
A Structured Text ADT for Object-Relational Databases
 L.J. Brown, M.P. Consens, I.J. Davis, C.R. Palmer, and F.W. Tompa

Centre for the New OED and Text Research,
Department of Computer Science,

University of Waterloo,
Waterloo, Ontario,
Canada N2L 3G1

July, 1997

ABSTRACT

There is a growing need, both for use within corporate intranets and within the
rapidly evolving World Wide Web, to develop tools that are able to retrieve
relevant textual information rapidly, to present textual information in a meaningful
way, and to integrate textual information with related data retrieved from other
sources.

This paper introduces a model for structured text and presents a small set of
operations that may be applied against this model. Using these operations
structured text may be selected, marked, fragmented, and transformed into
relations for use in relational and object oriented database systems.

The extended functionality has been accepted for inclusion within the SQL/MM
standard, and a prototype database engine that supports SQL with extensions to
incorporate the proposed text operations has been implemented. This prototype
serves as a proof of concept intended to address industrial concerns, and it
demonstrates the power of the proposed abstract data type for structured text.

1. Introduction

The application of database technology is essential to the operation of conventional business
enterprise, and it is becoming increasingly important in the development of distributed information
systems. However, most database technology, and in particular relational database technology,
provides few facilities for effectively managing the vast body of electronic information embedded
within text.

Recognizing that the potential exists for text retrieval to become of much greater relevance within
information systems, Fulcrum Technologies Inc., Grafnetix Systems Inc., InContext Corporation,
Megalith Technologies Inc., Open Text Corporation, Public Sector Systems, and SoftQuad Inc.,
and the University of Waterloo formed the Canadian Strategic Software Consortium (CSSC) in
1993, in order to pursue pre-competitive research relating to the integration of relational databases
and text-intensive databases [CSSC94]. Working with other members of CSSC, the University of
Waterloo decided to explore how relational database systems could be extended, so that they might
most effectively provide access to structured text in a manner compatible with SQL [Bla94,
Bla95]. Past experience suggested that large texts need to be capable of being searched both
vertically with respect to their internal structure and horizontally with respect to their textual

Structured Text ADT2

content [Wei85]. They need to be capable of being fragmented at appropriate structural
boundaries, so that the appropriate context surrounding the selected text can be recovered, and
selected text needs to be marked in some manner, so that it can subsequently be located easily
within a potentially much larger context [ATA91].

Early versions of our SQL2 extensions have been presented with examples [Bla94, Bla95]. The
semantics of these extensions have since been refined and formally defined [Dav96], and the
extensions have subsequently been adopted for inclusion within the SQL/MM standard [ISO96s].

We were at the time also actively researching how federated database systems might be constructed
on top of existing database and text searching systems, such as Oracle, IMS, DB2/6000, and PAT

[Cob92, Zhu92]. We therefore elected to build a prototype hybrid query processor capable of
integrating relational data (managed by relational database systems) and text (managed by text
engines) [Bri97].

In this paper we describe the final text model that we developed to meet the varied uses of
structured text in a database environment. Section 2 highlights the diverse nature of text. The
structured text abstract data type is presented in Section 3. Section 4 describes a set of related
applications that ill ustrate the utili ty of such structured text objects, and conclusions follow in
Section 5.

2. The challenge

A structured text is by definition any text that has an identifiable internal structure. This structure
may be explicitly established by the inclusion of appropriate electronic markup [Coo87, Tom89],
possibly complemented by an external document type definition (DTD), or it may be implied by the
language contained within this text. HTML is an example of a text that contains explicit structural
markup used in association with a DTD [Rag97], while Java source code is an example of text
whose structure is determined by appropriately parsing the language contained within the text
[Fla96].

In general, structures within a text may be arbitrarily complex. Regions of structured text (i.e.,
instances of subtext spanning a well-defined textual region) may overlap, and referential
relationships between text may form complex interwoven networks both within texts and across
texts [Spe94]. These networks may themselves not be particularly well defined, since in some
cases a reference will be translated into a request to include subtext (cf. macro expansions), while
in others it will establish a cross-reference to a separate subtext (cf. function invocations).

Structured subtexts may contain or reference heterogeneous objects such as image, sound, video,
spatial and other data types frequently found within existing multi-media documents, and these
objects may themselves contain or reference further instances of structured text. Structured texts
may also exist as temporal objects, having differing manifestations at different times, all of which
must be accessible by specifying the appropriate temporal context.

The ordering of text may be only partially defined, both within specific regions of structured text
(e.g., SGML attribute values are unordered) and within the networks that arise when subtexts
reference other subtexts. Certain text may be considered to be logically present while being
physically absent (e.g., SGML attributes’ values and C++ function parameters may be assigned
default values when absent), while other text may be physically present but considered within some

Structured Text ADT 3

contexts to be logically absent (e.g., color, white space, punctuation, descriptive markup,
versioning).

Text extracted from its original context poses even more problems. It is diff icult to associate an
appropriate grammatical structure with instances of extracted subtext when the context from which
these text has been extracted is lost. For example, if three paragraphs are extracted from a chapter
that forbids the inclusion of footnotes, do the extracted paragraphs continue to exclude footnotes?
Having been extracted, what textual (or other) structure now contains the three extracted
paragraphs? Does this containing structure allow other than three paragraphs within it, and does it
associate any ordering with the paragraphs it contains? If a page break occurs between two of
these three paragraphs in the original source, is this page break also present within the resulting
structure associated with the three extracted paragraphs?

Developing a text model capable of representing a vast variety of properties that any possible
application could demand of structured text would probably not be particularly constructive, even
if it were possible. What is initially required is a simple text model that encapsulates most of the
significant properties of structured text, coupled with well-defined operations on this model that
facilitate effective query, retrieval and update of selected fragments of structured text [Ray96a].

3. Structured text objects

In this section, we describe a tree model for structured text, and we describe operations on that
model that provide the functionali ty needed to select and extract subtexts in a relational database
environment. The text operations have been implemented using native language constructs
supported by Open Text’s PAT 5.0 text engine [OTC95] and the University of Waterloo’s
MultiText text engine [Cla94]. Using ODBC [Mic92], output from these operations were
integrated with texts stored in a Fulcrum database [Ful94] and with relational data stored in Oracle
and DB2 databases. Similar implementations could be written to interact appropriately with object-
oriented database systems and with other structured text search engines, using alternative native
search languages.

3.1 A tree model for structured text

A structured text subsumes a region of text which may itself contain well-formed subordinate
structured texts, such as a chapter containing paragraphs, footnotes, figures, and subchapters. It is
assumed that a structured text is finite and that an arbitrary ordering of text may be associated with
unordered fragments of text. For example, SGML attributes are considered to be logically
unordered, and subtexts drawn from a collection of works contained within a single text may have
no logical ordering; nevertheless the text is arbitrarily ordered in its presentation. Using these
assumptions a structured text can be conceptually represented as an ordered tree having nodes that
correspond to the various structures in the text [Mac92, Sal96]. Each node in this tree is labelled
with a string that identifies the function of the structure that the node conceptually represents, and
each node contains as a second attribute the subtext subsumed by this structure.

No assumptions are made in the model about what constitutes structural information within an
arbitrary text; this must be decided by the process that parses a character string to interpret it as a
structured text. Similarly, no assumptions are made about how the physical structure within the
text is encoded within the model, since such assumptions would limit the usefulness of the model
[Mac92].

Structured Text ADT4

This framework allows the full generali ty of the structured text model to be exploited by diverse
applications. Application designers determine the structures that are to be identified in the model
and how type information is to be encoded within node labels. Data providers choose the
mechanisms for encoding structured text as character strings and ensure the existence of parsers
that can be used to interpret strings’ values as structured text, and thus populate the model.
Through the use of standards such as SGML [ISO86] and DSSSL [ISO96d], applications and data
providers can ensure that the data stored within the model exhibits the appropriate conceptual
structures within a text. Thus the data provider assumes responsibili ty for the management of
physical texts, the model provides a mechanism for describing how these physical texts may be
accessed, and the data consumer remains responsible for deciding how a text is to be interpreted
and manipulated.

As an example, consider the fragment of the University of Waterloo calendar [UW96] shown in
Figure 1. This fragment could be encoded as tagged text as in Figure 2(a) and interpreted by a
parser as the labelled tree shown in Figure 2(b),where the texts subsumed by each node within the
tree are not shown.

CS 370 F,W 3C 0.5
Numerical Computation
Principles and practices of basic numerical computation as a key aspect of scientific computation.
Visualization of results. Approximation by splines, fast Fourier transforms, solution of linear and nonlinear
equations, differential equations, floating point number systems, error, stability. Presented in the context of
specific applications to image processing, analysis of data, scientific modeling.
Prereq: MATH 235, 237 and one of CS 230, 246
Antireq: CS 337

Figure 1. Part of Chapter 16 of the University of Waterloo calendar

In this sample encoding of the model, labels in the tree are “ typed” as being SGML generic
identifiers by the convention of using enclosing angle brackets, whereas attribute names are
preceded by a colon. Note that in this example some SGML markup has been ignored by the
modeller, as has the actual case of generic identifiers and attribute names. Other SGML types
(such as entity references) can be similarly encoded, preferably preserving the convention that node
types can be deduced by merely examining the first character of the associated node label. Nodes
representing generic identifiers subsume the subtext within the corresponding tags, and nodes
representing attribute names subsume the attribute’s value. Note that not all text need be subsumed
by leaf nodes: in the example, the text “and one of” is subsumed by <course> and <cprereq>, but
not by any <cxref> (nor any other leaf).

Continuing with the above example, the four <cxref> course cross references that are cited as
prerequisites for course CS370, may be considered to form either a list or a set. Applications that
wish to treat such cross references as an unordered collection will avoid attaching unwarranted
significance to the ordering of these subtexts within the above encoding. Furthermore, applications
must be careful to preserve the intended semantics of the text. When considering results derived
from the above encoding, for example, even though CS370 lists four prerequisites, the text states
that students need not satisfy all four prerequisites prior to enrolling in CS370.

Structured Text ADT 5

<COURSE NAME="CS370"><CNO>CS 370</CNO><CTERM>F,W</CTERM><CTYPE>3C</CTYPE>
<CWT>0.5</CWT>
<CTITLE>Numerical Computation</CTITLE>
<CDESC>Principles and practices of
basic numerical computation as a key aspect of scientific computation. Visualization of results. Approximation by
splines, fast Fourier transforms, solution of linear and nonlinear equations, differential equations, floating point
number systems, error, stability. Presented in the context of specific applications to image processing, analysis of
data, scientific modeling. </CDESC>
<CPREREQ CID=478><cxref xref="MATH235">MATH 235</cxref>,
<cxref xref="MATH237">237 </cxref> and one of <cxref xref= "CS230">CS 230</cxref>, <cxref
xref="CS246">246</cxref></CPREREQ>
<CANTIREQ CID=479> <cxref xref="CS337">CS
337</cxref></CANTIREQ>
</COURSE><p>

(a) Tagged encoding as a character string

<course>

:name

<cno> <cterm> <ctype> <cwt> <ctitle> <cdesc> <cprereq> <cantireq>

:cid <cxref>…<cxref>

:xref :xref

:cid <cxref>

:xref

(b) Schematic representation in the model

Figure 2. An encoding for a fragment of the calendar

The ordered hierarchical model for structured text seems an intuitive one, but may be unduly
restrictive. In practice many loosely structured texts (and particularly those on the Web) violate the
assumption that the markup within them is correctly nested. For example, font changes may occur
at arbitrary points within a text, rather than within well-defined structural boundaries. The model
allows multiple hierarchical structures to be encoded as independent substructures, but does not
allow relationships between distinct structural hierarchies to be modelled directly. For example,
physical page boundaries impose a secondary structure on many documents, but these physical
boundaries cannot readily be related to the logical document structure within our proposed model.
If the ordered hierarchical model is considered too limited, it might be possible to generalize the
concept of containment and ordering used within the model, so that these concepts can be applied
to overlapping regions of text (see, for example, [ISO89, Ray96b]).

3.2. Associating a schema with text

The encoding shown in Figure 2 provides a conceptual model of the structure of the text shown in
Figure 1, but fails to provide key information needed by a naïve user who wishes to access this
text. Such a user may have no a priori knowledge about the node labels present in the encoding,

Structured Text ADT6

their interpretation, and the valid relationships between the various node labels within the text
encoding. It is not possible to deduce from Figure 2 that university courses may also have
corequisites associated with them, and nothing indicates if course cross references occur elsewhere
within the calendar, or potentially within the course descriptions subsumed by nodes labelled
<cdesc>. Thus, when a parser converts a string into a text tree, it associates with this text the
grammar that it used when parsing it.

The schema shown in Figure 3 describes the actual information content present within Chapter 16
of the University of Waterloo calendar, and constitutes part of the schema for the calendar.
Chapter 16 is partitioned into source files, each describing one or more departments. Departments
have a name and associated courses. Course listings may include many details, such as
descriptions, ancill ary information, prerequisites, antirequisites and corequisites. Repeating
elements within this schema have been marked with a ‘+’ to improve comprehension.

<chapter16>
>

<fil e>

:source <cdept>

<cdname> <course>

:name

<cno>

<cgno>

<cnono>

<cterm>

<cwt>

<ctitl e>

<cdesc>

<cinfo>

<cprereq>

:cid <cxref>

:xref

+

+

<cantireq>

:cid <cxref>

:xref

+

<ccoreq>

:cid <cxref>

:xref

+

+

+

Figure 3. A schema for Chapter 16

The functions shown in Figure 4 provide rudimentary access to the schema associated with a text
and enable recovery of the schematic information presented above.

Function Returns Description
Text_to_grammar Grammar The internal grammar associated with a given text
Grammar_root Varchar The name of the root element in the grammar
Grammar_elements Relation Grammar element names and informal descriptions
Grammar_hierarchy Relation Grammar element child/descendant relationships
Grammar_to_text Text Extended textual description of external grammar

Figure 4. Functions on the schema of a text

Structured Text ADT 7

The function text_to_grammar returns the grammar associated with a given text. (Note that
although all examples here use SGML, this is not a requirement imposed by the model.) The
function grammar_root, when applied to such a grammar, returns the label of the root of the
schema for this grammar. The function grammar_elements, when applied to a grammar, returns
a two column relation describing each distinct node label in the schema associated with this
grammar. For example, this function returns a table such as that shown in Figure 5 when applied
to the calendar schema; the descriptive information forms part of the information to be provided
with the parser.

Element name Description
<chapter16> Chapter 16
:name Course name abbreviation
<cdept> Department course listings
<course> A course description
… …

Figure 5. Part of the relation returned by grammar_elements

The function grammar_hierarchy when applied to a grammar returns a relation describing the
transitive closure of all ancestor/descendant relationships within the grammar schema.. This
function returns the table shown in Figure 6 when applied to the calendar schema.

Ancestor Descendant Relationship
<chapter16> <file> Child
<chapter16> :name Descendant
<chapter16> <cdept> Descendant
<cdept> <cdname> Child
… … …

Figure 6. Part of the relation returned by grammar_hierarchy

Additional functions can be implemented to provide further information about the schema
associated by the parser to a given text. For example, none of the above functions provide
information about the order of nodes within the text schema, none indicate whether
ancestor/descendant relationships are optional or mandatory, and none indicate whether there is a
one-to-one or one-to-many relationship.

The grammar_to_text function is not the inverse of the text_to_grammar function, but instead
produces a structured text (i.e., a value of type text that can itself be operated on as a text tree).
This text further describes the internal grammar associated with the text. If no such text exists the
function returns null. For example, the text of the grammar associated with an SGML document
might include a model of the actual document type definition (DTD) used when parsing and
validating this SGML document. Although the method used to encode a DTD might be very
different from the method used to encode the original SGML text, providing a textual
representation of the grammar allows the full power of the proposed text extensions to be employed
not only against an arbitrary structured text, but against an arbitrary textual description of the
grammar associated with a text.

Structured Text ADT8

It should be stressed that the above approach associates a grammatical schema with every instance
of text rather than merely with a collection of texts residing in a single relational column or
belonging to a particular set of textual objects. Based on industrial practice, it is unrealistic to
demand that only texts having exactly the same grammatical schema can be grouped into
collections. However, because it is diff icult to perform set-at-a-time operations against collections
of text that share li ttle in common, applications may choose to impose constraints on text
collections to ensure that the grammars of all contained texts share certain features.

3.3. Marking structured text

Previous proposals [ATA91] have recognized the importance of allowing fragments of subtext to
be marked so that, for instance, these fragments may be highlighted when viewed. In environments
that support update and storage of marked subtexts, such marks may also be used to store the state
necessary to support interactive hierarchical text navigation and browsing, through a stateless SQL
interface.

To allow fragments of structured text to be marked, the structured text model described above is
extended so that any node within this model may be either marked or unmarked. Thus, in the model
an instance of structured text

1. spans a given region of text,
2. has an identifiable grammar associated with it, and
3. includes a set of zero or more marks that identify specific structured

subtexts within this text.
Two texts that span exactly the same region of text and share the same grammar, but may have
different marks, are said to share the same provenance.

All of the functions shown in Figure 7 take one or more input texts that share the same provenance
and return a new text that also shares this same provenance. These functions allow marks within a
structured text to be manipulated.

Function Returns Description
Mark_subtexts Text Mark subtexts in texts using a hierarchical pattern
Union_marks Text Union marks in two instances of the same text
Intersect_marks Text Intersect marks in two instances of same text
Except_marks Text Compute the set difference between two sets of marks
Keep_marks Text Keeps pre-ordered marks in a given range within a text
Aggregate_marks Text Union marks in grouping of the same instance of text

Figure 7. Functions that manipulate marks in a text

The function mark_subtexts takes as input an instance of text and a string containing instructions
about how the resulting text is to be marked (cf. [Kil93]). The structured text pattern matching
language used to encode these instructions within the string is presented using the BNF for
<pattern> in Figure 8. Figure 9 ill ustrates how text nodes are matched against a structured text
pattern, assuming the schema from Figure 3. (Note that ‘%’ matches zero or more consecutive

Structured Text ADT 9

characters within a text label.) An alternative syntax using more descriptive function names rather
than the compact notation presented here has also been defined.

<pattern> ::= <node_rule> [<descendants>] | <node_rule>
<descendants> ::= <set> | <list>
<set> ::= <pattern> <ampersand> <set> | <pattern>
<list> ::= <pattern> <comma> <list> | <pattern>

<node_rule> ::= <rooted_rule>
<rooted_rule> ::= <rooted> <marked_rule> | <marked_rule>
<marked_rule> ::= <marked> <marking_rule> | <marking_rule>
<marking_rule> ::= <node_pattern> <flagged> | <node_pattern>
<node_pattern> ::= <node_label> { <text_expression> } | <node_label>

<node_label> ::= <characters>
<text_expression> ::= <characters>
<characters> ::= <characters> <character> | <character>
<character> ::= !! Any appropriately escaped character !!

<ampersand> ::= &
<comma> ::= ,
<rooted> ::= ^
<marked> ::= @
<flagged> ::= #

Figure 8. The structured text pattern matching language

Pattern Marks
%# Every node in the text
^%# The root of the text
^%[^%#] Every child under the root of the text
@<course>#[<cprereq>] Every marked course having prerequisites
<course>#[<cprereq>[:xref{CS370}]] Courses that list CS370 as a prerequisite
<chapter%>#[<file>&<file>] Chapters containing more than one file
<course>#[<cwt>,<cterm>] Courses whose weight appears before term
<course>[:name{CS370}&<cwt>#] The course weight of CS370
@%[^<cxref>#] Every cxref that is a child of a marked node
%[:source#,<ctitle>#,<cdesc>#] Every in order occurrence of source, ctitle and

cdesc

Figure 9. Examples of how structured text patterns match a text

The <pattern> and <descendants> productions in Figure 8, allow a simple one- dimensional
representation of a partially ordered pattern tree to be expressed. Within this expression, each
<pattern> within a <list> (e.g., B, C, and D in the pattern ‘A[B,C,D]’) constitutes an ordered
descendant of the <node rule> immediately preceding this <list> within the pattern, and each
<pattern> within a <set> constitutes an unordered descendant of the immediately preceding
<node rule>.

The structured text pattern matches a subset of the nodes in an instance of structured text when
(a) every <node rule> is associated with exactly one distinct node in the structured text,

Structured Text ADT10

(b) every ancestor/descendant relationship between <node rule>s in the structured text pattern
holds between the corresponding matched nodes within the text,

(c) ordered lists of nodes within the pattern appear in the same order as the nodes that they match
within the text,

(d) any <node rule> containing the <rooted> symbol matches a node within the text whose
parent node (if any) is also simultaneously matched by a corresponding <node rule>,

(e) each <node rule> containing the <marked> symbol matches a marked node within the text,
(f) the <node label> agrees with the corresponding node label within the text, and
(g) the text subsumed by a matched node satisfies the <text_expression> (if present).

The rules governing how node labels and subsumed text are matched against strings within the
pattern tree depends on the environment within which the structured text abstract type is supported.
Within SQL it is proposed that a <node label> use the symbols ‘%’ and ‘_’ as wildcards, that this
<node label> be compared with structured text labels using the SQL ‘ like’ predicate [ISO92], and
that this comparison be case insensitive. It is proposed that the <text_expression> be a valid
SQL/MM ‘contains’ clause [ISO96s]; when applied against the subsumed text, it identifies
structured text nodes matching this expression. As a possible extension, it might be better to allow
<text expression> to be an arbitrary SQL predicate (potentially containing more than just a Full
Text search specification); this would increase the power of the pattern matching language
considerably, and it might simpli fy detecting cases where certain complex text operations could be
optimized.

Because chain patterns are commonly used in text searching, the pattern matching language is
extended with two syntactic shorthands: A..B represents an ancestor-descendant relationship
(equivalent to A[B]), and A.B represents a parent-child relationship (equivalent to A[^B]).

The function mark_subtexts identifies each possible matching (if any) between nodes in the input
text and the structured text pattern, and marks any node within the matched text that corresponds
to a <node rule> containing the <flagged> symbol.

The functions union_marks, intersect_marks and except_marks take as input two instances of
text with the same provenance and return a new text of that same provenance having marks that are
respectively the union/intersection/set difference of the marks in the input texts. For example:

intersect_marks(
mark_subtexts(calendar, '<course>#[< cprereq>[: xref{CS370}]]'),
mark_subtexts(calendar, '<course>#[< cwt>,< cterm>]')

)

marks courses in the calendar that have CS370 as a prerequisite and list the course weight before
the term in which the course is offered.

The function keep_marks takes as input a text and an integer range (expressed as a start position
and a length). Marks in the input text are assigned ordinals (the first such being one) consistent
with the order that they would be visited in by a pre-order traversal of the text tree, and those
marks within the input text (if any) having ordinals lying in the specified range are the only marks
preserved in the resulting text. The function aggregate_marks takes as input a collection of texts
having the same provenance, and returns a new instance of text having this provenance and
containing the union of all marks in the collection of input texts. The functions union_marks,

Structured Text ADT 11

intersect_marks, except_marks, and aggregate_marks raise an appropriate exception when their
input texts do not share the same provenance.

Marking optional subtexts proved challenging and ineff icient. Optional subtexts cannot be marked
concurrently with mandatory subtexts, since the tree pattern matching language is based on
performing an exact match against all described subtexts. Optional subtexts are therefore marked
(and extracted, as described below) in a second phase after mandatory subtexts had been identified.
This is elaborated at the end of the next section.

In the current SQL/MM standard [ISO96s], there is no abili ty to use structured text concepts or
marking within a Full Text search specification. At present the Full Text specification uses the
concepts of character, word, sentence and paragraph within its own search language, without
defining or explaining how such concepts relate to the actual material contained within an arbitrary
instance of Full Text. This problem could be resolved by viewing these concepts as specific
instances of well-defined structure associated with the text being searched and augmenting the
SQL/MM Full Text specification so that it allows marking of identified substrings matching Full
Text patterns and searching that incorporates structured text concepts. Ideally, full i nterplay
should be allowed between “horizontal” and “hierarchical” text searching and marking, thus
making the resulting language much more expressive. This would also allow the concept of
proximity, which is well defined within the Full Text proposal, to be equally effective within our
structured text proposals.

3.4. Extracting structured subtext

Each of the functions shown in Figure 10 extracts from an input text a collection of subtexts,
returning a relation that contains the extracted subtexts.

Function Returns Description
Isolate_subtexts Relation Extracts all marked subtexts within a text
Extract_subtexts Relation Extracts the subtexts that match the specified pattern

Figure 10. Functions that extract subtexts from a text

The function isolate_subtexts takes an instance of text as input and, for each mark within this text,
produces an output row within the resulting relation. The first attribute within this output row
contains an instance of text having the same provenance as the input text, but having only the
soli tary mark within this text that caused the row to be generated. The second attribute in the row
contains, as a new instance of text, the subtext rooted at this mark. The mark on the root is
removed from the resulting subtext, but all other marks within the resulting subtext are preserved.

The function extract_subtexts takes as input an instance of text and a structured text pattern as
described for mark_subtexts above, and it produces a relation with one row for every possible
complete match, as described below. The number of columns in the resulting relation depends on
the text pattern. In environments where this value must be known at compile time, a third
parameter indicating the expected number of columns in the resulting relation must be included. In
environments such as SQL2, for example, this third argument must be an integer constant, and the
function extract_subtexts will raise an appropriate exception if the resulting relation does not
contain exactly the number of columns indicated.

Structured Text ADT12

Let the number of flagged <node rule>s in the pattern be n. For every distinct method of matching
the n flagged <node rule>s within the structured text pattern against nodes in the structured text,
while concurrently matching in at least one way the entire structured text pattern against the text,
an output row is produced with n+1 columns. The first column contains a new text with the same
provenance as the input text, while the remaining n columns contain the subtexts that matched the
flagged <node rule>s, in the left to right order (pre-order) that they occurred within the structured
text pattern. Each subtext remains marked in the innermost extracted ancestor within this tuple.
No other marks are present in the texts contained with the output tuple.

For example, if the operation:

 extract_subtexts(calendar, 3, '<course>[: name#, < cxref>..: xref#]')

is applied to the subtext shown in Figure 2 the relational rows shown in Figure 11 are returned in
no specific order. Within this figure marked subtexts within a text are shown in bold.

<course name="CS370"...
... < cxref xref="MATH235">MAT ... <p>

name="CS370" xref="MATH235"

<course name="CS370"...
... < cxref xref="MATH237">237< ... <p>

name="CS370" xref="MATH237"

<course name="CS370"...
... < cxref xref="CS230">CS 230< ... <p>

name="CS370" xref="CS230"

<course name="CS370"...
... < cxref xref="CS246">246< ... <p>

name="CS370" xref="CS246"

Figure 11. Result returned by extract_subtexts

This is a very different result from that shown in Figure 12 returned by:

isolate_subtexts(
 mark_subtexts(calendar,'<COURSE>[:NAME#, <CXREF>..:XREF#]')
)

<course name="CS370" ... xref="MATH235">MAT ... <p> name="CS370"
<course name="CS370" ... xref="MATH235">MAT ... <p> xref="MATH235"
<course name="CS370" ... xref="MATH237">237< ... <p> xref="MATH237"
<course name="CS370" ... xref="CS230">CS 230< ... <p> xref="CS230"
<course name="CS370" ... xref="CS246">246< ... <p> xref="CS246"

Figure 12. Result returned by isolate_subtexts

The abili ty to extract a subtext while preserving the context within which it was extracted is
significant. This avoids information loss, and allows aggregation of subtexts back into the text
from which they were earlier extracted. Unfortunately, since the context is preserved in the
containing text (by marking those subtexts extracted from this text), it becomes diff icult to
preserve context when multiple concurrent extractions are performed against a single instance of
text. This is because it is diff icult to determine which mark within the containing text corresponds
to which instance of extracted subtext. For example, in the first column of the first tuple in Figure
11, two subtexts are marked; which mark belongs to the text in the second column and which to the
text in the third? In this case, the correspondence is easy to determine, but if the pattern used ‘& ’
in place of ‘ ,’ the matches could occur in either order in the text instance and the extracted texts
may not be so simple to distinguish from each other. To address this problem it is proposed that the

Structured Text ADT 13

<flagged> production shown in Figure 8 be augmented so that a second ‘#’ be allowed to
immediately follow the first. Subtexts extracted as a result of a ‘##’ operator would be
immediately preceded (within the output relation) by a column containing the original text in which
only this subtext was marked.

As mentioned at the end of the previous section, extracting optional subtexts proved challenging
and ineff icient. Optional subtexts must be extracted in a second phase after mandatory subtexts
had been identified. The mandatory and optional subtexts are subsequently related through the use
of an appropriately constructed outer join, and absent subtexts are represented within such an
extraction process by null . This second extraction phase is very ineff icient since it is applied
separately to each grouping of mandatory subtexts within a single tuple, rather than being applied
during the construction of these distinct tuples. In addition, the division of subtext extraction into
multiple independent phases makes it diff icult to enforce contextual relationships between
mandatory and optional subtexts that otherwise would have been readily expressible within the
structured text pattern matching language. Extensions to the proposed pattern matching language
that would provide support for optional matching of text are being considered (cf. optional
matching in the context of specific semi-structured data in OEM-QL [Pap95]).

More generally, one often wants to recover structured text that approximates, but does not exactly
match, the search specification provided. There is a need to be able to compute how well i nstances
of subtext match a given search specification as a ranking, and to recover from such matchings (in
a suitable order) those subtexts that exceed some specified ranking threshold. Such a facili ty
would readily allow support for optional subtext matching, since such optional matchings could be
assigned a small (possibly zero) weight within the overall ranking scheme.

3.5. Other text operations

The functions shown in Figure 13 perform a variety of operations that complete the description of
the structured text abstract data type.

Function Returns Description
String_to_text Text Parses the input string using a specified method
Text_to_string String Converts text to a string using a specified method
Text_match Boolean Matches text against a hierarchical tree pattern
Count_marks Integer Counts the number of marks in a text
Cast ? Directly casts a text to an integer/double/date etc.

Figure 13. Other functions associated with structured text

The function string_to_text takes as input two strings. The first string contains the text to be
parsed and the second contains a keyword identifying how this text is to be parsed (i.e., which
parser and which grammar to apply). If the input string is successfully parsed, the function returns
the corresponding instance of structured text, conforming to the model used by the parser.
Complementing this, the function text_to_string produces a string from a text. A choice of
conversion methods is provided, since text can be linearized and presented in many ways. For
example, one converter may produce a tagged string, a second might omit all tags, and a third
might suppress particular subtexts.

Structured Text ADT14

The function text_match accepts the same inputs as mark_subtexts, but rather than marking
texts, it merely returns true if the pattern matches the text in at least one way. The function
count_marks takes as its input an instance of text and returns the number of marked nodes within
this text.

Within our prototype suitably encoded texts (cf. [Gon87]) can be directly cast into numeric
integers, double precision values and dates, and they can be eff iciently recovered using their
“external” representation. This allows large relations to be directly encoded within a text while
continuing to be rapidly accessible.

4. A sample application

The University of Waterloo undergraduate calendar provides a considerable amount of textual
information about events, courses, awards, faculty members, departments and university
regulations. Each year this document is marked up using HTML and made available on the World
Wide Web [UW96].

While some benefits result from making the raw material contained within the calendar available
on the Web, locating desired information within the calendar is often diff icult, since large volumes
of text must be visually scanned, and few facili ties exist to relate complementary information
within the calendar. Summary information can only be derived by examining all relevant sections
of the calendar mechanically, and relationships between the calendar and alternative sources of
information cannot be exploited.

We addressed the above limitations by developing a prototype web application that provides
alternative methods of accessing the calendar [UW97]. After adding appropriate descriptive
SGML markup to the calendar (as shown in Figure 2a), the resulting document was indexed so that
it could be rapidly searched by Open Text’s text search engine. Front end Web applications were
buil t to demonstrate how context specific information can be retrieved by our hybrid query
processor, which also provided simultaneous access to additional resources (including course
schedule and personnel tables) stored in an Oracle database.

Those responsible for maintaining the calendar derived immediate benefit from having the data
loaded into a database. Since we required that our input source texts conform to HTML, we
encouraged corrections in HTML pages that might otherwise have caused client browsers to fail .
In developing an extended DTD describing the descriptive structure associated with the various
sections within the calendar, we formalized the previously implicit rules governing how various
departments prepare material for inclusion within the calendar, and as a result moved closer to
standardizing and automating the data entry process associated with construction of a yearly
calendar.

Having added descriptive markup to the text, it became possible to validate textual information
contained within the calendar more easily. It is, for example, easily possible to extract from the
calendar the names, off ice locations and phone numbers of all members of faculty listed as the
contact people for information relating to courses. This information can be validated against
corresponding information in a current telephone directory stored within an Oracle database. If

Structured Text ADT 15

desired, relational information derived from the calendar can even be imported directly into
conventional relational database systems for use in alternative applications.

Students derived immediate benefits from being provided with improved access to the University of
Waterloo calendar. One student who was particularly interested in courses relating to Ireland was
able to discover immediately that History 255 “The Expansion of England” was the only course
within the calendar to include the word Ireland within its course description, and he was then able
to recover the course schedule associated with this course. Figure 14 shows the screen output, with
the course description for History 255 at the top of the screen matched with the corresponding
course schedule information selected from relational tables shown below.

Figure 14. Output that relates structured text with relational data

Structured Text ADT16

Members of faculty and administrators also found uses for the resulting system. It is, for example,
possible to identify all members of faculty within the university who hold one or more degrees from
specific universities, have specific positions, belong to specific departments, and/or perform given
administrative roles. Such queries can also be supported by structured text engines, such as PAT,
directly. However, it is possible to perform very much more complex queries using the inherent
expressive power of SQL2, if as an end user or application designer one is capable of formulating
the necessary SQL queries.

The Registrar’s off ice had long wanted to validate the relationships that exist between course
descriptions, but it had been previously unable to derive tables that summarize the relationships
between a course description and its internally documented prerequisites, corequisites, and
antirequisites. Upon learning of this, a relational view course_associations, capturing all
described course pairings, was easily defined using the extended text operators, and it was quickly
added to our demonstration and made available for use by members of the Registrar’s off ice and
others (Figure 15).

Figure 15. Presenting course associations as a relation

Structured Text ADT 17

The Student Awards off ice asked us to provide access to financial award information contained
within the calendar and were pleasantly surprised to discover that the necessary work of marking
them had been completed prior to their request. End users were therefore already able to search for
awards, grants and scholarships, using various criteria, including numeric considerations
associated with an award. It is possible, for example, to select awards that cite some maximum,
minimum, average or total set of award amounts within them, or that include award amounts in (or
not in) a given numeric range. The importance of accessing text through SQL is evident here, since
complex numeric processing and aggregation is typically not supported by existing text search
engines.

The Faculty of Mathematics was asked to provide information about the number of members of
faculty at different ranks by department, and to correlate this information against the number of
courses, and if possible, students taught. It was easy using SQL to derive a table from the calendar
that documented the number of members of faculty at various ranks by department. The courses
taught by a department in a particular term, and the enrollment in these courses could be as readily
obtained from the course schedule information stored in the Oracle database, and this collective
information could be immediately integrated into the desired relational tables, by using the abili ty
of the hybrid query processor to join relations from distributed data sources.

5. Conclusions

This paper has described an abstract data type for structured text that can readily be incorporated
into existing text searching technology, object database technology or forthcoming SQL3
technology. This abstract data type can be used to perform complex text- and relational-intensive
queries in widely distributed heterogeneous environments, such as those rapidly appearing on the
World Wide Web.

Our text extensions have proven highly effective in allowing structured text to be queried,
retrieved, and integrated with relational information. The concept of allowing selected subtexts
within a text to be marked is a natural one, and it is powerful when coupled with set-at-a-time
processing, facilities to extract subtexts, and further pattern matching operations.

The proposed text extensions allow easy definition and dynamic construction of relational views of
structured text derived from hierarchically structured text, marked subtexts, and/or extracted
subtexts. This allows naturally occurring relations within text to be easily retrieved, without
requiring that the text itself be stored within a relational system. Thus diverse relational views can
be superimposed on portions of the text without imposing a single “master” relational view on the
whole text. The use of a high-level, non-procedural text pattern matching language simpli fies the
definition and construction of such relations, while facili tating encapsulation and optimization of
the software responsible for integrating text and relational data. As a result, text can be retained in
its original form and still be subjected to expressive database operators.

The software we have implemented to support the structured text model performs well when
accessing both text and relational data. It has been used to construct a moderately sophisticated
suite of Web-based applications that allows integration of information contained within the text of
various chapters of the University of Waterloo Undergraduate calendar with course schedules,
phone lists, and other tabular data stored in relational databases. The same system also provides
relational access to other structured texts, including The Oxford English Dictionary, The
Collected Works of Shakespeare, The Devil’s Dictionary and The Bible [UW97].

Structured Text ADT18

The described SQL structured text extensions have been accepted for inclusion within the evolving
SQL/MM standard [Dav96]. They are of immediate benefit to any user who wishes to integrate
textual information into their existing relational database systems, and to any user currently
involved in text intensive searching or querying who wished to capitalize on the expressive power
of SQL. The text abstract data type is also suitable for inclusion in object-oriented database
systems. These structured text extensions are simple ones that can be easily understood, and yet are
surprisingly effective in selectively recovering and consolidating relevant information from within
the very complex structures that occur naturally within many types of text. Thus, our experiences
in designing and implementing these text extensions should prove valuable to those who wish to
extend relational and object-oriented systems so that they accommodate structured text.

Our research is also of immediate benefit to text engine vendors, since it provides a very easy
method of integrating text engine technology with both SQL2 and SQL3. We have shown that it is
feasible to implement relational wrappers for several text search engines to extend relational
database systems so that they provide support for complex text extensions. We have also shown
that it is possible to integrate such extensions eff iciently into SQL, so that vendor-specific objects
may be rapidly retrieved and manipulated using standard SQL constructs. Furthermore, we
demonstrated how the integrated text-relational technology can be further integrated with Web
technology.

Acknowledgments

This work has been carried out as part of the University’s participation in the Canadian Strategic
Software Consortium (CSSC), which also includes Fulcrum Technologies Inc., Grafnetix Systems
Inc., InContext Corporation, Megali th Technologies Inc., Open Text Corporation, Public Sector
Systems, and SoftQuad Inc. CSSC was formed in 1993 to perform pre-competitive research on the
integration of relational and text databases and was partially supported by Industry Canada’s
Strategic Technologies Program (STP).

Ideas expressed in this paper have been developed and refined in part through discussions with
members of the CSSC’s Hybrid Query Processor (HQP) working group. Special acknowledgment
is due to past contributors to the Text/Relational Database Management Systems project, including
Betty Blake, Gaston Gonnet, Pekka Kilpeläinen, Eila Kuikka, Paul Larson, and Tim Snider.
Financial assistance was provided by the University of Waterloo and through grants from the
Natural Sciences and Engineering Research Council of Canada, Industry Canada, and Open Text.

References

[ATA91] Air Transportation Association, Advanced Retrieval Standard − SFQL: Structured Fulltext
Query Language. ATA-89-9C SFQL Committee, ATA specification 100, Rev 30, Version
2.2, Prerelease C, October 1991, 84 pp.

[Bla94] G.E. Blake, M.P. Consens, P. Kilpelainen, P-Å. Larson, T. Snider, and F.W. Tompa,
“Text/Relational Database Management Systems: Harmonizing SQL and SGML,” Proc.
Application of Databases (ADB 94)., Vadstena, Sweden (June 1994), Lecture Notes in
Computer Science 819, Springer-Verlag, pp. 267-280.

[Bla95] G.E. Blake, M.P. Consens, I.J. Davis, P. Kilpelainen, E. Kuikka, P-Å. Larson, T. Snider, and
F.W. Tompa, Text/Relational Database Management Systems: Overview and Proposed SQL

Structured Text ADT 19

Extension. University of Waterloo Department of Computer Science Technical Report CS-95-
25 (June 1995).

[Bri97] M. Brisebois and I.J. Davis, “HQP: la gestion et l’ intégration des données relationnelles et
textuelles,” L’expertise informatique 3, 1 (été 1997) pp. 8-13.

 [Cla94] C.L.A. Clarke, G.V. Cormack, and F.J. Burkowski, Fast Inverted Indexes with Online
Update. University of Waterloo Department of Computer Science Technical Report CS-94-40
(November 1994) 11 pp. See also http://multitext.uwaterloo.ca.

[Cob92] N. Coburn and P-Å. Larson, “Multidatabase Services: Issues and Architectural Design,”
Proc. 1992 CAS Conf. (CASCON), IBM, pp. 57-66.

[Coo87] J.H. Coombs, A.H. Renear, and S.J. de Rose, “Markup Systems and the Future of Scholarly
Text Processing,” Comm. ACM 30, 11 (November 1987) pp. 933-947.

[CSSC94] CSSC News Letter. Issue 1, December 19, 1994.

[Dav96] I.J. Davis, Adding structured text to SQL/MM Part 2: Full Text, A change proposal.
ISO/IEC JTC1/SC21/WG3 CAC N334R3, April 26, 1996.

[Fla96] D. Flanagan, Java in a Nutshell, O’Reilly and Associates, 1996.

[Ful94] Fulcrum Technologies Inc., Fulcrum SearchServer Version 2.0: Introduction to SearchServer,
1994.

[Gon87] G. H. Gonnet, “Extracting information from a Text Database. An example with dates and
numeric data,” Proc. Third Conf. UW Centre for the New Oxford English Dictionary,
Waterloo, Canada (November 9-10, 1987) pp. 89-96.

[ISO86] International Organization for Standardization, Information processing - text and office
systems - Standard Generalized Markup Language (SGML). ISO 8879: 1986.

[ISO89] International Organization for Standardization, Information processing - text and office
systems - Office Document Architecture (ODA). ISO 8613-2: 1989.

[ISO92] International Organization for Standardization, Information technology - Database languages
- SQL. ISO/IEC 9075: 1992.

[ISO96d] International Organization for Standardization, Document Style Semantics and Specifi cation
Language. ISO/IEC 10179:1996, http://www.jclark.com/dsssl.

[ISO96s] International Organization for Standardization, SQL Multimedia and Application Packages.
Part 2: Full Text. ISO/IEC Working Draft, June 1996.

[Kil93] P. Kilpeläinen and H. Mannila, “Retrieval from hierarchical texts by partial patterns,”
Sixteenth Int. ACM SIGIR Conf. on Research and Development in Information Retrieval
(1993) pp. 214-222.

[Mac92] I.A. Macleod, “Data Modelli ng Requirements for Document Management,” Proc. IFIP
TC8/WG8.1 Working Conference on Information System Concepts: Improving the
Understanding, Alexandria, April 1992, Elsevier (North-Holland) pp. 259-271.

[Mic92] Microsoft ODBC 2.0 Programmer’s Reference and SDK Guide. Microsoft Press. 1992

Structured Text ADT20

[OTC95] Open Text Corporation, Open Text 5 System Integration Guide and Database Administration
Guide, 1995.

[Pap95] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom, “Object Exchange Across
Heterogeneous Information Sources,” Proc. Eleventh Int. Conf. on Data Engineering, Taipei,
Taiwan (March 1995) pp. 251-260.

[Rag97] D. Raggett, HTML 3.2 Reference Specification, The World Wide Web Consortium, REC-
html32, January 14, 1997 (http://www.w3.org/TR/REC-html32.html).

[Ray96a] D.R. Raymond, F.W. Tompa, and D. Wood, “From Data Representation to Data Model:
Meta-Semantic Issues in the Evolution of SGML,” Computer Standards and Interfaces 18
(1996) pp. 25-36.

[Ray96b] D.R. Raymond. Partial Order Databases. University of Waterloo Department of Computer
Science Technical Report CS-96-01 (March 1996).

[Sal96] A. Salminen and F. W. Tompa. Grammars++ for Modelling Information in Text. University
of Waterloo Department of Computer Science Technical Report CS-96-40 (November 1996),
46 pp.

[Spe94] C.M. Sperberg-McQueen and L. Burnard (eds.), Guidelines for the Encoding and Interchange
of Machine-Readable Texts (TEI P3). Assoc. for Computing in the Humanities, Assoc. for
Computational Linguistics, and Assoc. for Linguistic and Literary Computing, April 1994
(http://www.uic.edu/orgs/tei/p3/).

[Tom89] F.W. Tompa, “What is (tagged) text?” Dictionaries in the Electronic Age: Proc. 5th Conf. of
University of Waterloo Centre for the New OED, Oxford, UK (September 1989) pp. 81-93.

[UW96] University of Waterloo, 1996-97 Undergraduate Calendar, Off ice of the Registrar,
(http://www.adm.uwaterloo.ca/infoucal).

[UW97] University of Waterloo, The TRDBMS project: Integrating structured text and SQL,
http://solo.uwaterloo.ca/trdbms/index.html, Department of Computer Science, 1997.

[Wei85] E.S.C. Weiner, “The New OED: Problems in the Computerization of a Dictionary,”
University Computing 7 (1985) pp. 66-71.

[Zhu92] Q. Zhu, “Query Optimisation in Multidatabase Systems, Proc.1992 CAS Conference
(CASCON), IBM, pp. 111-127.

Structured Text ADT 21

Appendix A
Behind the scenes

Introduction

This appendix contains two complete queries ill ustrating the use of the structured text abstract data
type within the context of SQL. These queries operate against the University of Waterloo calendar
[UW96]. The calendar text is stored within a one row table named uwcalendar containing a single
column named calendar. This table is accessed through PAT, with the aid of a relational wrapper.

Query 1

List professors and their departments for professors who have some degree from Toronto and an
MBA from any institution.

Within the calendar text, the faculty is listed by department, as in the following snapshot:

Accounting

Professor, Director, School of Accountancy
J.H. Waterhouse, BSc, MBA (Alberta), PhD (Washington, Seattle)

Associate Professor, Acting Director, Director Professional Programs, Gordon H.
Cowperthwaite Professor of Accounting
H.M. Armitage, BSc (McGill), MBA (Alberta), PhD (Michigan State), CMA, FCMA

Professor, Graduate Officer, The Ontario Chartered Accountant's Chair in Accounting
G. Richardson, BA (Toronto), MBA (York), PhD (Cornell), CA, FCA

Associate Professor, Undergraduate Officer
D.T. Carter, BComm, MBA (Windsor), CA, FCA

…

In the model for the calendar text, the department name is subsumed by by a node labelled
<FDNAME>, the department members are subsumed by a node labelled <FGRP>, the information for
each professor is under a node labelled <FP>, and his/her degrees are under a single node labelled
<FQUAL>.

SELECT TEXT_TO_STRING (prof_info,'clear'), TEXT_TO_STRING (dept_name, 'clear')
FROM (SELECT UNNEST
 EXTRACT_SUBTEXTS(
 calendar,
 3,
 '<file>[<FDNAME>#&<FGRP>[<FP>#[<FQUAL>["Toronto"&"MBA"]]]]'
)
 FROM uwcalendar
) T1(marked_calendar, dept_name, prof_info)
WHERE prof_info IS NOT NULL

Structured Text ADT22

The keyword unnest (in the nested select) represents a proprietary extension to SQL, which allows
projected functions that return relational tables to be unnested [Bla95]. Within SQL3 it has been
proposed that such an operation would be replaced by one performing a left join on a table
containing the inputs to the projected function, with the specific function. For this to be a viable
method of performing the desired operation, the scope in which variables are known has to be
extended so that inputs on the left of a join remain visible to functions used in producing the right
component of the join. It is also necessary that such a correlated join implicitly join each row
produced by the left input with all rows derived from this left row’s inputs.

Using this alternative construction, the unnest would be written as:

SELECT marked_calendar, dept_name, prof_info
FROM (

(SELECT calendar FROM uwcalendar)
LEFT JOIN
EXTRACT_SUBTEXTS(calendar, 3, '<file>[<FDNAME>…]]]]')

) T(calendar, marked_calendar, dept_name, prof_info)

Result 1

'G. Richardson BA (Toronto), MBA (York), PhD (Cornell), CA, FCA’ 'Accounting'

'W.M. Lemon BA (Western Ontario), MBA (Toronto), PhD (Texas at
 Austin), CA, FCA, CPA'

'Accounting'

'W.D. Poole BA (Toronto), MBA (York), MSc (London)' 'Drama and Speech Communication'

'J.H. Bookbinder MBA (Toronto), MS, PhD (California, San Diego)' 'Management Sciences'

Query 2

The second example presents the SQL query used to produce the Web page shown in Figure 14. In
this query, course schedules (located in an Oracle database as schedule_courses) are joined with
the course sections for that course (also located in an Oracle database as schedule_sections). Then
the appropriate course descriptions extracted from the calendar are joined to the schedule
information, when these descriptions exist. This query contains some redundancy introduced by
the application that formulated it, and makes assumptions about the nature of the data returned.
Formatting of the output records into a page suitable for the Web (with only one course description
presented for all four section records) was performed by an application front. Nevertheless, a
considerable amount of text within the query is concerned with managing presentational issues that
must be addressed by anyone wishing to make information available on the World Wide Web.

This example ill ustrates the utili ty of wrapping structured text, such as that which might be found
on the Web, with relational interfaces, but it also demonstrates some of the attention to detail that
is demanded by traditional database languages when dealing with missing values and in
manipulating datatypes.

The query is shown on the next page, followed by two of the four records returned when the query
is executed.

Structured Text ADT 23

SELECT cindex, cno, divsuf, cterm, cwt, requested, cenrolled, climit, notes, stype, sno, senrolled,
slimit, smt, meet_time, locn, instructor,

 COALESCE(description,''||cno||' - No Description Available'),
 COALESCE(source,'')
FROM (SELECT *
 FROM (SELECT cindex, cno, divsuf, cterm, cwt,
 CAST(requested AS VARCHAR(20)) AS requested,
 CAST(enrolled AS VARCHAR(20)) AS cenrolled,
 CAST(limit AS VARCHAR(20)) AS climit,
 note1|| ' ' ||note2|| ' ' ||note3 AS notes
 FROM SCHEDULE_COURSES
 WHERE cno LIKE UPPER('HIST %') AND cno LIKE '% 255%'
)
 NATURAL JOIN
 (SELECTcindex, cno, stype, sno,
 CAST(enrolled AS VARCHAR(20)) AS senrolled,
 CAST(limit AS VARCHAR(20)) AS slimit,
 smt, meet_time, meet_bldg||' '||meet_room AS locn,

first_name ||' '||'<A HREF=/cgi-bin/nph-cgiint?__file__=calendar%
2Fgeneral%2Ffaculty.in&dept_name=&ftype_position=any&
ftype_role=none%2Fany&mode=Submit+Query&

 back=calendar/general/schedule.in&flnm=' || last_name || '>' || last_name
|| '' AS instructor

 FROM SCHEDULE_SECTIONS
 WHERE cno LIKE UPPER('HIST %') AND cno LIKE '% 255%'
)
)

NATURAL LEFT JOIN
 (SELECTCASE position('&' in TEXT_TO_STRING(cno, 'clear'))
 WHEN 0 THEN TEXT_TO_STRING(cno, 'clear')
 ELSE substring(TEXT_TO_STRING(cno, 'clear') from 1 for
 position('&' in TEXT_TO_STRING(cno, 'clear'))) ||
 substring(TEXT_TO_STRING(cno, 'clear') from
 position('&' in TEXT_TO_STRING(cno, 'clear'))+5)
 END as cno,
 TEXT_TO_STRING (KEEP_MARKS(course,0,0), 'tagged') as description,
 '<CAL>' || TEXT_TO_STRING (source, 'clear') || '</CAL>' as source
 FROM (SELECT UNNEST
 EXTRACT_SUBTEXTS(
 calendar, 4,
 '<file>[:source#&<COURSE>#[<CNO>#]]'
) as (marked_calendar, source, course, cno)
 FROM uwcalendar
)
 WHERE UPPER(TEXT_TO_STRING(cno, 'insensitive’')) like UPPER('HIST%')
 AND TEXT_TO_STRING(cno, 'insensitive') LIKE '% 255%'
)
ORDER BY cno, cindex, stype, sno, smt ASC

Structured Text ADT24

Result 2

RECORD 1

cindex:
�

01131’ cno:
�

HIST 255’
divsuf:

�

�

cterm:
�

F
�

cwt:
�

.50
�

 crequested:
�

62
�

cenrolled:
�

53
�

climit:
�

54
�

notes:
�

�

 stype:
�

C
�

sno:
�

01
�

senrolled:
�

53
�

slimit:
�

54
�

smt:
�

01
�

meet_time:
�

11:30TR
�

locn:
�

AL 124
�

instructor:
�

M Craton
�

description:
�

<Tagged><COURSE NAME="HIST255">
<CNO>HIST 255</CNO> <CTERM>F </CTERM> <CWT>0.5</CWT>

<CTITLE>The Expansion of England</CTITLE>

<CDESC> The history of the British Empire down to the American War of Independence, telling
the story of the Tudor seadogs, of the plantation of Ireland, the settlement of the North American
mainland, the establishment of slave plantations in the Caribbean, and the earliest British
enterprises in Africa, Asia and the Pacific. </CDESC>

</COURSE></Tagged>

�

source:
�

<CAL>COURSE/course-HIST.html</CAL>
�

RECORD 2

cindex:
�

01131’ cno:
�

HIST 255’
divsuf:

�

�

cterm:
�

F
�

cwt:
�

.50
�

 crequested:
�

62
�

cenrolled:
�

53
�

climit:
�

54
�

notes:
�

�

 stype:
�

D
�

sno:
�

01
�

senrolled:
�

19
�

slimit:
�

18
�

smt:
�

01
�

meet_time:
�

12:30T
�

locn:
�

ES1 353
�

instructor:
�

M Craton
�

description:
�

<Tagged><COURSE NAME="HIST255">
<CNO>HIST 255</CNO> <CTERM>F </CTERM> <CWT>0.5</CWT>

<CTITLE>The Expansion of England</CTITLE>

<CDESC> The history of the British Empire down to the American War of Independence, telling
the story of the Tudor seadogs, of the plantation of Ireland, the settlement of the North American
mainland, the establishment of slave plantations in the Caribbean, and the earliest British
enterprises in Africa, Asia and the Pacific. </CDESC>

</COURSE></Tagged>

�

source:
�

<CAL>COURSE/course-HIST.html</CAL>
�

…

