT 13

The function text_match accepts the same inputs as mark_subtexts, but rather than marking
texts, it merely returns true if the pattern matches the text in at least one way. The function
count_marks takes as its input an instance of text and returns the number of marked nodes within
this text.

Within aur prototype suitably encoded texts (cf. [Gon87]) can be directly cast into numeric
integers, double precision values and chtes, and they can be dficiently recovered using their
“external” representation. This allows large relations to be directly encoded within a text while
continuing to be rapidly accessible.

4. A sample application

The University of Waterloo undergraduate calendar provides a considerable amount of textual
information about events, courses, awards, faculty members, departments and university
regulations. Each year this document is marked up uising HTML and made avail able on the World
Wide Web [UW96].

While some benefits result from meking the raw material contained within the calendar available
on the Web, locating cesired information within the calendar is often dfficult, since large volumes
of text must be visually scanned, and few facilities exist to relate complementary information
within the calendar. Summary information can orly be derived by examining all relevant sections
of the calendar mechanically, and reationships between the calendar and alternative sources of
information cannot be exploited.

We addresed the above limitations by developing a prototype web application that provides
aternative methods of accessng the calendar [UW97]. After adding appropriate descriptive
SGML markup to the calendar (as shown in Figure 2a), the resulting daument was indexed so that
it could be rapidly searched by Open Text’'s text search engne. Front end Web applications were
built to demonstrate how cortext specific information can be retrieved by our hybrid cuery
processor, which also provided simultaneous access to addtional resources (including course
schedule and personnel tables) stored in an Oracle database.

Those responsible for maintaining the calendar derived immediate benefit from having the data
loaded into a database. Since we required that our input source texts conform to HTML, we
encouraged corrections in HTML pages that might otherwise have caused client browsers to fail.
In developing an extended DTD describing the descriptive structure associated with the various
sections within the calendar, we formalized the previously implicit rules governing haw various
departments prepare material for inclusion within the calendar, and as a result moved closer to
standardizing and automating the data entry process asociated with construction d a yearly
calendar.

Having added descriptive markup to the text, it became possble to validate textual information
contained within the calendar more exsily. It is, for example, easily possble to extract from the
calendar the names, office locations and phore numbers of all members of faculty listed as the
contact people for information reating to courses. This information can be validated against
correspondng information in a current telephore directory stored within an Oracle database. If

14 Structured Text ADT

desired, relational information cerived from the calendar can even be imported drectly into
conventional relational database systems for use in alternative applications.

Students derived immediate benefits from being provided with improved accessto the University of
Waterloo calendar. One student who was particularly interested in courses reating to Irdland was
able to dscover immediately that History 255 “The Expansion d Engand’ was the only course
within the calendar to include the word Irdland within its course description, and he was then able
to recover the course schedule associated with this course. Figure 14 shows the screen autput, with
the course description for History 255 at the top of the screen matched with the correspondng
course schedule information selected from relational tables shown below.

ki Netscape - [U of W Fall 1996 Course Schedule]

File Edt “iew Go Bookmarks Optionz Directony Window Help

Go | e | By | @& | | 2| &

Back Forward Huorrne Relozd [irEges Cpet Pririt

]

Find

Stop

Lu:uc:atiu:un:|http:.-".»'su:ulu:u.uwaterlu:u:u.ca.fcgi-I:uinf'nph-u:giint?_file_=calendarZ2FgeneraIZ2Fsu:heduIe.in&course_abbj
What's Mew? I “What's Cool? | Deshinations | NetSearchl People I Su:u[twarel

HIST 255 F 0.5

The Expansion of England
The history of the Brtish Empire dowm to the Amencan War of Independence, telling the story of
the Tudor seadogs, of the plantation of Ireland, the settlement of the Motth American mainland, the

establishment of slave plantations i the Caribbean, and the earliest British enterprizes in Africa, Asia
and the Pacific.

Clhck here for official calendar pasze

Index el Div T Credit HNumber Number Course
Number — Suf M Weight Requested Enrolled Limit
giisl ol F 50 62 53 54
Notes:
T k| T v | hee e
el T R T | 01 | 11:30TR |AL 124 [M Craton
R e el | 01 | 1230T |ES1353 |M Craton | —
e R e | 01 | 1230R |AL213 M Craion
e s | 01 | 130T |HH345 M Craton

e -
1| | »

@l |Document: Done | =i

Figure 14. Output that relates structured text with relational data

Structured Text ADT 15

Members of faculty and administrators also found uses for the resulting system. It is, for example,
possbleto identify all members of faculty within the university who hdd ore or more degrees from
specific universities, have specific positions, belong to specific departments, and/or perform given
administrative roles. Such queries can also be supported by structured text engines, such as PAT,
directly. However, it is posdble to perform very much more complex queries using the inherent
expressve power of SQL2, if as an end user or application designer one is capable of formulating
the necessary SQL queries.

The Registrar’s office had long wanted to validate the relationships that exist between course
descriptions, but it had been previously unable to derive tables that summarize the reationships
between a course description and its internally documented prerequisites, corequisites, and
antirequisites. Upon learning d this, a relational view cour se_associ ati ons, capturing all
described course pairings, was easily defined using the extended text operators, and it was quickly
added to aur demonstration and made available for use by members of the Registrar’s office and
others (Figure 15).

»i Netscape - [UW: Calendar - Create and Query a table]
File Edit ¥iew Go Bookmarks Options Directary Window Help

Location: Ihttp:Hsolo.uwaterloo.caa’cgi-bina’nph-cgiint?_fiIe_=lelati0na|Z2Fcalendar.in&c:ourse:csS?D&associated:&role:an_l,l&modj

=l
2854 University of Waterloo |
N/ Waterloo, Ontario, Canada @

Course associations within the calendar

This was your SQL Query

SELECT course, associated, role
FROM course_associations
WHERE UPPER(course) LIKE UPPER({'cs370%')

Reissue the gueny | “iew the plan |

Course |Associated Association
CS 370 |MATH 235 |Prerequisite
CS 370 MATH 237 |Prerequisite P
CS 370 |CS 230 Prerequisite
CS 370 |[CS 246 Prerequisite
CS 370 [CS 337 Antirequisite

=@l |Document: Done | =

Figure 15. Presenting course associations as a relation

16 Structured Text ADT

The Student Awards office asked us to provide access to financial award information contained
within the calendar and were pleasantly surprised to dscover that the necessary work of marking
them had been completed prior to their request. End users were therefore already able to search for
awards, grants and schdarships, using various criteria, including rumeric considerations
asciated with an award. It is possble, for example, to sdect awards that cite some maximum,
minimum, average or total set of award amounts within them, or that include award amounts in (or
nat in) a given numeric range. Theimportance of accessng text through SQL is evident here, since
complex numeric processng and aggregation is typically na supported by existing text search
engines.

The Faculty of Mathematics was asked to provide information about the number of members of
faculty at different ranks by department, and to correate this information against the number of
courses, andif possble, students taught. It was easy using SQL to derive a table from the calendar
that documented the number of members of faculty at various ranks by department. The courses
taught by a department in a particular term, and the enrollment in these courses could be as readily
obtained from the course schedule information stored in the Oracle database, and this coll ective
information could be immediately integrated into the desired relational tables, by using the ability
of the hybrid query processor to join relations from distributed data sources.

5. Conclusions

This paper has described an abstract data type for structured text that can readily be incorporated
into existing text searching techndogy, object database techndogy a forthcoming SQL3
techndogy. This abstract data type can be used to perform complex text- and relational-intensive
queries in widdly distributed heterogeneous environments, such as those rapidly appearing onthe
World Wide Web.

Our text extensions have proven highly effective in allowing structured text to be queried,
retrieved, and integrated with relational information. The concept of allowing sdected subtexts
within a text to be marked is a natural one, and it is powerful when coupled with set-at-a-time
processing, facilities to extract subtexts, and further pattern matching operations.

The proposed text extensions allow easy definition and dyramic construction d relational views of
structured text derived from hierarchically structured text, marked subtexts, and/or extracted
subtexts. This allows naturally occurring relations within text to be easily retrieved, without
requiring that the text itsef be stored within a relational system. Thus diverse relational views can
be superimposed onportions of the text without imposing a sinde “master” relational view on the
whdetext. The use of a high-leve, nonprocedural text pattern matching language simplifies the
definition and construction d such rdations, while facilitating encapsulation and gotimization d
the software responsible for integrating text and relational data. As a result, text can be retained in
its original form and still be subjected to expressive database operators.

The software we have implemented to support the structured text mode performs well when
accessng both text and reational data. 1t has been used to construct a moderately sophisticated
suite of Web-based applications that allows integration d information contained within the text of
various chapters of the University of Waterloo Undergraduate calendar with course schedules,
phore lists, and dher tabular data stored in relational databases. The same system also provides
relational access to ather structured texts, including The Oxford English Dictionary, The
Collected Works of Shakespeafée Devil's DictionaryandThe Bible[UW97].

Structured Text ADT 17

The described SQL structured text extensions have been acoepted for inclusion within the e/olving
SQL/MM standard [Dav96]. They are of immediate benefit to any user who wishes to integrate
textual information into their existing relational database systems, and to any user currently
invaved in text intensive searching a querying who wished to capitalize on the expressve power
of SQL. The text abstract data type is also suitable for inclusion in doject-oriented database
systems. These structured text extensions are simple ones that can be esily understood and yet are
surprisingy effective in sdectively recovering and consolidating relevant information from within
the very complex structures that occur naturally within many types of text. Thus, our experiences
in designing and implementing these text extensions should prove valuable to those who wish to
extend relational and object-oriented systems so that they accommodate structured text.

Our research is also o immediate benefit to text engine vendas, since it provides a very easy
method d integrating text engine techndogy with both SQL2 and SQL3. We have shown that it is
feasible to implement reational wrappers for several text search engines to extend reational
database systems 9 that they provide support for complex text extensions. We have also shown
that it is posgble to integrate such extensions efficiently into SQL, so that vendar-specific objects
may be rapidly retrieved and manipulated using standard SQL constructs. Furthermore, we
demonstrated how the integrated text-relational techndogy can be further integrated with Web
technology.

Acknowledgments

This work has been carried aut as part of the University’s participation in the Canadian Strategic
Software Consortium (CSSC), which also includes Fulcrum Techndoges Inc., Grafnetix Systems
Inc., InContext Corporation, Megalith Techndoges Inc., Open Text Corporation, Public Sector
Systems, and SoftQuad Inc. CSSC was formed in 1993to perform pre-competitive research onthe
integration d relational and text databases and was partially supported by Industry Canada’'s
Strategic Technologies Program (STP).

Ideas expressd in this paper have been developed and refined in part through dscussons with
members of the CSSC’s Hybrid Query Processor (HQP) working goup. Special acknowledgment
is due to past cortributors to the Text/Reational Database Management Systems project, including
Betty Blake, Gaston Gonret, Pekka Kilpdéainen, Eila Kuikka, Paul Larson, and Tim Snider.
Financial asdstance was provided by the University of Waterloo and through gants from the
Natural Sciences and Engineering Research Council of Canada, Industry Canada, and Open Text.

References

[ATA91] Air Transportation Assciation, Advanced Retrieval Sandard — SFQL: Structured Fulltext
Query Language. ATA-89-9C SFQL Committeg ATA spedfication 100, Rev 30, Version
2.2, Prerelease C, October 1991, 84 pp.

[Bla94] G.E. Blake, M.P. Consens, P. Kilpdainen, P-A. Larson, T. Snider, and F.W. Tompa,
“Text/Relational Database Management Systems. Harmonizing SQL and SGML,” Proc.
Application of Databases (ADB 94)., Vadstena, Sweden (June 1994, Lecture Notes in
Computer Science 819, Springer-Verlag, pp. 267-280.

[Blagg G.E. Blake, M.P. Consens, 1.J. Davis, P. Kilpelainen, E. Kuikka, P-A. Larson, T. Snider, and
F.W. Tompa, Text/Relational Database Management Systems: Overview and Proposed SQL

18 Structured Text ADT

[Bri97]

[Clag4]

[CoboZ]

[CooB7]

[CSSC94]

[Davog]

[Flag6]

[Ful94]

[Gon87]

[1SO86]

[1S089]

[1S092]

[1S096d

[1 SO96g]

[Kil93]

[Mac9?]

[Mic92]

Extension. University of Waterloo Department of Computer Science Technical Report CS-95-
25 (June 1995).

M. Brisebais and 1.J. Davis, “HQP: la gestion et I’intégration des données relationndlles et
textuelles,”L’expertiseinformatique 31 (été 1997) pp. 8-13.

C.L.A. Clarke, G.V. Cormack, and F.J. Burkowski, Fast Inverted Indexes with Online
Update. University of Waterloo Department of Computer Science Technical Report CS-94-40
(November 1994) 11 pp. See alstp://multitext.uwaterloo.ca.

N. Coburn and P-A. Larson, “Multidatabase Services: Issies and Architedural Design,”
Proc. 1992 CAZonf. (CASCON)IBM, pp. 57-66.

JH. Coombs, A.H. Renear, and S.J. de Rose, “Markup Systems and the Future of Scholarly
Text Processing,’'Comm. ACM 3011 (November 1987) pp. 933-947.

CSSC News Lettelssue 1, December 19, 1994.

I.J. Davis, Adding structured text to SQL/MM Part 2: Full Tex, A change proposal.
ISO/IEC JTC1/SC21/WG3 CAC N334R3, April 26, 1996.

D. Flanagan,Java in a Nutshell O'Reilly and Associates, 1996.

Fulcrum Technologies Inc., Fulcrum SearchServer Version 20: Introductionto SearchSarver,
1994,

G. H. Gonnet, “Extracting information from a Text Database. An example with dates and
numeric data,” Proc. Third Conf. UW Centre for the New Oxford English Dictionary,
Waterloo, Canada (November 9-10, 1987) pp. 89-96.

International Organization for Standardizaion, Information pocessng - tex and dfice
systems - Standard Generalized Markup Language (SABD)8879: 1986.

International Organization for Standardizaion, Information pocessng - tex and dfice
systems - Office Document Architecture (ODO&P 8613-2: 1989.

International Organization for Standardization, Information techndogy - Database languags
- SQL ISO/IEC 9075: 1992.

International Organization for Standardization, Document Style Semantics and Sgafication
Language ISO/IEC 10179:1996http://www.jclark.com/dsssl.

International Organization for Standardizaion, SQL Multimedia and Application Packages.
Part 2: Full Text ISO/IEC Working Draft, June 1996.

P. Kilpddinen and H. Mannila, “Retrieval from hierarchical texts by partial patterns,”
Sxteenth Int. ACM SGIR Conf. on Research and Devdopment in Information Retrieval
(1993) pp. 214-222.

I.LA. Macleod, “Data Modeling Requirements for Document Management,” Proc. IFIP
TC8/WG8.1 Working Conference on Information Sstem Concepts: Improving the
UnderstandingAlexandria, April 1992ElIsevier (North-Holland) pp. 259-271.

Microsoft ODBC 2.0 Programmer’s Reference and SDK Ghtlerosoft Press. 1992

Structured Text ADT 19

[OTCO5]

[Pap93

[Rag97]

[Ray96a]

[Ray96b]

[Salod]

[Speod]

[Tom89]

[UW9E]

[UW97]

[Weig5]

[Zhu9Z

20

Open Text Corporation, Open Text 5 System Integration Guide and Database Administration
Guide, 1995.

Y. Papakonstantinou, H. GarciaMadlina, and J. Widom, “Objed Exchange Across
Heterogeneous Information Sources,” Proc. Eleventh Int. Conf. on Data Engineering, Taipe,
Taiwan (March 1995) pp. 251-260.

D. Raggett, HTML 3.2 Reference Specification, The World Wide Web Consortium, REC-
html32, January 14, 199%t{p://mww.w3.0org/ TR/IREC-html 32.htm).

D.R. Raymond, F.W. Tompa, and D. Woaod, “From Data Representation to Data Mode!:
Meta-Semantic Isaes in the Evolution of SGML,” Computer Sandards and Interfaces 18
(1996) pp. 25-36.

D.R. Raymond. Partial Order Databases. University of Waterloo Department of Computer
Science Technical Report CS-96-01 (March 1996).

A. Saminen and F. W. Tompa. Grammars++ for Modelling Information in Text. University
of Waterloo Department of Computer Science Technical Report CS-96-40 (November 1996,
46 pp.

C.M. Sperberg-McQueen and L. Burnard (eds.), Guidelines for the Encoding and Interchange
of Machine-Readable Texts (TEI P3). Aswoc. for Computing in the Humanities, Assoc. for
Computational Linguistics, and Asc. for Linguistic and Literary Computing, April 1994
(http:/Amvwwv.uic.edu/orgs/tei/p3/).

F.W. Tompa, “What is (tagged) text?’ Dictionariesin the Electronic Age: Proc. 5th Conf. of
University of Waterloo Centre for the New OED, Oxford, UK (September 1989) pp. 81-93.

University of Waterloo, 1996-97 Undergraduate Calendar, Office of the Registrar,
(http: /imwww.adm.uwaterloo.calinfoucal).

University of Waterloo, The TRDBMS project: Integrating structured text and SQL,
http: //sol o.uwaterloo.ca/trdbms/index.html, Department of Computer Science, 1997.

E.SC. Wener, “The New OED: Probems in the Computerization of a Dictionary,”
University Computing 7 (1985) pp. 66-71.

Q. Zhu, “Query Optimisation in Multidatabase Systems, Proc.1992 CAS Conference
(CASCON), IBM, pp. 111-127.

Structured Text ADT

Appendix A
Behind the scenes

Introduction
This appendx contains two complete queries ill ustrating the use of the structured text abstract data
type within the context of SQL. These queries operate against the University of Waterloo calendar

[UW96]. The calendar text is dored within a one row table named uwcalendar containing a singe
column namedalendar This table is accessed througtr Pwith the aid of a relational wrapper.

Query 1

List professors andtheir departments for professors who have some degreefrom Toronto and an
MBA from any institution.

Within the calendar text, the faculty is listed by department, as in the following snapshot:

Accounting

Professor, Director, School of Accountancy
J.H.WaterhouseBSc, MBA (Alberta)?hD (Washington, Seattle)

Associate Professor, Acting Director, Director Professional Programs, Gordon H.
Cowperthwaite Professor of Accounting
H.M. Armitage,BSc (McGill), MBA (Alberta)PhD (Michigan State), CMA, FCMA

Professor, Graduate Officer, The Ontario Chartered Accountant's Chair in Accounting
G. RichardsonBA (Toronto), MBA (YorkRhD (Cornell), CA, FCA

Associate Professor, Undergraduate Officer
D.T. CarterBComm, MBA (Windsor), CA, FCA

In the modd for the calendar text, the department name is subsumed by by a noce labdled
<FDNAME>, the department members are subsumed by a nock labdled <FGRP>, the information for
each profesr is under a nock labdled <FpP>, and higher degrees are under a singe node labelled
<FQUAL>.

SELECT TEXT_TO_STRINGHrof info,'clear’), TEXT_TO_STRINGIEpt_name, ‘clear’)
FROM (SELECT UNNEST
EXTRACT_SUBTEXTS(
calendar,
3,
'<file>[<FDNAME>#&<FGRP>[<FP>#[<FQUALXronto"&"MBA"]II'
)
FROM uwcalendar
) Titharked_calendadept_nameprof_info)
WHERE prof_info IS NOT NULL

Structured Text ADT 21

The keyword unnest (in the nested select) represents a proprietary extension to SQL, which allows
projected functions that return relational tables to be unnested [Bla95]. Within SQL3 it has been
proposed that such an gperation would be replaced by ore performing a left join on a table
containing the inputs to the projected function, with the specific function. For this to be a viable
method d performing the desired goeration, the scope in which variables are known has to be
extended so that inputs on the left of a join remain visible to functions used in producing the right
comporent of the join. It is also necessary that such a correlated join implicitly join each row
produced by the left input with all rows derived from this left row’s inputs.

Using this alternative construction, tixenest would be written as:

SELECT marked_calendadept_nameprof_info
FROM (
(SELECT calendar FROMwcalendar)
LEFT JOIN
EXTRACT_SUBTEXTS(calendar, 3, '<file>[<FDNAME>...]]]]')
) T(calendarmarked_calendadept_nameprof _info)

Result 1
'G. Richardson BA (Toronto), MBA (YorkPhD (Cornell), CA, FCA’ '‘Accounting’
'W.M. Lemon BA (Western Ontario), MBA (Toront@®hD (Texas at '‘Accounting’
Austin), CA, FCA, (
'W.D. Poole BA (Toronto), MBA (York)MSc (London)' 'Drama and Speech Communicatign'
'J.H. Bookbinder MBA (Toronto), M$hD (California, San Diego)' 'Management Sciences'
Query 2

The second example presents the SQL query used to produce the Web page shownin Figure 14. In
this query, course schedules (located in an Oracle database as schedule courses) are joined with
the course sections for that course (also located in an Oracle database as schedule_sections). Then
the appropriate course descriptions extracted from the calendar are joined to the schedule
information, when these descriptions exist. This query contains sme redundancy introduced by
the application that formulated it, and makes assumptions about the nature of the data returned.
Formatting d the output records into a page suitable for the Web (with orly one course description
presented for all four section records) was performed by an application front. Neverthdess a
considerable amount of text within the query is concerned with managing presentational isues that
must be addressed by anyone wishing to make information available on the World Wide Web.

This example ill ustrates the utility of wrapping structured text, such as that which might be found
on the Web, with rdational interfaces, but it also demonstrates ssme of the attention to detail that
is demanded by traditional database languages when dealing with misdng values and in
manipulatingdatatypes.

The query is shown onthe next page, followed by two dof the four records returned when the query
is executed.

22 Structured Text ADT

SELECT cindex,cno,divsuf,cterm,cwt, requested;enrolled climit, notes,stype,sno, senrolled,
slimit, smt,meet_timeJocn, instructor,
COALESCE(description,''[|cno]|' - No Description Available"),
COALESCE(source,")
FROM (SELECT *
FROM (SELECT cindex,cno,divsuf, cterm,cwt,
CAST(requested AS VARCHAR(20)) AS requested,
CAST(enrolled AS VARCHAR(20)) Asenrolled,
CAST(limit AS VARCHAR(20)) ASclimit,
notel|| ' [|[note2||"||note3 AS notes
FROM SCHEDULE_COURSES
WHERE cno LIKE UPPER('HIST %) AND cno LIKE '% 255%'
)
NATURAL JOIN
(SELECTcindex,cno, stype,sno,
CAST(enrolled AS VARCHAR(20)) ASenrolled,
CAST(limit AS VARCHAR(20)) ASslimit,
smt,meet_timemeet_bldg|||[meet_room A%cn,
first_name ||' '||'<A HREFegi-binlhph<cgiint?__file_ =calendar%
2Fgeneral%2Ffaculty.in&dept_name=&ftype_position=any&
ftype_role=none%2Fany&mode=Submit+Query&
back=calendar/generathedule.in&flnm="[last_name || '>'[hst_name
[| 'YA>' AS instructor
FROM SCHEDULE_SECTIONS
WHERE cno LIKE UPPER(HIST %) AND cno LIKE '% 255%'
)
)
NATURAL LEFT JOIN
(SELECTCASE position('&' in TEXT_TO_STRINGfo, ‘clear"))
WHEN 0 THEN TEXT_TO_STRINGIno, ‘clear)
ELSEsubstring(TEXT_TO_STRINGho, ‘clear’) from 1 for
position('&' in TEXT_TO_STRINGgno, ‘clear"))) ||
substring(TEXT_TO_STRINGHo, 'clear’) from
position('&' in TEXT_TO_STRINGEno, ‘clear))+5)
END ascno,
TEXT_TO_STRING (KEEP_MARKS(course,0,0), 'tagged’) as description,
'<CAL>' || TEXT_TO_STRING (source, ‘clear’) || '</ICAL>' as source
FROM (SELECT UNNEST
EXTRACT_SUBTEXTS(
calendar, 4,
'<file>[:source#&<COURSE>#[<CNO>#]]'
) as (marked_calendar, source, courseg)
FROM uwcalendar
)
WHERE UPPER(TEXT_TO_STRINGfo, 'insensitive™)) like UPPER('HIST%")
AND TEXT_TO_STRINGEnNo, 'insensitive") LIKE '% 255%'

)
ORDER BYcno,cindex,stype,sno,smt ASC

Structured Text ADT 23

Result 2
RECORD 1

cindex:
divsuf:
cwt:
cenrolled:
notes:

sno:

slimit:
meet_time:
instructor:

description:

Sour ce:

RECORD 2

cindex:
divsuf:
cwt:
cenrolled:
notes:

sno:

slimit:
meet_time:
instructor:

description:

Sour ce:

24

1011371 cno: 'HIST 255’
t cterm: 'F!

.50 crequested: 162"

153" climit: 154!

v stype: 'C!

01’ senrolled: 153"

154! smt: o1
'11:30TR' locn: 'AL 124’
'M Craton'

'<Tagged><COURSE NAME="HIST255">

<CNO>HIST 255</CNO> <CTERM>F </CTERM> <CWT>0.5</CWT>

<CTITLE>The Expansion of England</CTITLE>

<CDESC> The history of the British Empire down to the American War of Independence, telling
the story of the Tudmseadogs, of the plantation of Ireland, the settlement of the North American
mainland, the establishment of slave plantations in the Caribbean, and the earliest British
enterprises in Africa, Asia and the Pacific. </CDESC>

</COURSE></Tagged>

'<CAL>COURSE/course-HIST.html</CAL>

1011371 cno: 'HIST 255’
r cterm: 'F!

.50 crequested: 162"

153" climit: 154!

v stype: 'D!

01’ senrolled: 119

118’ smt: o1’
112:30T locn: "ES1 353
'M Craton'

'<Tagged><COURSE NAME="HIST255">

<CNO>HIST 255</CNO> <CTERM>F </CTERM> <CWT>0.5</CWT>

<CTITLE>The Expansion of England</CTITLE>

<CDESC> The history of the British Empire down to the American War of Independence, telling
the story of the Tudmseadogs, of the plantation of Ireland, the settlement of the North American
mainland, the establishment of slave plantations in the Caribbean, and the earliest British
enterprises in Africa, Asia and the Pacific. </CDESC>

</COURSE></Tagged>

'<CAL>COURSE/course-HIST.html</CAL>

Structured Text ADT

